All content

Search filter terms
Filter by category
Filter by type
Filter by tag
Filter by user
Filter by licence
Results per page:
Sort by:
Showing 4 results. Use the filters on the left and the search box below to refine the results.
Tag: content based
Uploader

Workflow LSI content based recommender system template (1)

Thumb
This workflow performs LSI text-mining content based recommendation. We use SVD to capture latent semantics between items and words and to obtain low-dimensional representation of items. Latent Semantic Indexing (LSI) takes k greatest singular values and left and right singular vectors to obtain matrix  A_k=U_k * S_k * V_k^T. Items are represented as word-vectors in the original space, where each row in matrix A represents word-vector of particular item. Matrix U_k, on the other hand ...

Created: 2011-05-06 | Last updated: 2011-05-09

Credits: User Ninoaf User Matko Bošnjak

Attributions: Workflow Content based recommender system template Blob Datasets for the pack: RCOMM2011 recommender systems workflow templates

Uploader

Blob Datasets for the pack: RCOMM2011 recommender systems...

Created: 2011-05-05 21:18:51 | Last updated: 2011-05-06 12:13:22

Credits: User Matko Bošnjak User Ninoaf

License: Creative Commons Attribution-Share Alike 3.0 Unported License

Dataset description: items This is a concatenated train and test set from ECML/PKDD Discovery Challenge 2011. Only ID and name attributes were used, other attributes are discarded because of the size of the dataset. This example set represents the content information for each of the items represented by an ID. user_history This is an example set consisting of randomly sampled IDs from items dataset. It represents the user's history - all the items (in this case lectures) he has viewed. u...

File type: ZIP archive

Comments: 0 | Viewed: 753 times | Downloaded: 443 times

Tags:

Workflow Content based recommender system template (1)

Thumb
As an input, this workflow takes two distinct example sets: a complete set of items with IDs and appropriate textual attributes (item example set) and a set of IDs of items our user had interaction with (user example set). Also, a macro %{recommendation_no} is defined in the process context, as a required number of outputted recommendations. The first steps of the workflow are to preprocess those example sets; select only textual attributes of item example set, and set ID roles on both of th...

Created: 2011-05-05 | Last updated: 2011-05-09

Credits: User Matko Bošnjak User Ninoaf

Attributions: Blob Datasets for the pack: RCOMM2011 recommender systems workflow templates

Workflow Content based recommender (1)

Thumb
This process is a special case of the item to item similarity matrix based recommender where the item to item similarity is calculated as cosine similarity over TF-IDF word vectors obtained from the textual analysis over all the available textual data. The inputs to the process are context defined macros: %{id} defines an item ID for which we would like to obtain recommendation and %{recommender_no} defines the required number of recommendations. The process internally uses an example set of...

Created: 2011-03-15 | Last updated: 2011-03-15

Results per page:
Sort by: