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Abstract 

Predictive capacity of a numerical model is determined by model structure as well as 

model parameters. To make reliable model predictions we have to show that model can 

replicate observations or, in other words, model has to be validated. During the model 

validation the parameters of the model are usually adjusted to achieve a better fit of modelled 

and observed variables. Parameters can be adjusted either manually by user or automatically 

by a computer program.   

In this report we use observations of CO2 fluxes measured with the eddy covariance 

technique first, to validate the terrestrial ecosystem model BIOME-BGC and then to optimize 

model parameters for several forest sites. 

In the first chapter we presents validation of net ecosystem exchange, gross primary 

production, and respiration simulated by BIOME-BGC for 10 sites located in four northern-

hemispheric forest biomes, where CO2 flux measurements have been made under the 

FLUXNET (AMERIFLUX
9
 and EUROFLUX

10
) program, at the inter-annual, annual, intra-

annual, and daily levels. We show that model works better for temperate than for boreal 

forests. Inclusion of multiple soil layers in the model instead of one bucket algorithm could 

help to improve the model performance especially in the North. Modelled respiration rate was 

higher than observed at low temperatures, but in good agreement at high temperatures.  

In the second chapter we estimate model parameters using optimisation routine, which is 

based on the Metropolis algorithm, and observations from six forest sites. In addition to 

carbon flux measurements we use also observations of leaf area index. We demonstrate that a 

more accurate estimation of model parameters helps to reduce the uncertainty in the model 

output – the estimates of carbon fluxes. The retrieved values of model parameters provide a 

reduction of an average flux uncertainty by 60%-80% over the modelled time period (year 

2001). The largest reduction of flux and parameter uncertainties was achieved with the largest 

number of constraints on the model output for five sites and with the single constraint on the 

ecosystem respiration for Hesse. The new parameter estimates provided also a reduction of 

the flux uncertainty at two additional sites that were not included into the optimisation. 

 

 

                                                 

9
 http://public.ornl.gov/ameriflux/ 

10
 http://www.unitus.it/dipartimenti/disafri/progetti/eflux/euro.html 
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Introduction 

The terrestrial ecosystems together with the marine environments limit atmospheric CO2 

concentrations and, consequently, the extent of the climate change. However, the estimates of 

the terrestrial carbon budget are uncertain, with the uncertainty amounted to 2-4 Gt C per year 

for the 1990’s (Schimel et al., 2001). The uncertainties originate not only from the complex 

responses of terrestrial ecosystems to environmental drivers, but also from our observational 

system of the carbon cycle. Available methods to measure various components of the carbon 

budget over large areas (e.g. global atmospheric CO2 sampling network, process studies, 

satellite observations, etc.) provide insights into certain components of the terrestrial carbon 

budget, but none of them supplies complete information about all components. Moreover they 

provide information about different components of the carbon cycle at different spatial and 

temporal scales, so using these methods in a complementary way is not straightforward and 

the resulting carbon budget is ambiguous. 

Ecosystem models serve as integrative tools for observations because they estimate 

relevant components of the carbon cycle at different spatial and temporal scales. A number of 

ecosystem terrestrial models: TURC (Ruimy et al., 1996), BETHY (Knorr, 2000), LPJ (Sitch 

et al., 2003), BIOME3 (Haxeltine and Prentice, 1996), PnET (Aber and Federer, 1992), 

BIOME-BGC (Running and Hunt, 1993; Thornton, 1998; Thornton et al., 2002)) were 

developed to estimate carbon cycle variables in the terrestrial biosphere. However estimates of 

the carbon variables still have uncertainties related to poorly understood links between “slow” 

(e.g. allocation, soil decomposition, etc.) and “fast” processes (e.g. photosynthesis, 

respiration, evapotranspiration) as well as to internal parameters and pools (e.g. leaf, stem, 

and soil carbon), which have not been properly constrained by observations.  

In the first part we presents validation of net ecosystem exchange, gross primary 

production, and respiration simulated by BIOME-BGC for 10 sites located in four northern-

hemispheric forest biomes, where CO2 flux measurements have been made under the 

FLUXNET (AMERIFLUX
11

 and EUROFLUX
12

) program, at the inter-annual, annual, intra-

annual, and daily levels.  

In the second part we estimate model parameters using optimisation routine, which is based 

on the Metropolis algorithm, and observations from six forest sites. In addition to carbon flux 

                                                 

11
 http://public.ornl.gov/ameriflux/ 

12
 http://www.unitus.it/dipartimenti/disafri/progetti/eflux/euro.html 
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Seasonal Dynamics 

The time series of representatives from each biome type (Hyytiala 1998, Hesse 1999, and 

Loobos 1997) were used to comment on the accuracy of the model at the intra-annual and 

seasonal level (Figure 8). For all three sites, the model followed the seasonal trend with some 

level of accuracy. Distinct patterns were also followed - the end of the growing season out-

gassing in both temperate deciduous and boreal coniferous biomes was well met. The order of 

magnitude of the NEE between the estimated and observed during the CUP in all cases was in 

good agreement. There was a startling deviation between the two data sets and that is the 

overestimation of the respiration during the CRP. 

Figure 8. Seasonal variation, comparison between daily site measurements and model 

estimates for. (a) Temperate deciduous, Hesse, 1999, (b) Boreal coniferous, Hyytiala, 

1998 and (c) Temperate coniferous, Loobos, 1997. 
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Annual Sums  

The annual sums for GPP, RESP, and NEE are shown in Figure 9 (a, b and c), where each 

biome type can be seen independently of one another. Overall the relationship was best for 

GPP, then NEE, and finally RESP, with the slopes of 1.6, 0.55, and 1.25 respectively. The 

slopes for GPP and RESP suggest overestimations by the model at all sites with high 

productivity and biological activity and underestimations at sites with poor productivity. The 

slope for NEE suggests the opposite.  

 

Figure 9. Modelled vs. observed (inferred from observations) fluxes of GPP (a), RESP 

(b), and NEE (c) for temperate deciduous (TD), boreal coniferous (BC), and temperate 

coniferous (TC) biomes. 
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56% of the variation in GPP was explained by the model, suggesting as did the CUP and 

CRP daily fits that the photosynthetic processes are realised with greater accuracy by model 

than are the respiratory processes. While modelled NEE proved less predictive in nature with 

R
2
 = 0.23. BIOME-BGC was least accurate at predicting respiration, R

2
 = 0.15. The 

overestimation of GPP was the greatest for coniferous biomes, with model estimates for 

temperate coniferous biomes being less accurate that those for boreal coniferous biomes. GPP 

for temperate deciduous biome were not systematically over- or under-estimated by the model 

but spread above and below the 1:1 line. The trends for RESP showed similar patterns to those 

for GPP. NEE is the difference of GPP and RESP and as such shows a mixed signal, of those 

biomes where either RESP or GPP are the dominant processes. Those coniferous biome sites 

which alight on the 1:1 line do so purely as a result of both a GPP and RESP overestimation, 

as was alluded to earlier in this section. Deciduous biomes on the other hand fall around the 

1:1 line as a result of fairly accurate predictions of both GPP and RESP. All sites in the study 

can be seen to be both measured and modelled sinks of atmospheric CO2, except Brasschaat, 

the reasons which were discussed earlier. 

Figure 10. Relationship between annual modelled and measured NEE and its 

uncertainty for different forest biomes. Uncertainty for measured NEE is calculated 

from site error estimates based on gap filling technique. Model uncertainty estimates are 
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based on parameter simulation treatment: (a) Temperate deciduous, model estimates are 

calculated from two different initial state variable estimates and phenological model. (b) 

Boreal and temperate coniferous, model estimates based solely on the two different 

initial state variable conditions.  

 

Both the model and the site measures are subject to error, either from gap filling in respect 

to the site observations or from an initial parameterisation in the model. Figure 12 shows what 

we have termed as the error/estimate space. In Figure 10a it can be seen that for all biomes the 

effect of interannual climate variability is undetectable, in that for all biomes the site errors 

are overlapping. It can also be pointed out that even though on different continents, the NEE’s 

for Hesse and Harvard a not different from one another. For the coniferous biomes (Figure 

10b), only Boreas has an undetectable effect of interannual climatic variability, all other sites 

show distinct differences between simulation years. One can also see from the nature of the 

spread of the error spaces that each site can be considered as different from one another with 

respect to NEE, unlike the deciduous biomes. 

Our results suggest that the model has a propensity to overestimate the RESP of modelled 

biomes. This has been seen in other of other biogeochemical models when validated using 

CO2 flux data, CANOAK (Baldocchi and Wilson, 2001), Forest-BGC (Cienciala et al., 1998a) 

and BIOME-BGC (Thornton et al., 2002; Churkina et al., 2003) and CANPOND (Law et al., 

2000). These errors in RESP appear to be more consistent in coniferous biomes. As can be 

seen in Figure 1, the biomes on the European continent are not so different from one another 

to expect that the accuracy of the deciduous sites stem from climatic differences. This then 

presents the idea that the increased model accuracy for simulating deciduous biomes is in 

response to some initial stock sizes, such as soil carbon, stem carbon and leaf carbon. 

Only two sites have a long enough data set, Harvard and North Boreas. Figure 5, to 

corroborate the model at the interannual level. As would be expected from the annual fits the 

figures for model annual NEE are not in good agreement with those observed, though they are 

of the correct order of magnitude. The model does not however pick up the interannual trends 

seen in the flux data.  

Problematic sites 

North Boreas 

Of all the simulations, simulated carbon fluxes for the North Boreas site has the least 

significance in relation to the observed ecosystem fluxes. BIOME-BGC can be seen to 

overestimate NEE, Figure 11b. The one physical trait of this site that is present in none other 
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is the presence of permafrost. The reason for the chronic inaccuracy of the model for this site 

can be linked to the inability of the model to properly represent soil temperatures profiles in a 

cryogenic soil. In Figure 11 the site soil temperature profile and NEE are plotted with model 

soil temperature (no profile since soil temperature is assumed to be constant through the 

rooting zone) and NEE. The model can be seen to simulate the upper 5cm of the site soil 

profile well, this being the zone which is most coupled with the atmosphere. Because there is 

only one soil pool there can be only one soil temperature, this removes the possibility of the 

model capturing soil profile dynamics. Meaning that while the model vegetation has the 

whole of rooting depth free (available soil water) for uptake to take place from day 130, the 

site has only the top 5cm available from day 136. With this limited depth of unfrozen soil at 

the site - as common sense would predict, because water is limited (frozen) - stomatal 

conductance will be minimal. In turn reducing the ability of the site vegetation to maximise 

the light available for photosynthesis. This is the reason for the discrepancy between the 

model and site NEE early in the growing season. Under this same logic one would expect the 

site NEE to increase as the permafrost level drops throughout the growing season as more soil 

resources are made available. This is not the case. A similar pattern of site seasonal NEE for 

1995 can be seen in (Rayment and Jarvis, 1997) and can be attributed to the difference in 

phase between the photosynthesis and respiration during the growing season. The simple logic 

that the NEE increases with increases availability of unfrozen soil does not hold because while 

photosynthetic rate and soil respiration are increasing in response to increasing temperature. 

Branch bag measurements show photosynthesis occurs from day 100 to day 300 with peak the 

photosynthetic period being approximately between days 150 and 235, while soil respiration 

processes peak between days 190 and 250. The resulting pattern of NEE shows peak uptake 

between days 140 and 190, from this period approximately to day 210 of the CUP the NEE 

reduces and then fluctuates around equilibrium till the end of the growing season (Rayment 

and Jarvis, 1997). This is the same pattern as seen at the Boreas site in 1995 as well as all 

other years in this study. The model on the other hand assumes that the whole soil depth 

becomes defrosted, therefore water is freely available earlier than observed, when in fact only 

the top 5cm is, allowing photosynthesis to occur at a rate constrained only by the atmospheric 

climatic conditions. The rest of the model time series incorporates the same downward trend 

in NEE towards the end of the CUP.  
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Figure 11. Modelled and measured soil temperatures (a) and NEE (b) for North Boreas 

site. (a) Soil profile measures from Boreas at 5 and 50cm and modelled soil temperature 

(°°°°C) for 1995. (b) Time series for modelled and measured NEE (gC m
-2

yr
-1

).  Effect of 

permafrost on NEE is not captured by the model. 

New problem, PHS and TRANS appear to be occurring during periods where soil 

temperature is below freezing – BOREAS – this is counterintuitive and should cause 

cavatiation in the tree. There are 6 distinct periods when soil T is less than 0 where carbon 

uptake occurs, all on days where mean air temperature is greater than 0. This should not 

happen since g should be reduced to nearly 0, to prevent cavitation. This is because there is no 

realisation of the effect of sub-zero soil temperatures on soil water availability and 
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consequently stomatal conductance (g) in BIOME-BGC. This is not representative of the true 

processes, since g in forest stands with frozen soils should be reduced to nearly zero as 

prevention to cavitation. Some data from 1994 suggest that this is the case, with typical 

daylight average g of 0.0003 m s
-1

 -some 3.8% of the global gmax reported for coniferous 

forests (Waring and Running, 1998) - on year day 103, a bright clear day with snow and ice 

cover (Zimmerman, R., personal Comm.). This effect is not seen in any of the other 

simulations because of the lack of permafrost, i.e. if the soil is frozen it is only the top few cm 

and so water is still available to the plant at lower depths. The observed NEE does not show 

this inconsistency, the first days of carbon uptake are seen after the thawing of at least the top 

5 cm of soil. 

Even after first thawing of the soil it takes time for the plant to biogeochemically 

reorganise for photosynthesis. Tree would still be in its dormant phase. 

Gunnarsholt 

The major problem with the Gunnarsholt simulations is the lack of long-term coherent flux 

data from measurements. This is why the site is missing from the majority of the analyses. 

The model at the daily level also calculated the NEE to be lower than that measured at the flux 

station. In assessing this site one must remember the management that has occurred at the site 

and that the treatment of this in the model may not be totally accurate. This was the only 

occurrence in the study where the state variables were modified to try to simulate the 

implication of forest management and not just stand age.  

Conclusions 

Phenology 

For simulations at the regional scale the inability of the model to predict CUPs for species 

under photoperidic control is a problem that needs to be rectified. This is of great importance 

in accurately estimating the NEE over large areas.  

Respiration 

The representation of the relationship between RESP and temperature exceeds those 

observed seen at low temperatures but is in good agreement with the observed relationships at 

higher temperatures, suggesting that the functional relationship between the two needs to be 

adjusted. 
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Boreal sites 

Work needs to be done on the model with respect to the inclusion of a number of soil 

layers in the vertical to resolve the profile dynamics seen in boreal soils. The effect of frozen 

soils must also be used as a constraint on g so that in favourable atmospheric conditions the 

model does not calculate. 
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Parameter estimation for the terrestrial ecosystem model 

BIOME-BGC using eddy-covariance flux measurements 

 

By Kristina Trusilova and Galina Churkina 

Overview of Previous Studies 

It has been suggested that models can be calibrated and estimates of regional (and global) 

carbon fluxes could be improved using a combination of various types of observations (Wang 

et al., 2001). To produce the best estimate of the carbon budget we need to make use of all 

available constraints implied by the different data sources, as well as the physiological and 

ecological constraints embodied in the models. Raupach et al. (2005) reviewed model-data 

synthesis tools targeted to estimate various components of terrestrial carbon cycle. They 

provided an insightful theoretical discussion of the Bayesian approach in comparison to other 

methods available for model-data synthesis. Van Oijen et al. (2005) utilised Bayesian 

methodology to calibrate the parameters of a process-based forest model BASFOR using 

parameter values taken from literature and measurements of 13 output variables taken at a 

Norway spruce site. They found that constraining tree height and NPP already reduced 

posterior uncertainty significantly. Having data of greater precision, or longer time series, 

gave further improvement. Wang et al. (2001) used the nonlinear inversion approach to 

estimate parameters of the surface-exchange model CSIRO Biosphere Model (CBM) 

constraining model outputs by hourly fluxes of CO2, latent heat, sensible heat, and soil heat 

measured during a period of three weeks in 1995 at six different forest sites in SE Australia. 

They found that only four parameters of the CBM model could be independently constrained 

from the observations for all sites. Measurements of the ground heat flux provided little 

information about any of the model parameters. Braswell et al. (2005) used Bayesian 

parameter estimation technique to constrain parameters of a simplified Photosynthesis and 

EvapoTranspiration model (SIPNET) with hourly net CO2 flux series in the time period 1992-

2001 at one forest site. The purpose of this study was not to calibrate the model, but to 

understand how much information about controls on ecosystem processes can be derived 

directly from NEP observations. The SIPNET initial carbon pool values, physiological, 

photosynthesis, respiration and moisture parameters were highly constrained by the flux data 

at daily and seasonal timescales. Most of the abovementioned studies aimed at a better 

parameterisation of the models or understanding of ecosystem processes in the models using 
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measurements taken at one site. The only application of the model-data synthesis tools at 

multiple sites (Wang et al., 2001) used very short time series of data (three weeks). 

Objectives  

In this technical report we use measurements of carbon fluxes taken at six forest sites in 

conjunction with previously available information on parameters of the ecosystem process 

model BIOME-BGC (Running and Hunt, 1993) in order to improve modelled estimations of 

carbon fluxes. Since both types of information are uncertain, Bayesian probabilistic fitting 

method (Mosegaard and Tarantola, 1995) was chosen in our study. We investigate which 

observations or which combinations of them better constrain the model parameters and which 

model parameters are the most critical for the improvement of carbon flux estimates. Finally 

we test if our approach is suitable for development of a general forest parameterisation and 

discuss uncertainties associated with application of this parameterisation in simulations of 

regional or continental carbon budgets.  

Model Parameterisation 

The original set of ecophysiological parameters of the model includes 47 constants (Table 

1). Since only one-year observations were available for this study, only 14 parameters which 

characterise fast ecosystem processes were included in the optimisation (Table 7). Parameters 

describing slow ecosystem processes, like carbon allocation to different ecosystem pools, 

plant mortality, etc. were excluded from the optimisation because the one-year observations 

do not provide sufficient information to constrain these parameters. Into the optimisation 

scheme we also added four parameters which describe decomposition processes in the soil 

(Table 7).  

Table 7. BIOME-BGC model parameters chosen for optimisation and their units. All 

parameters except E0, T0, Tref, and Minpsi are the EcoPhysiological Constants (EPC) 

which characterise a particular vegetation type within the model; the parameters E0, T0, 

Tref, Minpsi characterise soil decomposition processes.  

Parameter Description Units 

CNl C:N ratio of leaves kgC/kgN 

CNll C:N ratio of leaf litter, after retranslocation kgC/kgN 

CNfr C:N ratio of fine roots kgC/kgN 

CNlw C:N ratio of live wood kgC/kgN 

CNdw C:N ratio of dead wood kgC/kgN 

SLA Canopy average specific leaf area  m
2
/kgC 

FrNRub Fraction of leaf nitrogen in Rubisco DIM 

MaxSC Maximum stomatal conductance  m/s 

Ccond Cuticular conductance  m/s 
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BLcond Boundary layer conductance  m/s 

LWPs Leaf water potential: start of conductance reduction MPa 

LWPe Leaf water potential: complete conductance reduction MPa 

VPDs Vapour pressure deficit: start of conductance reduction Pa 

VPDe Vapour pressure deficit: complete conductance reduction Pa 

E0 

Activation-energy-type parameter of decomposition (Lloyd 

and Taylor 1994) – energy required to bring all molecules in 

a chemical reaction into the reactive state  

°C
-1

 

T0 Soil temperature when all decomposition processes stop   °C 

Tref 
Reference soil temperature in the equation 11 in Lloyd and 

Taylor (1994) for calculation the base decomposition rates  
°C 

Minpsi 
The minimum values for water potential limit for calculation 

of the soil water content 
MPa 

 

The BIOME-BGC model was initialised with two sets of ecophysiological parameters for 

three deciduous broadleaf and three evergreen needleleaf forests (Table 8) and with six site-

specific sets of parameters such as latitude, elevation over the sea level, atmospheric nitrogen 

deposition, as well as soil texture and depth (Table 9). This parameterisation reflects two 

important model assumptions:  

1) coniferous and broadleaf forest stands have the same physiological structure, 

2) the difference in forest functioning within coniferous or broadleaf type stems is mostly 

governed by site-specific environmental conditions. 

Table 8. Initial values and ranges of model parameters for deciduous broadleaf and 

evergreen needleleaf forests. The parameter ranges are as in (White et al., 2000). 

Deciduous broadleaf forest Evergreen needleleaf forest 
Parameter 

Initial Guess Range Initial Guess Range 

CNl 24.0 16.3 - 35.7 42.0 22.8 - 70.0 

CNll 49.0 16.3 - 114.0 93.0 49.0 - 143.0 

CNfr 42.0 25.0 - 75.8 42.0 27.6 - 200.0 

CNlw 50.0 25.0 - 76.0 50.0 28.0 - 200.0 

CNdw 442.0 421.0 - 819.0 729.0 212.0 - 1400.0 

SLA 30.0 16.3 - 66.7 12.0 2.0 - 21.0 

FrNRub 0.08 0.075 - 0.085 0.04 0.035 - 0.045 

MaxSC 0.005 0.004 - 0.006 0.003 0.002 - 0.004 

Ccond 1.0⋅10
−5

 0.5 - 1.5⋅10
-5

 1.0⋅10
−5

  0.5 - 1.5⋅10
−5

 

BLcond 0.010 0.005 - 0.015 0.08 0.075 - 0.085 

LWPs −0.6 −0.5 - −0.2 −0.6 −1.0 - −0.2 

LWPe −2.3 −3.5 - −1.3 −2.3 −5.0 - −1.4 

VPDs 930.0 500.0 - 2000.0 930.0 500.0 - 1000.0 

VPDe 4100.0 2300 - 4700.0 4100.0 2000.0 - 6000.0 

E0 35.4 25.0 - 45.0 35.4 25.0 - 45.0 

T0 −46.0 −50.0 - −42.0 −46.0 −50.0 - −42.0 

Tref 25.0 15.0 - 30.0 25.0 15.0 - 30.0 

Minpsi −10.0 −15.0 - −5.0 −10.0 −15.0 - −5.0 
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The initial values for the ecophysiological parameters (Table 8) for both deciduous 

broadleaf and evergreen needleleaf forests and their ranges were set as in the work of White et 

al. (2000) Initial values of the decomposition parameters where set according to Lloyd and 

Taylor (1994).  

Table 9. Site and plant functional characteristics of the study sites. For deciduous forests 

the beginning and the end of the growing season were set, for evergreen forests - 

automatically defined by the model. 

Site 

code 
Site name Lat Lon 

forest age  

in 2001 

[year] 

Growing 

season  

[day] 

Elevation 
[m] 

Soil Type 

Deciduous broadleaf forest stands 

HA Hainich 51°05' N 10°28' E 250 125 – 280 445 cambisol 

HE Hesse 48°40' N 07°05' E 36 124 – 295 300 luvisol 

SO Soroe 55°29' N 11°38' E 81 144 – 295 40 cambisol 

Evergreen needleleaf forest stands 

HY Hyytiala 61°51' N 24°17' E 40 - 170 till 

LO Loobos 52°10' N 05°45' E 91 - 25 sand 

TH Tharandt 50°58' N 13°34' E 114 - 380 rhyolith 

 

Model Simulations 

 Carbon and nitrogen state variables of the BIOME-BGC model represent amounts of 

carbon and nitrogen stored in simulated plant and soil pools. Unless values for the 

initialisation of the model’s state variables are available from measurements, model 

simulations are required for their initialisation (spin-up run). In the spin-up run, the model is 

run to a steady state to obtain the size of the ecosystem’s carbon and nitrogen pools under the 

assumption of ecosystem being in equilibrium with the long-term climate. The spin-up run 

requires long term climatic variables, which would represent long-term interannual climate 

variability necessary to generate plausible values for carbon and nitrogen pools. Although 

most ecosystem are far from equilibrium because of human and natural disturbances, the spin-

up run is often used in ecosystem modelling because measurements of all state variables are 

rarely available and land use or management history becomes harder to obtain as we move 

from local to regional scale simulations. 

In this study, spin-up runs for all six sites were performed with pre-industrial values of 

atmospheric carbon dioxide concentration (287.2 ppm) and atmospheric nitrogen deposition 

two kg ha
-1

 yr
-1

 (Holland et al., 1999). The daily climate data used for spin-up runs were from 

50 to 80 year long on average (Table 10). 
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Table 10. Meteorological and nitrogen deposition data used in the BIOME-BGC model 

simulations for selected sites. The short-wave radiation measurements (TACOS 

database) were used to correct the radiation calculated by the MTCLIM. The nitrogen 

deposition data of the Hainich site were used for all high-nitrogen-deposition study sites 

(High N dep.); for the Hyytiala site the site specific data were used (Low N dep.).  

Site 

code 

Available 

meteorological 

data [year] 

Mean T 
[C°] 

Precip. 
[mm/year] 

Shortwave 

radiation 

measurement 

data [year] 

Industrial 

nitrogen 

deposition 

HA 1951-2001 7.0 750 2000-2001 High 

HE 1950-2001 9.2 885 1997-2001 High  

SO 1916-2001 8.1 510 1998-2001 High 

HY 1959-2001 3.5 640 1997-2001 Low 

LO 1941-2001 9.8 786 1997-2001 High 

TH 1952-2001 7.5 820 1997-2001 High 

 

Effects of ongoing environmental changes on forests in Europe were reflected in the 

subsequent “normal” run. Stand growth was simulated with continuously increasing 

atmospheric carbon dioxide concentrations and nitrogen deposition in the 20
th

 century. The 

CO2 concentration in the atmosphere has increased from the pre-industrial value of 287.2 ppm 

at the end of the nineteenth century to the average value of 371 ppm measured in 2001. 

Atmospheric nitrogen deposition was assumed to be at a pre-industrial level of 2 kg/ha before 

1959 and continuously increasing afterwards. For the sites with high-nitrogen deposition 

(Hainich, Hesse, Soroe, Loobos and Tharandt) the same nitrogen deposition time series were 

used as in the work of Churkina et al. (2003). For the Hyytiala site, the nitrogen deposition 

rates were considerably lower than at the other sites; these data were taken from the work of 

Kulmala et al. (1998b). 

The climate data required to drive the BIOME-BGC model were obtained from 

meteorological stations located at or near the sites of carbon flux measurements. Since daily 

average shortwave radiation and vapour pressure deficit were not available from 

meteorological stations for most years, these climatic variables were obtained using the 

Mountain Climate Simulator MTCLIM (Thornton et al., 2000). MTCLIM is a climate 

simulator, which estimates daily average shortwave radiation and vapour pressure deficit from 

maximum and minimum daily temperatures and precipitation. Measured shortwave radiation 
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data for 2001 were available from the TACOS database
19

 and were used here for simulations 

of carbon fluxes in that year for all sites.  

Observational Data 

Six forest stands were selected to represent natural vegetation in Europe. The dominant 

vegetation at each site was either deciduous broadleaf or evergreen needleleaf forests. The 

sites are located in different climate zones, at different elevations and are characterised by 

different forest ages and soil types (Table 9). For testing the model performance with the 

optimised parameter set we chose two additional sites: a deciduous broadleaf forest at Le Bray 

(France) and an evergreen needleleaf forest at Vielsalm (Belgium). The measurements taken 

at these sites were not included in the parameter optimisation process and, thus, were used as 

an independent data for validation of the model performance with the optimised parameter set.   

The net carbon fluxes were measured using the eddy covariance method (Aubinet et al., 

2000). Half-hourly night-time NEP fluxes were filtered according to a u-star threshold 

criterion (Reichstein et al., 2002), gap-filled (Falge et al., 2001a; Falge et al., 2001b) and 

separated into two main components: GPP and RESP (Falge et al., 2001a; Falge et al., 2001b; 

Reichstein et al., 2005). The gap-filling algorithm is a combination and enhancement of 

methods offered by Falge et al. (2001b). The algorithm searches for similar meteorological 

conditions, within the shortest possible time window and fills the missing value with the 

average flux during those conditions. That way the gap-filling algorithm exploits both the 

correlations between meteorological drivers and fluxes as well as the temporal autocorrelation 

of the fluxes. The flux-partitioning algorithm searches for a temperature response in short-

term data. The ecosystem respiration, RESP, was calculated based on an extrapolation of 

night-time CO2 flux measurement to daytime using a non-linear regression with temperature 

and soil moisture. GPP was calculated as difference between NEP and RESP. 

Measured values of maximum projected leaf area index were obtained from the 

CARBOEUROFLUX
20

 and the TACOS projects databases. 

Uncertainties 

The uncertainty estimation is one of the crucial points in every study where measured and 

modelled data are used. The accuracy of the model parameters depends on the variability of 

the parameters within the ‘footprint’ area of the measurements. This variability may result 

from heterogeneity of soil conditions, plant species, and measurement errors. The question 

                                                 

19
 www.bgc-jena.mpg.de/public/carboeur/projects/tacos.htm 

20
 http://gaia.agraria.unitus.it/database/carboeuropeip/ 
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about uncertainties rose relatively recently when model calibration tasks required more and 

more precision from measured data and, hence, their reliability. Uncertainties in eddy 

covariance measurements arise from several sources. Statistical, random errors are generally 

small (<5%) due to the large number of measurements taken (Goulden et al., 1996). 

Systematic instrumental errors may also be small (up to 5%-10%), if instruments are carefully 

cross-calibrated and maintained (Baldocchi and Bowling, 2003). The largest uncertainty 

(10%-30%) in eddy covariance measurements is related to low turbulence conditions during 

night-time and depends on the local topography and stand characteristics (Goulden et al., 

1996; Knohl et al., 2003). 

At the moment, there is no standard method to estimate the uncertainty of measurements, 

but one can estimate the uncertainty of the model. To do that, we suggest including a priori 

information about model parameters and their uncertainties into the optimisation. This 

estimation of parameter uncertainties is expected to be reduced by the optimisation procedure.  

Nonlinear inversion 

Measured carbon fluxes and maximum projected LAI were used to improve initial 

estimations of the model parameters minit. Sampling different parameter values m iteratively 

we maximise the target function (TF) which defines the match between the model output and 

the observational data:  

( ) ( ) ( )mmm LpTF ⋅= ,       Equation 1 

where  

p(m) - probability density function that represents a priori knowledge on parameter values, 

L(m) - likelihood function, a measure of the degree of fit between model output and 

observations. 

Due to the complex structure of the model the relationship between the input parameters 

and the output is highly nonlinear and, therefore, the maximisation of TF can not be 

performed analytically. We use the Metropolis algorithm (Bayesian analysis and the Markov 

Chain Monte Carlo sampling procedure)  to search the multidimensional parameter space and 

to sample parameter posterior distributions (Tarantola, 1987). The Metropolis algorithm 

belongs to a class of global search methods based on random sampling of parameter posterior 

distributions and quantifies parameter uncertainties as well as model output uncertainties. We 

did not use other optimisation methods like Downhill Simplex method or Conjugate Gradient 

method in multi-dimensions because they search for a local minimum and do not sample 

posterior distributions of parameters – an important source of information about the optimised 
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parameters. An accurate description of the Metropolis algorithm can be found in the appendix 

to the paper of Braswell et al. (2005). 

The second term in the Equation 1 is the likelihood function L(m) which quantifies the 

degree of fit between the model output and the observations. The likelihood function is 

calculated from a misfit function S(m) through the following expression: 

( ) ( )[ ]mm SKL −⋅= exp ,       Equation 2 

where  

K  - a normalisation constant. 

The probability density p(m) with a mean at minit describes  a priori information we have 

on the model parameters: 

( ) ( )







−−−=

−

initpinit mmCmmm
1

0
2

1
exp)(

T
Kp ,   Equation 3 

where   

Cp – parameter covariance matrix. 

On each step of the Metropolis algorithm we calculate p(mnew) and p(mold), where the mold 

– parameter values accepted on a previous step and  mnew – a vector of new randomly chosen 

parameter values. The decision if the mnew is accepted is being made in two steps: 

1. If p(mnew)> p(mold) – the new parameter values are closer to the initial guess than the old 

values then the model is run with mnew and the L(mnew) is calculated; 

2. If L(mnew)>L(mold) – the new parameter guess provides a better fit between the modelled 

and observed fluxes. The mnew is accepted, mold = mnew and new parameter values will be 

generated. 

We assume that the model parameters initially have uniform distribution and are 

independent. Matrix Cp is diagonal (has zero values for elements off the diagonal) with the 

parameters variances as diagonal elements. We calculate the parameters variances from 

available measurements from the work of White et al. (2000) as well as the upper and lower 

bounds Bup and Blo for each parameter to restrict the optimisation routine to sample only 

ecologically sensible  parameter values, for example, to sample only positive values for 

carbon pools. 

Misfit function 

The misfit function is a function of model parameters which gives a measure of match 

between model predictions parameterised with set m and the observations: 
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( ) ( )obscalfobscal DDCDDm −−= −1

2

1
)(

T
S ,    Equation 4 

where  

Dcal, Dobs - matrices those M rows are vectors of model outputs or constraints, respectively. 

Each model output Dcal[i] = d
i
cal is either a vector of carbon flux values (NEP, GPP or 

RESP) or a vector of LAI values. The difference between the model output and the 

observations is defined as: 

( )∑
−

=

−
−

=−=−
1

0

2
][][

1

1
][][

N

j

i

obs

i

cal

ii jdjd
N

ii obscalcalobs ddDD ,  Equation 5 

where  

i – row index from 0 to M-1, 

N - number of elements in each of the model outputs (N = 365 days of year). 

Similarly as for the model parameters, we assume that the model outputs are independent 

from each other. The covariance matrix Cf is diagonal, where each element of Cf[i, i] is an 

expected value of Dcal[i] - Dobs[i], derived from previous model runs. 

The day-to-day fluctuations of carbon fluxes and LAI calculated by the model and their 

observations change over the year and have higher amplitudes in summer than in winter. If we 

calculate the misfit function between the measured and the modelled fluxes straight forward, 

the contribution to the misfit value provided by summer carbon fluxes will be larger than by 

the winter fluxes. This would lead the optimisation algorithm to minimise largest misfits in 

summer fluxes while the fitting during winter time will remains loose. To avoid this effect we 

apply a weighting function to the measured (flux
i
obs) and modelled (flux

i
obs) fluxes. To give 

equal significance to the winter and summer fluxes the log transformation was applied to 

elements of  flux
i
obs and flux

i
obs: 

( )SHjj ii += ][log][ calcal fluxd       Equation 6 

( )SHjj ii += ][log][ obsobs fluxd ,      Equation 7 

where  

SH - normalisation constant that ensures the argument of log function is a positive number. 

The uncertainty of model output 

A priori uncertainty of the model output is calculated by running the model with parameter 

values sampled within initially defined parameter ranges. In order to obtain a posterior 
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estimation of the model output uncertainty the model is run with parameter values varying 

within the posterior ranges, which were determined by the optimisation procedure. 

For the quantitative estimation of the model output uncertainty we introduce a new variable 

UNCERT. UNCERT is a measure of a difference between the upper (d 
i
975[j]) and the lower (d 

i
025[j]) bounds of the model output at the time step j  that correspond to the 97.5% and 2.5% 

quintiles of all sampled d
 i

cal[j]: 

( )∑∑
−

=

−

=

−
−−

=
1

0

1

0

2

025975 ][][
)1)(1(

1 M

i

N

j

ii jdjd
NM

UNCERT   Equation 8 

Comparing the values of UNCERT for different sets of parameters we can quantify the 

success of the performed parameter optimisation. If the UNCERT value computed with the 

posterior parameter values is smaller than UNCERT calculated with a priori parameter values, 

we conclude that the flux uncertainty has been reduced and the optimisation was successful. 

Otherwise the optimisation did not improve the simulated carbon fluxes with the given 

parameter set. The UNCERT was calculated for all six sites with initial and with optimised 

parameter values and the relative change in the UNCERT value after the optimisation. 

One iteration of the optimisation  

At each step of the parameter optimisation routine new parameter values mnew are sampled. 

The parameter values mnew used for the first model run – the spinup run. After the spinup run 

is completed, the carbon, nitrogen, and water pools state is saved into a restart file. The restart 

file is then used in the subsequent normal run. A more detailed scheme of the iterative 

algorithm can be seen in the Figure 12: 
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Figure 12. Scheme of the iterative optimization algorithm. 
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Constraints on the model output 

We use multiple independently measured constraints on the model output at the sites: the 

NEP flux and the maximum annual LAI. We use the ecosystem respiration (RESP) and GPP 

inferred from the NEP measurements (Reichstein et al., 2005) to constrain the modelled 

ecosystem respiration and photosynthesis, respectively.  

We run the optimisation procedure with four different combinations of constraints for the 

study sites, named RUNA, RUNB, RUNC, and RUND with the CONSTRAINTSA, 

CONSTRAINTSB, CONSTRAINTSC, and CONSTRAINTSD, respectively (Table 11). The 

posterior parameter values derived in RUNA, RUNB, RUNC, and RUND were named VALUESA, 

VALUESB, VALUESC, and VALUESD, respectively.  

Table 11. Different combinations of constraints used in the model parameter 

optimisation procedure.  Constraints marked by symbol „+“are included into a 

corresponded combination. 

Constraints Output 
Combination code 

NEP GPP RESP LAI  

CONSTRAINTSA +    VALUESA 

CONSTRAINTSB   +  VALUESB 

CONSTRAINTSC   + + VALUESC 

CONSTRAINTSD  + + + VALUESD 

 

Results and Discussion 

Model output calculated with the initial parameter values matched seasonal trends of the 

measured carbon fluxes and LAI, but the summer GPP was underestimated for all study sites. 

The LAI calculated by the model agreed well with the measurements for all sites. For 

coniferous sites the NEP and RESP fluxes were overestimated by the model. For deciduous 

sites the RESP flux was overestimated during the growing season but the calculated NEP 

matched observations fairly well. For coniferous as well as for the deciduous sites the model 

parameters had to be adjusted in a way to reduce the RESP flux and still provide match of 

GPP and of LAI to the measurements. 

 Firstly, we analysed which observations or which combinations of them provide better 

constrain of the model parameters. Secondly, prior and posterior parameter confidence 

intervals were analysed. The magnitude of the reduction of each parameter’s confidence 

interval was interpreted as the efficiency of the optimisation procedure with the respective 

input constraints for this parameter. 
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Uncertainty in carbon fluxes 

Hyytiala and Soroe. For Hyytiala and Soroe all applied constraints combinations reduced 

uncertainty in modelled carbon fluxes and LAI (Table 12). For these sites all considered sets 

of constraints contained additional information about carbon budget, this information was not 

controversial, and provided a more accurate estimation of model output and model parameters 

than the initial parameter set. The CONSTRAINTSD helped to reduce the uncertainty of a 

larger number of model parameters: canopy specific leaf area was constrained by adding of 

the LAI and GPP observations. Thus, the CONSTRAINTSD was the most efficient constraint 

on the model output and parameters for these two sites. 

Table 12. Relative change in the flux uncertainty measure (UNCERT) propagated by 

optimisation with different sets of constraints applied to model output. Negative values 

indicate reduction of the flux uncertainty; positive values show an increase in flux 

uncertainty. Shading of cells indicates that uncertainty (UNCERT value) of all model 

outputs (NEP, GPP, RESP, and LAI) was reduced. 

Reduction of the UNCERT in percent from initial value 
Site Flux 

CONSTRAINTSA CONSTRAINTSB CONSTRAINTSC CONSTRAINTSD 

NEP -24.46 -15.12 -9.19 -57.87 

RESP -21.97 156.08 -33.34 -70.89 

GPP -25.51 14.05 7.68 -50.88 

HA 

LAI -41.18 -88.45 -94.79 -84.81 

NEP 68.60 7.16 70.76 -4.59 

RESP -41.92 -40.97 58.95 140.38 

GPP 90.38 -32.64 168.32 -15.96 

HE 

LAI -24.91 -61.63 -64.40 -78.65 

NEP -52.40 -41.35 -21.24 -22.30 

RESP -87.19 -8.97 -58.35 -70.22 

GPP -62.52 -48.09 -35.71 -36.71 

SO 

LAI -63.40 -71.84 -93.47 -90.60 

NEP -57.59 -48.49 -63.50 -48.57 

RESP -71.64 -29.72 -75.61 -68.63 

GPP -57.44 -55.66 -74.22 -50.07 

HY 

LAI -70.88 -81.06 -89.25 -86.03 

NEP -58.55 -3.13 -56.34 -33.46 

RESP -79.55 95.76 -56.76 -64.05 

GPP -77.49 -25.77 -51.41 -58.83 

LO 

LAI -48.24 -68.70 -95.53 -85.95 

NEP -87.85 -57.61 -67.18 -72.80 

RESP -91.49 -65.23 -41.07 -85.19 

GPP -90.99 -72.82 -69.68 -75.32 

TH 

LAI -41.10 19.49 -78.49 -83.28 
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Loobos, Tharandt, and Hainich. For Loobos, Tharandt and Hainich the CONSTRAINTSB 

did not provide any improvement to the model output. It happened because only the 

respiration part of the carbon balance was constrained but the photosynthetic component, 

which was initially underestimated, was not constrained. For Hainich and Loobos sites the 

UNCERT value of the RESP flux (the constrained one) increased after the optimisation. It 

happened because the method “tried“ to reduce the respiration flux and sampled model 

parameter values in a wider than initial range, but there was not enough information to 

constrain model parameters with this constraint alone. Adding the LAI constraint 

(CONSTRAINTSC) for Hainich did not reduce the uncertainty in the model output: the GPP 

flux was still overestimated and its uncertainty increased after RUNC.  

Hesse. For the Hesse site the single respiration constraint (CONSTRAINTSB) was the most 

efficient in reducing the uncertainty in model outputs. CONSTRAINTSB reduced the 

uncertainty of RESP, GPP, and LAI, but not NEP.  It happened because the forest of Hesse is 

young (approx. 36 years old in 2001), highly productive and managed. The forest stand is 

recovering from the last clear-cut in 1965 and the thinning in 1999 while the litter left on the 

ground as a result of previous management activities contributes to the ecosystem respiration 

flux from the canopy. The BIOME-BGC model simulates the naturally growing forest and 

does not include the forest management, predicting the soil respiration flux of an unmanaged 

ecosystem, which is lower than the measured respiration flux. Thus, it is of a greater 

importance to constrain the RESP model output than GPP and NEP. The CONSTRAINTSB 

was efficient to reduce uncertainty in RESP, GPP, and LAI but the uncertainty of NEE was 

slightly increased. However, due to a strong reduction in the uncertainty of the model 

parameters (CNl, CNll, CNlw, and SLA) the RUNB was considered successful and the 

VALUESB were taken as the optimal values of model parameters for Hesse site. 

For Hainich, Soroe, Hyytiala, Loobos, and Tharandt sites the CONSTRAINTSA and 

CONSTRAINTSD were the most efficient to reduce the UNCERT of the model output (Table 

12). To decide which set of constraints was the most successful one we had to look at the 

parameters uncertainties. The CONSTRAINTSD provided a stronger reduction in the UNCERT 

for the modelled LAI estimates and reduced the confidence intervals in a greater number of 

model parameters than the CONSTRAINTSA (the SLA parameter was constrained by 

CONSTRAINTSD, but not by CONSTRAINTSA). Given that the CONSTRAINTSD were more 

efficient than CONSTRAINTSA in narrowing the confidence intervals of optimised model 

parameters the VALUESD was chosen to be the optimal values of the model parameters (Table 

13) for Hainich, Soroe, Hyytiala, Loobos, and Tharandt sites.  
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Table 13. Initial and actual (derived with CONSTRAINTSD) parameter values and their 

ranges for deciduous broadleaf and evergreen needleleaf forests. The actual values of 

model parameters are averaged parameter values derived for individual sites. The 

shading of the lines indicates the parameters whose confidence intervals were redefined, 

but the mean values were fixed at their initial values because during the optimisation no 

general trend of the parameter change was found. 

Parameter 
initial 

value 

a priori 95% 

confidence interval 

optimised 

value 

a posteriori 95% 

confidence interval 

Decidious broadleaf forest 
CNl 24.0 16.3-35.7 20.1 13.0-27.2 

CNll 49.0 16.3-114.0 66.3 32.1-100.0 

CNfr 42.0 25.0-75.8 46.0 25.3-66.7 

CNlw 50.0 25.0-76.0 50.0 19.0-50.9 

SLA 30.0 16.3-66.7 30.0 23.2-40.3 

Evergreen needleaf forest 

CNl 42.0 22.8-70.0 42.0 26.3-59.5 

CNll 93.0 49.0-143.0 100.5 61.8-139.2 

CNfr 42.0 27.6-200.0 86.0 26.7-145.3 

CNlw 50.0 28.0-200.0 79.5 19.9-139.1 

CNdw 729.0 212.0-1400.0 811.3 349.6-1273.1 

SLA 12.0 2.0-21.0 10.4 7.2-13.6 

 

After analyzing uncertainties of model outputs from the initial model run and the runs 

RUNA, RUNB, RUNC, and RUND, we found that the set CONSTRAINTSB for Hesse and the 

CONSTRAINTSD for Hainich, Soroe, Hyytiala, Loobos, and Tharandt sites were the most 

efficient sets of observations for constraining model outputs and parameters.  

Optimised parameter values 

The VALUESB for Hesse and the VALUESD for Hainich, Soroe, Hyytiala, Loobos, and 

Tharandt forest stands were taken as optimised posterior estimations of model parameters. 

The corresponding constraint sets were the most efficient ones for the respective sites.  

Estimations of confidence intervals for C:N ratio of leaves, C:N ratio of leaf litter, and 

SLA were reduced by the optimisation by more than 18%  from initial estimations for all 

study sites  (Figure 13 and Figure 14).  For ENF sites the estimation of the confidence interval 

for C:N ratios of life and dead wood were reduced by more than 30% and 20% respectively 

from initial values. For DBF sites the confidence interval of C:N ratio of life wood was 

reduced by 37% from the initial value. 

Deciduous Broadleaf Forest sites. For DBF sites new estimations of parameter values of 

CNll, CNfr, CNlw, CNdw, and SLA were found after the optimisation (Table 13). The 

lifetime of the deciduous broad leaves is less than one year and the leaves are the first tree-
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part to react to changes in the nitrogen deposition from the atmosphere. Because the nutrient 

use efficiency for the leaves at DBF sites was decreased (leaves have less carbon per unit of 

nitrogen - CNl decreased) we conclude that the DBF sites did not experience nitrogen-

limitation. The new CNl value for DBF sites defined as 20.1 matched the observed value at 

Hesse (21.5) better than the initial value (24.0).  

The increased CNll parameter characterises the combined effects from the reduced nutrient 

use efficiency of the leaves and increased retention of carbon in leaf litter in attempt to reduce 

ecosystem respiration.  

The increase of the fine roots C:N ratio was explained by the optimisation’s attempt to 

decrease the ecosystem respiration, so there would be more carbon per unit of nitrogen in fine 

roots available for the autotrophic  respiration.  

 For Hainich, Hesse, and Soroe parameters CNlw and SLA were diverging from their 

initial value differently: 

- CNlw reduced at Hainich and Hesse, while increased at Soroe, 

- SLA increased at Hesse and reduced at Hainich and Soroe.  

Thus the CNlw and SLA optimised values can not be taken the general parameterisationof 

the DBF plant functional type. However, the newly defined confidence intervals for these 

parameters can be used in the future.  

Evergreen Needleleaf Forest sites. For ENF sites new estimations of parameter values of 

CNll, CNfr, CNlw, CNdw, and SLA were found after the optimisation (Table 13). After the 

optimisation, SLA of coniferous forests was reduced from 0.012 m
2
 kg

-1
 to 0.010 m

2
 kg

-1
, 

which was still higher than measured SLA of 0.004 m
2
 kg

-1
 available from Tharandt. Since we 

do not know how representative the single measured SLA was, we conclude that our method 

showed at least a correct trend towards a lower than initially estimated SLA value. Since 

leaves with lower SLA utilise high irradiance more efficiently and are more tolerant to 

nutrient deficiency and drought, the simulated coniferous forests with optimised SLA 

produced higher GPP. 

The optimised CNl value increased for Hyytiala and Tharandt sites but reduced for the 

Loobos site. These site-specific controversial changes allow us to conclude that no better 

general value for CNl was found. However, the CNl confidence interval was better defined.  

 

For some parameters the posterior estimations of their means were not in the middle of 

their posterior confidence intervals. It implies that distributions of these parameter values had 

a skewed rather than Gaussian shape as we assumed initially (for example, the CNlw and 

CNdw parameters for DBF in Figure 13 or LWPs parameter for ENF sites and Figure 14).  
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Figure 13. Mean values and 95% confidence intervals of model parameters for 

deciduous broadleaf sites. A plain rectangular shows the initial 95% confidence interval 

of a respective model parameter. The “0”- line represents initial parameter values. Each 

hatched rectangular shows the actual 95% confidence interval of a respective model 

parameter and the horizontal black bar indicates its actual value. The size of the 

confidence interval bars and parameter values are normalised to their initial values.   

Our results showed that uncertainty of only a few of parameters included into the 

optimisation reduced (confidence intervals were narrowed) and their estimations were 

improved. In many cases the “improvement” was only site specific and could not be used to 

for the general parameterisation of ENF and DBF plant functional types for the BIOME-BGC 

model.  
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Figure 14. Mean values and 95% confidence intervals of model parameters for 

coniferous needleleaf sites. A plain rectangular shows the initial 95% confidence interval 

of a respective model parameter. The “0”- line represents initial parameter values. Each 

hatched rectangular shows the actual 95% confidence interval of a respective model 

parameter and the horizontal black bar indicates its actual value. The size of the 

confidence interval bars and parameter values are normalised to their initial values.   

The model performance with the new estimates of model parameters was tested for two 

sites, which were not included into the optimisation. We calculated the daily average GPP 

flux for two forest stands – a deciduous broadleaf forest at Le Bray (France) and an evergreen 

needleleaf forest at Vielsalm (Belgium) and compared them to the initial flux estimates.  

Testing optimised parameters 

We use the optimised model parameters values for two sites Le Bray (ENF, South-West of 

France) and Vielsalm (DBF, Belgium) to test our assumption about a possible spatial 

extrapolation of our results: the new actual parameter values should improve flux estimations 

for other eddy-covariance measurement sites, not only for those sites which were used in the 

optimisation.   

For Le Bray and Vielsalm sites we performed model simulations with the initial and the 

optimised parameter values and correlate the calculated GPP flux to the measurements.  For 

these simulations we used not the meteorological measurements on the stations but the 
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averaged climate fields derived from the NCEP Reanalysis dataset for 0.25×0.25° footprints 

around the stations. Bu using the averaged meteorological data and the site-optimised model 

parameters we intended to demonstrate that the optimised parameters improve not only the 

site-specific but the general model’s performance. It is important to note that the parameters 

optimised for conifer forests in the north-western Europe also improved the model 

performance for Le-Bray, which has the typical Mediterranean climate.  

For Le Bray and Vielsalm sites the GPP flux calculated with the optimised parameters 

showed a better correlation with the measurements than the flux calculated with the initial 

parameter values. The correlation coefficients changed from 0.83 to 0.84 and from 0.71 to 

0.72 for Le Bray and Vielsalm, respectively.  

The average daily GPP at Le Bray was measured at 3.4 kgC m
-2

day
-1

. The modelled 

estimation accounted for 2.85 kgC m
-2

day
-1

 with the initial and for 2.95 kgC m
-2

day
-1

 with the 

optimised parameters.  

The average daily GPP at Vielsalm was measured at 3.3 kgC m
-2

day
-1

. The modelled 

estimation accounted for 2.97 kgC m
-2

day
-1

 with the initial and for 2.98 kgC m
-2

day
-1

 with the 

optimised parameters.  

This improvement of the flux estimations shows that the parameter values derived for other 

sites using site-specific meteorological data were also suitable for other sites with averaged 

meteorological data. This proofs our assumptions that the site-specific optimisation of model 

parameters may  

- help to improve general parameterisation of the ecophysiological characteristics for 

different plant functional types, 

- help to improve the performance of the model on the regional scale. 

Reduction of flux uncertainty with optimised parameters 

We calculate the prior and posterior uncertainty in the modelled fluxes using the initial and 

the optimisation-retrieved estimates of the parameter confidence intervals, respectively. We 

assume that the randomly sampled within their confidence intervals parameters produce the 

spectrum of model outputs that can be statistically analysed. We calculate distances between 

the 0.975 and 0.025 quantiles of 1000 model realisations at each time of model output; the 

average over all these distances is the “average distance” or the “uncertainty of model output”.  

We analyse the ratio between the model uncertainty calculated with the initial confidence 

intervals of model parameters (Dinit) and the model uncertainty calculated with the 

optimisation-retrieved confidence intervals of these parameters (Doptim). As the optimisation 

algorithm uses flux information to constrain the model, the uncertainty of fluxes is expected to 
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reduce and the ratio Dinit:Doptim to be less than 1. A stronger reduction of the Dinit:Doptim ratio 

indicates the higher efficiency of the optimisation algorithm for the given site. The Figure 15 

shows the normalised prior and the posterior uncertainty of the NEE flux. The comparison of  

Dinit and Doptim shows that constraining model parameters helped to reduce uncertainty of the 

model output; the most efficient reductions were found for HA, SO, and HE sites. 

Figure 15. The prior Dinit (blue) and the posterior Doptim (red) uncertainty of the modelled 

NEE flux for the six optimisation sites (HA, HE, SO, HE, LO, and TH) and one 

additional site at Lavarone (LA), Italy. The magnitude of Dinit was scaled to 1 and the 

magnitude Doptim is shown relative to Dinit. 

 

 

 

 

 

 

Conclusions 

Testing the efficiency of the multiple constraint approach, several combinations of 

observations of different nature (carbon fluxes and LAI) were used to determine most efficient 

constraints on the model output and the most critical parameters for the model calibration. 

Suggested optimisation procedure helped to determine a set of parameters which can be 

constrained using the available observations for two forest types. Specific leaf area and carbon 

to nitrogen ratios of different parts of the forest ecosystem were the best constrained 

parameters.  

We suggest that the improved general model parameterisation would also lead to better 

model estimates of regional and continental carbon budgets of forests. The test at two sites, 

which were not included into the optimisation, showed a better fit between the calculated and 

measured GPP fluxes. Further testing of the optimised parameters at a larger number of forest 

sites of different ages would be beneficial once the data are available. This would add 

credibility to the derived parameters and help to understand associated uncertainties. 

For five out of six study sites the combination of three constraints (LAI, RESP, GPP) to the 

model output helped to reduce uncertainties of simulated carbon fluxes and LAI as well as of 
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model parameter uncertainties. Other combinations of a lower number of constraints (single 

NEP, RESP, or RESP and LAI) lead to some site-specific improvements of parameter 

estimations and flux uncertainty reduction: for Hesse site with young re-growing forest the 

single constraint on the soil respiration helped to obtain the best match between the model 

output and the observations. The improvement of model output at Hesse was less efficient 

than for sites with older forests. This finding points to the great importance of the respiration 

processes in the carbon balance of young forest ecosystems. Failure of multiple constraints to 

improve the model predictions at Hesse suggest that the model’s general assumption about the 

balance between different components of the carbon balance does not hold for re-growing 

forests. However, at regional to continental scales simulations of uneven aged forests become 

less feasible because the information on management history is scarce. At these scales we 

most likely have to continue using the assumption about the forests being at a steady state and 

learn how to estimate uncertainties associated with this assumption.  

Even though some model parameters are measured in the field, these measurements can not 

be always directly used for model parameterisation. The meanings of the measured and 

modelled parameters could be different. For example a definition of leaf litter can be different 

in the model and during sampling campaign, as a result the C:N ratio of modelled leaf litter 

can be quite different. One also has to pay attention to what part of ecosystem the 

measurement represents: SLA values measured at a few trees may not necessarily match SLA 

model parameter optimised with carbon fluxes for the whole forest ecosystem. 

For simulations of carbon budget in Europe with the spatial version of the model BIOME-

BGC we propose to use the new values of model parameters derived in this study for the 

deciduous broadleaf and coniferous needleleaf forests. In order to derive better estimates of 

ecophysiological parameters for other plant physiological types the suggested optimisation 

routine may be used in the future.  
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