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The scientific data landscape is expanding rapidly both in scale and diversity. For example, in 
the Life Sciences data sources are growing in number and are only partly coordinated 
[Romano], so discovery and integration tasks are significant. High throughput gene 
sequencing platforms are capable of generating terabytes of data in a single experiment, and 
data volumes are set to increase further with the trend to industrial-scale automation. Science 
itself draws more broadly across data sources: modern bioinformatics draws insights from 
combining “omic” data (proteomic, metabolomic, transcriptomic, genomic) as well as data 
from other disciplines such as chemistry, clinical medicine and public health. Data embraces 
all types: structured database records to published articles of text; raw numeric data to 
descriptive interpretations using controlled vocabularies through to images. We are in an era 
of data-centric scientific research, where hypotheses are not only tested through directed data 
collection and analysis but also generated from combining and mining the pool of data 
already available [Kell].  
 
Data generation on this scale must be matched by scalable processing methods. Preparation, 
management and analysis of data have become rate limiting steps. Workflows [Taylor] 
provide a systematic means of processing data and capturing that process for reuse. 
Workflow Management Systems (WfMSs) are evolving to provide the capacity increase in 
the analysis pipeline by harnessing increasing capability of underlying computational and 
storage resources. Thus workflow is becoming established as a paradigm for systematically 
and automatically managing the data preparation and analysis pipelines, and the preferred 
vehicle for computational knowledge extraction and for enabling science at a large scale. 
 
A workflow is a precise description of a scientific procedure – a multi-step process to 
coordinate multiple tasks. Each task represents the execution of a computational process, 
such as running a program, a query to a database, a submission of a job to a compute cloud or 
Grid, or the invocation of service over the Web to use a remote resource. Data flows from the 
outputs of one task to be consumed by subsequent tasks according to a pre-defined graph 
topology which “orchestrates” the flow of data. WfMSs provide a platform that executes the 
workflow on behalf of applications and handles common cross-cutting concerns: memory, 
storage and execution optimisation, concurrency and parallelisation, monitoring, debugging, 
process logging and data provenance tracking, data movement and data reference 
management, data streaming and staging policies, security, service invocation, failure 
recovery, deployment over different platforms etc. They are required to support long-running 
processes in volatile environments and thus must be robust and capable of fault tolerance and 
recovery in the face of error. WfMSs also provide a design suite for authoring and sharing 
workflows and preparing the components that are to be incorporated as executable steps.  
 
Open Source WfMSs include Taverna (www.taverna.org.uk), Kepler (kepler-project.org), 
Pegasus (pegasus.isi.edu) and Triana (www.trianacode.org). Figure 1 presents an example 
workflow encoded in the Taverna WfMS. These are general systems capable of assimilating a 
range of components from different disciplines (biology, chemistry, astronomy, earth 
sciences etc) over various distributed computing infrastructures such as the Web, the Cloud 
or the Grid. WfMSs such as the LONI pipeline for neuroimaging (pipeline.loni.ucla.edu) and 
the commercial Pipeline Pilot (accelrys.com/products/scitegic) for drug discovery are geared 
towards specific applications and optimised to support specific libraries of pre-prepared 



components. Pegasus (pegasus.isi.edu) and DAGman (www.cs.wisc.edu/condor/dagman) 
have been used for a series of large-scale e-Science experiments, such as the provisioning of 
compute cycles to hazard curves prediction models for earthquake rupture forecasts using 
sensor data in the SCEC Cybershake project (epicenter.usc.edu/cmeportal/CyberShake.html). 
Each WfMS has its own language, design suite and software components and vary in their 
execution model and the kinds of components they coordinate [Deelman]. Sedna is one of the 
few to use the industry standard Business Process Execution Language (BPEL) for scientific 
workflows [Wassermann].  
 

 
 
Figure 1: A Taverna workflow that chains together several internationally distributed datasets 

to identify candidate genes implicated in the parasitic disease  
 
 
Workflows shoulder the burden of systematically, accurately and repeatedly running routine 
and often complex and laborious tasks. These tasks can be experiment or data specific such as 
gathering data from sensors or other instruments, cleaning, validation, pre-processing, and 
normalisation. For example the Pan-STARRS astronomy survey (pan-starrs.ifa.hawaii.edu) 
uses Microsoft’s Trident system workflows (www.microsoft.com/mscorp/tc/trident.mspx) to 
load and validate telescope detections running ~30TB/year. Workflows have generally 
proved a well-suited method of keeping data collections and warehouses current, reacting to 
changes in the underlying data sets. The Nijmegen Medical Centre cleaned up the tGRAP G-
protein coupled receptors mutant database using a suite of text mining Taverna workflows. 
Pipelines for data movement, aggregation and integration assist not only the consumer in 
assimilating new content but also the data service provider in providing clean, robust and 
validated data services, stimulating the need for community standards in data formats and 
interfaces. 
 

This workflow searches for genes which 

reside in a Quantitative Trait Loci (QTL) 

region in the mouse, Mus musculus. The 

workflow requires an input of: a 

chromosome name or number; a QTL 

start base pair position; QTL end base 

pair position. Data is then extracted 

from BioMart to annotate each of the 

genes found in this region. The Entrez 

and UniProt identifiers are then sent to 

KEGG to obtain KEGG gene identifiers. 

The KEGG gene identifiers are then used 

to search for pathways in the KEGG 

pathway database. 



At a higher level, a workflow is an explicit, precise and modular expression of an in silico or 
“dry lab” experimental protocol, not just for data assembly but also for codifying data 
mining, knowledge discovery pipelines and parameter sweeps across predictive algorithms. 
For example, LEAD workflows (portal.leadproject.org) are driven by external events 
generated by data mining agents monitoring collections of instruments for significant patterns 
to trigger a storm prediction analysis. Workflows are ideal for gathering and aggregating data 
from distributed datasets and data-emitting algorithms, a core activity in dataset annotation, 
data curation and multi-evidential, comparative science. In Figure 1 disparate datasets are 
searched to find and aggregate data related to metabolic pathways implicated in resistance to 
Trypanosomosis; interlinked data sets are chained together by the dataflow. In this instance, 
the automated and systematic processing by the workflow overcame the inadequacies of 
manual data triage – prematurely excluding data from analysis to cope with the quantity – 
and delivered new results [Fisher]. 
 
Workflows are not new. In the “pre-industrial-scale data” era, they were laborious manual 
processes, fraught with error and shortcut temptations. Processes were hard to replicate and 
results were hard to compare or interpret in the absence of accurate logs or data provenance 
tracking. Customised applications embed specific workflows within software which 
automates consistent processing but often at the cost of process transparency, and they are 
hard to adapt or to reuse in other applications. Script-driven software separates the scripted 
process from the application, making it explicit and open to configuration and scrutiny. 
However, scripting solutions require that the application handles the cross-cutting 
“plumbing” activities that a WfMS manages on an application’s behalf, creating a means to 
share workflows between applications and a flexible mechanism for rapid application 
development.  
 
WfMSs liberate the implicit workflow embedded in an application into a specification that is 
explicit and reusable over a common software machinery and shared infrastructure. 
Workflows also have the potential to liberate the scientist by dealing with the drudgery of 
routine data processing and freeing the scientist to concentrate on the science and accelerate 
the creation of results. Expert informaticians use the WfMSs directly as means to develop 
workflows for handling infrastructure; expert scientific informaticians use WfMS to design 
and explore new investigative procedures, while a larger tranche of scientists use pre-cooked 
workflows with restricted configuration constraints launched from within applications or 
hidden behind web portals.  
 
Workflows offer techniques to support the new paradigm of data-centric science. They can be 
replayed and repeated. Results and secondary data can be computed as and when needed 
using the latest sources, providing virtual data or on-demand warehouses by effectively 
providing distributed query processing. Smart reruns of workflows automatically deliver new 
outcomes when fresh primary data and new results become available – and also when new 
methods become available. The workflows themselves, as first class citizens in data-centric 
science, can be generated dynamically to meet the requirements at hand. In a landscape of 
data in considerable flux, workflows provide us with robustness, accountability and full audit. 
By combining workflows and their execution records with published results we have a means 
to promote transparent and comparable research where outcomes carry the provenance of 
their derivation, with potential acceleration of scientific discovery.  
 
To accelerate experimental design, workflows are reusable with reconfiguration and 
repurposable as new components or templates. Creating workflows requires specialist 



expertise that is hard-won and may be outside the skill-set of the researcher. They are often 
complex and challenging to build [Goderis], because they are essentially forms of program 
that require some understanding of the datasets and tools they manipulate. Hence there is 
significant benefit in establishing shared collections of workflows, containing standard 
processing pipelines for immediate reuse or for repurposing in whole or part. They represent 
collaborations of people and resources – aggregations of expertise. If exchanged, they are a 
means of propagating technique and best practice: specialists create the application steps; 
experts design workflows and set parameters; and the inexperienced punch above their 
weight by using sophisticated protocols.  
 
The myExperiment project (www.myexperiment.org) has demonstrated that by adopting 
social content sharing tools for repositories of workflows we can harness a social 
infrastructure that enables social networking around workflows and provides community 
support for social tagging, comments, ratings and recommendations, social network analysis 
and reuse mining (what is used with what, for what and by whom), and remixing of new 
workflows from previously deposited ones. This is made possible by the scale of participation 
in data-centric science, which is a powerful instrument we may also bring to bear on 
challenging problems that do not yield to engineering solutions. For example, the 
environment of workflow execution is in such a state of flux that workflows appear to decay 
over time, but workflows can be kept current by a combination of expert and community 
curation. 
 
In fact workflows enable data-centric science to be a collaborative endeavour at multiple 
levels. They enable scientists to collaborate over shared data and over shared services; for 
example, Taverna gives non-developers access to sophisticated codes and applications, 
without the need to install and operate them, and enables a scientist to use the best 
applications and not just the ones they know. Multi-disciplinary workflows promote even 
broader collaborations. In this sense a WfMS is a framework to reuse a community’s tools 
and datasets that respects the original codes and overcomes heterogeneous coding styles. 
Initiatives such as the BioCatalogue of Life Science Web Services (www.biocatalogue.org) 
and the component registries deployed in SCEC enable components to be discovered. In 
addition to the benefits that come from explicit sharing, there is considerable value in the 
information that may be gathered just through usage of data sources, services and methods: 
this enables monitoring of resources and recommendation of common practice and 
optimisation.  
 
Although the impact of workflow tools on data-centric research is potentially profound – 
scaling processing to match the scaling of data – there are many challenges over and above 
engineering issues inherent in large-scale distributed software [Gil, Deelman]. Today it is 
necessary to select from a confusing number of workflow platforms, of various capabilities 
and purposes. Workflows are often challenging and expensive to author and run, with 
languages often at an inappropriate level of abstraction requiring too much knowledge of 
underlying infrastructure. The reusability of a workflow is often confined to the project it was 
conceived in or even to its author, and it is inherently only as strong as its components, which 
can be difficult and expensive to produce; if the services or infrastructure decay so does the 
workflow, and debugging failing workflows is a neglected but crucial issue. Contemporary 
workflow platforms fall short of adequately supporting rapid deployment into the user 
applications that consume them, and legacy application codes have to be integrated and 
managed. 
 



In summary, workflows have a four-fold impact on data-centric research. The first is the shift 
in scientific practice; for example, in data-driven hypothesis [Kell], data analysis yields 
results to be tested in the laboratory. The second is the potential for empowering scientists to 
be the authors of their own sophisticated data processing pipelines without waiting for 
software developers to produce the tools they need. The third is the systematic production of 
data that is comparable and verifiably attributable to its source. Finally, people speak of a 
data deluge [Bell], and data-centric science could be characterised as being about the primacy 
of data as opposed to the primacy of the academic paper or document [Erbach], but it brings 
with it a method deluge: workflows illustrate primacy of method as another crucial paradigm 
in data-centric research.  
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