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The scientific data landscape is expanding ragidiy in scale and diversity. For example, in
the Life Sciences data sources are growing in nunalpel are only partly coordinated
[Romano], so discovery and integration tasks amgnifsicant. High throughput gene
sequencing platforms are capable of generatindpyera of data in a single experiment, and
data volumes are set to increase further with rémedtto industrial-scale automation. Science
itself draws more broadly across data sources: mobi®informatics draws insights from
combining “omic” data (proteomic, metabolomic, sanptomic, genomic) as well as data
from other disciplines such as chemistry, cliniceddicine and public health. Data embraces
all types: structured database records to publisimidles of text; raw numeric data to
descriptive interpretations using controlled vodahbas through to images. We are in an era
of data-centric scientific research, where hypateesme not only tested through directed data
collection and analysis but also generated fromkinmg and mining the pool of data
already available [Kell].

Data generation on this scale must be matched digtde processing methods. Preparation,
management and analysis of data have become miendj steps. Workflows [Taylor]
provide a systematic means of processing data apduring that process for reuse.
Workflow Management Systems (WfMSs) are evolvingptovide the capacity increase in
the analysis pipeline by harnessing increasing lmifyaof underlying computational and
storage resources. Thus workflow is becoming estad as a paradigm for systematically
and automatically managing the data preparation aradysis pipelines, and the preferred
vehicle for computational knowledge extraction émdenabling science at a large scale.

A workflow is a precise description of a scientificocedure — a multi-step process to
coordinate multiple tasks. Each task representseeeution of a computational process,
such as running a program, a query to a databasdyraission of a job to a compute cloud or
Grid, or the invocation of service over the Weluse a remote resource. Data flows from the
outputs of one task to be consumed by subsequskd &ccording to a pre-defined graph
topology which “orchestrates” the flow of data. W&l provide a platform that executes the
workflow on behalf of applications and handles camnntross-cutting concerns: memory,
storage and execution optimisation, concurrency @ardllelisation, monitoring, debugging,
process logging and data provenance tracking, datwement and data reference
management, data streaming and staging policiesjrise service invocation, failure
recovery, deployment over different platforms &tieey are required to support long-running
processes in volatile environments and thus musblsest and capable of fault tolerance and
recovery in the face of error. WfMSs also providdesign suite for authoring and sharing
workflows and preparing the components that ateetmmcorporated as executable steps.

Open Source WfMSs include Taverna (www.tavernaubig.Kepler (kepler-project.org),
Pegasus (pegasus.isi.edu) and Triana (www.triaacay). Figure 1 presents an example
workflow encoded in the Taverna WfMS. These areegarsystems capable of assimilating a
range of components from different disciplines Iigy, chemistry, astronomy, earth
sciences etc) over various distributed computiricagtructures such as the Web, the Cloud
or the Grid. WfMSs such as the LONI pipeline four@maging (pipeline.loni.ucla.edu) and
the commercial Pipeline Pilot (accelrys.com/prodistitegic) for drug discovery are geared
towards specific applications and optimised to swppecific libraries of pre-prepared



components. Pegasus (pegasus.isi.edu) and DAGmanv.(s.wisc.edu/condor/dagman)
have been used for a series of large-scale e-Scexmeriments, such as the provisioning of
compute cycles to hazard curves prediction modmisearthquake rupture forecasts using
sensor data in the SCEC Cybershake project (egicaat.edu/cmeportal/CyberShake.html).
Each WIMS has its own language, design suite aftvaee components and vary in their
execution model and the kinds of components theydinate [Deelman]. Sedna is one of the
few to use the industry standard Business Processuion Language (BPEL) for scientific
workflows [Wassermann].
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Figure 1: A Taverna workflow that chains togetheresal internationally distributed datasets
to identify candidate genes implicated in the péicadisease

Workflows shoulder the burden of systematicallycuaately and repeatedly running routine
and often complex and laborious tasks. These tzkde experiment or data specific such as
gathering data from sensors or other instrumemégnig, validation, pre-processing, and
normalisation. For example the Pan-STARRS astronseuryey (pan-starrs.ifa.hawaii.edu)
uses Microsoft's Trident system workflows (www.nasoft.com/mscorp/tc/trident.mspx) to
load and validate telescope detections running B3@&ar. Workflows have generally
proved a well-suited method of keeping data cadlbest and warehouses current, reacting to
changes in the underlying data sets. The Nijmegedid4l Centre cleaned up the tGRAP G-
protein coupled receptors mutant database usingte af text mining Taverna workflows.
Pipelines for data movement, aggregation and iategr assist not only the consumer in
assimilating new content but also the data serprocwider in providing clean, robust and
validated data services, stimulating the need @nrounity standards in data formats and
interfaces.



At a higher level, a workflow is an explicit, preeiand modular expression ofiarsilico or
“dry lab” experimental protocol, not just for datssembly but also for codifying data
mining, knowledge discovery pipelines and paramstegeps across predictive algorithms.
For example, LEAD workflows (portal.leadproject.prgre driven by external events
generated by data mining agents monitoring cobastiof instruments for significant patterns
to trigger a storm prediction analysis. Workflows &leal for gathering and aggregating data
from distributed datasets and data-emitting alparg, a core activity in dataset annotation,
data curation and multi-evidential, comparativeesce. In Figure 1 disparate datasets are
searched to find and aggregate data related taowletgathways implicated in resistance to
Trypanosomosis; interlinked data sets are chaiogether by the dataflow. In this instance,
the automated and systematic processing by theflearlovercame the inadequacies of
manual data triage — prematurely excluding datenfemalysis to cope with the quantity —
and delivered new results [Fisher].

Workflows are not new. In the “pre-industrial-scalata” era, they were laborious manual
processes, fraught with error and shortcut tenggtati Processes were hard to replicate and
results were hard to compare or interpret in theeabe of accurate logs or data provenance
tracking. Customised applications embed specificrkfl@mvs within software which
automates consistent processing but often at teeafoprocess transparency, and they are
hard to adapt or to reuse in other applicationsip&driven software separates the scripted
process from the application, making it explicitdaopen to configuration and scrutiny.
However, scripting solutions require that the amdlon handles the cross-cutting
“plumbing” activities that a WIMS manages on an laggtion’s behalf, creating a means to
share workflows between applications and a flexiblechanism for rapid application
development.

WIMSs liberate the implicit workflow embedded in application into a specification that is
explicit and reusable over a common software maekinand shared infrastructure.
Workflows also have the potential to liberate tloeestist by dealing with the drudgery of
routine data processing and freeing the sciergisbhcentrate on the science and accelerate
the creation of results. Expert informaticians tlse WfMSs directly as means to develop
workflows for handling infrastructure; expert sdién informaticians use WfMS to design
and explore new investigative procedures, whilargdr tranche of scientists use pre-cooked
workflows with restricted configuration constraintunched from within applications or
hidden behind web portals.

Workflows offer techniques to support the new payadof data-centric science. They can be
replayed and repeated. Results and secondary datédec computed as and when needed
using the latest sources, providing virtual dataoordemand warehouses by effectively
providing distributed query processir@nart reruns of workflows automatically deliver new
outcomes when fresh primary data and new resuttsrbe available — and also when new
methods become available. The workflows themselaedirst class citizens in data-centric
science, can be generated dynamically to meetefpgirements at hand. In a landscape of
data in considerable flux, workflows provide ushwibbustness, accountability and full audit.
By combining workflows and their execution recovdgh published results we have a means
to promote transparent and comparable researchewdwdcomes carry the provenance of
their derivation, with potential acceleration ofesttific discovery.

To accelerate experimentalesign, workflows are reusable with reconfiguration and
repurposable as new components or templates. Ggeatorkflows requires specialist



expertise that is hard-won and may be outside killeset of the researcher. They are often
complex and challenging to build [Goderis], becatissy are essentially forms of program

that require some understanding of the datasetstaoid they manipulate. Hence there is
significant benefit in establishing shared colless of workflows, containing standard

processing pipelines for immediate reuse or founepsing in whole or part. They represent
collaborations of people and resources — aggretatd expertise. If exchanged, they are a
means of propagating technique and best practpeciaists create the application steps;
experts design workflows and set parameters; aedirtbxperienced punch above their
weight by using sophisticated protocols.

The myExperiment project (www.myexperiment.org) flesmonstrated that by adopting
social content sharing tools for repositories ofrkflows we can harness a social
infrastructure that enables social networking adoworkflows and provides community

support for social tagging, comments, ratings awbmmendations, social network analysis
and reuse mining (what is used with what, for wdwadl by whom), and remixing of new

workflows from previously deposited ones. This iada possible by the scale of participation
in data-centric science, which is a powerful instemt we may also bring to bear on
challenging problems that do not yield to enginegrisolutions. For example, the

environment of workflow execution is in such a stat flux that workflows appear to decay
over time, but workflows can be kept current bycanbination of expert and community

curation.

In fact workflows enable data-centric science toabeollaborative endeavour at multiple
levels. They enable scientists to collaborate ®ared data and over shared services; for
example, Taverna gives non-developers access thisticpted codes and applications,
without the need to install and operate them, andbles a scientist to use the best
applications and not just the ones they know. Milikciplinary workflows promote even
broader collaborations. In this sense a WfMS isaméwork to reuse a community’s tools
and datasets that respects the original codes aatamnes heterogeneous coding styles.
Initiatives such as the BioCatalogue of Life SceeMieb Services (www.biocatalogue.org)
and the component registries deployed in SCEC enatsmponents to be discovered. In
addition to the benefits that come from expliciashg, there is considerable value in the
information that may be gathered just through ussEfgadata sources, services and methods:
this enables monitoring of resources and recomniemdaof common practice and
optimisation.

Although the impact of workflow tools on data-cemtresearch is potentially profound —
scaling processing to match the scaling of dataeretare many challenges over and above
engineering issues inherent in large-scale didetbsoftware [Gil, Deelman]. Today it is
necessary to select from a confusing number of flawkplatforms, of various capabilities
and purposes. Workflows are often challenging arpemssive to author and run, with
languages often at an inappropriate level of abtra requiring too much knowledge of
underlying infrastructure. The reusability of a Wibww is often confined to the project it was
conceived in or even to its author, and it is iendly only as strong as its components, which
can be difficult and expensive to produce; if teevies or infrastructure decay so does the
workflow, and debugging failing workflows is a negted but crucial issue. Contemporary
workflow platforms fall short of adequately suppogt rapid deployment into the user
applications that consume them, and legacy apmitatodes have to be integrated and
managed.



In summary, workflows have a four-fold impact oriadaentric research. The first is the shift
in scientific practice; for example, in data-drivegpothesis [Kell], data analysis yields
results to be tested in the laboratory. The se@®tite potential for empowering scientists to
be the authors of their own sophisticated data gesiog pipelines without waiting for
software developers to produce the tools they n€ld.third is the systematic production of
data that is comparable and verifiably attributaiolets source. Finally, people speak of a
data deluge [Bell], and data-centric science cbeldharacterised as being about the primacy
of data as opposed to the primacy of the acadeaperpor document [Erbach], but it brings
with it a method deluge: workflows illustrate priayaof method as another crucial paradigm
in data-centric research.

References
P. Romano, "Automation of in-silico data analysieogesses through workflow management

systems." Brief Bioinform, vol. 9, no. 1, pp. 57;8&nuary 2008.

Douglas B. Kell, Stephen G. Oliver Here is the ewice, now what is the hypothesis? The
complementary roles of inductive and hypothesigadriscience in the post-genomic era BioEssays
26(1) pp. 99-105, 2004.

Taylor, 1.J.; Deelman, E.; Gannon, D.B.; Shields, (#ds.) Workflows for e-Science Scientific
Workflows for Grids 2007, ISBN: 978-1-84628-519-6

Wassermann, B., Emmerich, W., Butchart, B., CamekkbnChen, L. and Patel, J. Sedna: a BPEL-
based environment for visual scientific workflow dedling. In: Taylor, 1.J. and Deelman, E. and
Gannon, D.B. and Shields, M., (eds.) Workflows éeBcience. Springer London, London, UK, pp.
428-449, 2007.

Ewa Deelman, Dennis Gannon, Matthew Shields andTiaylor Workflows and e-Science: An
overview of workflow system features and capaletitFuture Generation Computer Systems Volume
25, Issue 5, May 2009, pp. 528-540.

Fisher, P., Hedeler, C., Wolstencroft, K., Hulme, Noyes, H., Kemp, S., Stevens, R. & Brass A. A
Systematic Strategy for Large-Scale Analysis of @gme-Phenotype Correlations: Identification of
candidate genes involved in African Trypanosomiablacleic Acids Res. 2007;35(16):5625-33.
2007.

Goderis, A., Sattler, U., Lord, P. & Goble, C. SewBottlenecks to Workflow Reuse and Repurposing
in The Semantic Web — ISWC 2005 pp. 323-337, 2005.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, Fox, G., Gannon, D., Goble, C., Livny, M.,
Moreau, L. & Myers, J. Examining the Challengesofentific Workflows, Computer. 40, pp. 24-32,
2007.

Bell G, Hey T, Szalay A. Computer science. Beyoi# tata deluge. Science. 2009 Mar
6;323(5919):1297-8.

Gregor Erbach, Data-centric view in e-Science imfaion systems, Data Science Journal Vol. 5
pp.219-222, 2006.



