
 Seminar on Artificial Intelligence Applications in Industry (AIAI'03). June 24-25, 2003.
Kuala Lumpur, Malaysia. 1

A Parallelizing Interface for K-Means Type
Clustering Algorithms and Neural Network Batch

Training

Satya Arjunan1 Safaai Deris2 Rosli Md Illias3 Mohd Saberi Mohamad2

1Laboratory of Bioinformatics, Institute for Advanced Biosciences

Tsuruoka Town Campus of Keio University, 14-1, Baba-cho, Tsuruoka, Yamagata, 997-0035 Japan
Tel: +81-235-29-0800, Fax: +81-235-29-0809, Email: satya@ttck.keio.ac.jp

2Department of Software Engineering, Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia, 81310 Skudai, Johore, Malaysia
Tel: +60-7-557-6160 x 3860, Fax: +60-7-556-5044, Email: safaai@fsksm.utm.my, berie_ext2@lycos.com

3Department of Bioprocess Engineering, Faculty of Chemical and Natural Resources Engineering

Universiti Teknologi Malaysia, 81310 Skudai, Johore, Malaysia
Tel: +60-7-550-5313, Fax: +60-7-558-1463, Email: r-rosli@utm.my

Abstract

The k-means clustering algorithm and neural network
batch training becomes computationally intensive when
the manipulated data is large. One way to reduce the
computational demand of such techniques is to execute
them in a concurrent manner. Unfortunately, the effort
required to implement these techniques in a distributed
computing environment remains daunting. Much of the
work takes place when partitioning and distributing
workloads over processors in the distributed computing
environment. To alleviate this task, we present a data
parallel interface called Distributed Data Partitioning
Interface (DDPI). Its simple interface permits parallel
implementation of k-means type clustering algorithms
and neural network batch training even by users with
little understanding of parallel computing technicalities.
In this work we demonstrate that it is possible to achieve
near ideal speedups when k-means and k-harmonic
means clustering algorithms and multilayer perceptron
batch training are parallelized with DDPI.

Keywords: data partitioning interface, parallel k-means,
parallel k-harmonic means, parallel batch training

1 Introduction

The k-means clustering algorithm and neural network
batch training becomes computationally intensive when
the manipulated data is large. One way to reduce the
computational demand of such techniques is to execute
them in a concurrent manner. Although commodity
clusters and parallel computers are becoming widespread
now, the effort required to write efficient parallel
programmes or to parallelize these techniques remains
daunting. Much of the work takes place when
partitioning and distributing workloads over processors
in the distributed computing environment. There are two

main approaches to relieve this effort off of the user:
automatic parallelizing compilers (Agarwal et al., 1995;
Prechelt and Hänßgen, 2002) and workload distributing
libraries or tools (Carpenter et al., 1997; Karypis and
Kumar, 1998; Boniface et al., 1999; Chen and Taylor,
2002). Unfortunately in the former, even though it is a
well-established research field, the fundamental issue of
optimal partitioning remains unsolved. On the other
hand, for data clustering and neural network batch
training, the libraries and tools appear to be either
overkills (Carpenter et al., 1997; Karypis and Kumar,
1998) or too specialized (Boniface et al., 1999; Chen and
Taylor, 2002). For these reasons, we are motivated to
look at a general solution and derive the following
requirements in this work:
1. Low learning threshold. Ideally, in order to reduce

the effort required for parallelization, it is not
expected of the user to acquire additional skills
pertaining to parallelism nor to learn extraneous
language constructs. Hence, the low level
parallelization details should be hidden from the
user.

2. Simple implementation. The overall structure of the
data clustering and neural network batch training
should be preserved such that the user would be able
to focus on the original algorithm flow of the
problem even after parallelization.

3. Portability. The system should be implemented in a
widely accepted and standard programming language
to ensure portability to all target platforms and
machines. For better portability, assumptions about
the distributed computing environment’s specific
network topology should be avoided. Nonetheless,
the system should cater for homogeneous processors
and networks since they are more commonly
available.

4. Maintainability. Although initially the solution may
be intended for data clustering and neural network

 2
batch training, it should however have the facility to
be extended for more complicated problems.

5. Effectual. The system’s performance should be
comparable to more specialized and sophisticated
implementations.

It was found that an interface using the data parallel
approach fulfills the above requirements. In the data
parallel approach, the computational workload is spread
to processors by distributing partitions of the large
manipulated data. The design and implementation of the
interface, referred to as the Distributed Data Partitioning
Interface (DDPI), will be presented in the following
sections.

2 Scope and Limitations

DDPI is targeted for users with little or no prior
experience in parallel programming. It is implemented in
an object oriented fashion in C++ and utilizes the
Message Passing Interface (MPI) (MPI Forum, 1998).
Even though one of the objectives is to avoid learning
additional language constructs, it is still reasonable to
expect the user to know the basic MPI functions since
they are also implemented in both C and C++. This tool,
which addresses the problem of data partitioning in data
clustering and neural network batch training algorithms,
assumes that a single processor with sufficient memory
is available to partition the complete data.

3 Design of DDPI

Table 1 lists the description of symbols used in this
work. Figure 1 displays the three major parallelization
steps with the DDPI programming interface. In order to
distribute the computational workload, DDPI provides a
small set of routines to spread data across the processes.
The data, which can be either locally or globally
accessible, is contained in a two-dimensional matrix
constructor. It is partitioned according to one of several

Table 1: Description of Symbols

Symbol Description
nProcs total number of processes
prRows total process rows
prCols total process columns
prRow process row coordinate
prCol process column coordinate
gblRows global rows
gblCols global columns
lclRows local rows
lclCols local columns
rowBlk row block size
colBlk column block size
startPrRow starting process row
startPrCol starting process column
nSamples number of data samples
nDimension dimension size
contxt context of the process grid

available techniques in DDPI and shipped to the
processes in the process grid. Each process will then be
able to perform computations concurrently using their
local data. When required, the processes can
communicate with each other using existing MPI
functions. During the computational procedure, there
will be situations in which information pertaining to the
distributed data is needed. DDPI provides a convenient
access to this information through several essential
routines. Finally, the local data can also be gathered and
reduced for global use with MPI or DDPI routines.
Specific details of the above steps will be explored in the
following sections.

Figure 1: The three main parallelization steps of DDPI

3.1 Step 1: Initializing, Partitioning and

Distributing Data

The first parallelization step with DDPI relieves most of
the effort from the user by automatically partitioning and
distributing a given set of computational workload to the
processors. The user begins the parallelization procedure
with a one time initialization step of MPI and DDPI
libraries:

MPI_Init();
DDPI_Init();

This is followed by allocating the data using the DDPI’s
Matrix object constructor

Matrix::Matrix(i,j,data);

where, i and j are the row and column sizes of the source
data respectively. If the source data is locally owned, it
should belong to the root process (process 0) because
DDPI will distribute the data to other processes from the
root process. The root process can be verified using the

 3
MPI function, MPI_Comm_rank which returns the process
label of the calling process. The data can now be
distributed by issuing the DDPI scatter command:

Matrix::scatter(partition);

In the above command, partition represents one of
DDPI’s three identifiers for the partitioning technique
that will be used to distribute the data. Table 2 lists the
identifiers and their corresponding partitioning
techniques. The three methods are commonly used in
general parallel computing applications.

Table 2: Identifiers for data partitioning techniques

Identifier Partitioning Technique
ROW Row Striped
COL Column Striped
UNI Block Cyclic

The data matrix is partitioned by mapping blocks of
rows of size rowBlk and blocks of columns of size
colBlk to the process grid. The partitioning techniques
can be classified based on the block sizes and the mesh
of the process grid. In the row and column striped
partitioning techniques, the data matrix is divided into
groups of complete rows or columns (Figure 2). Each

Parameter Size
gblRows 9
gblC

prRo
prC

ols 7
nProcs 6

ws 6
ols 1

rowBlk 2

9 1 1int
1

9

rowBlk + −⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

7 6 1int
6

2

colBlk + −⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

colBlk 7
Note:
Shaded block indicates the workload assigned to the root
process.

Figure 2: Row striped partitioning distribution

process is allocated these contiguous rows or columns as
workloads. DDPI employs the following functions to
determine the block sizes:

1int gblRows prRowsrowBlk
prRows

⎛ ⎞+ −
= ⎜

⎝ ⎠
⎟
 (1)

1int gblCols prColscolBlk
prCols

⎛ ⎞+ −
= ⎜

⎝ ⎠
⎟ (2)

In these functions, gblRows and gblCols are the total
number of rows and columns in the undistributed data
matrix respectively. The block sizes can be computed
using the process row and column sizes listed in Table 3.

Table 3: Process grid meshes for striped partitioning

Process Grid Row Column
process rows (prRows) nProcs 1
process columns (prCols) 1 nProcs

An example of row striped partitioning is displayed in
Figure 2. The example illustrates the partitioned layout
of a data matrix E of size 9×7 that is distributed over 6
processes. In addition to striped partitioning, DDPI can
also be used to distribute data using a partitioning
strategy called checkerboard block cyclic partitioning.
This technique will not be discussed in this work
because it is not used for either of the data clustering or
neural network batch training algorithms.

 MATRIX COLUMN
 0 1 2 3 4 5 6

 0 E00 E01 E02 E03 E04 E05 E06

 1 E10 E11 E12 E13 E14 E15 E16
0

 2 E20 E21 E22 E23 E24 E25 E26

3 E30 E31 E32 E33 E34 E35 E36
1

4 E40 E41 E42 E43 E44 E45 E46

m
at

rix
 ro

w

5 E50 E51 E52 E53 E54 E55 E56
2

 6 E60 E61 E62 E63 E64 E65 E66

 7 E70 E71 E72 E73 E74 E75 E76
3

ro
w

 b
lo

ck
 (r

ow
Bl

k)

 8 E80 E81 E82 E83 E84 E85 E86 4

pr
oc

es
s l

ab
el

column block (colBlk)

3.2 Step 2: Computing concurrently using

Distributed Data

Once the data is partitioned and distributed, each process
can use its local data matrix to perform computations.
Nevertheless, each process will require essential
information pertaining to the distributed data such as the
local rows and columns, the corresponding global matrix
cell of its local cell, its location on the process grid, etc.
DDPI accommodates this by providing several routines
that return such information. Table 4 lists the summary
of available DDPI routines. Although these routines

Table 4: Summary of DDPI routines

Routine Function

getGblRows
getGblCols

Returns the global rows/columns,
gblRows/gblCols of the partitioned matrix.

getLclRows
getLclCols

Returns the local rows/columns,
lclRows/lclCols of the partitioned matrix.

gbl2lclRow
gbl2lclCol

Converts a global row/column into its
corresponding local row/column and returns
the process row/column, prRow/prCol in
which the global row/column is located.
Another overloaded version of these
routines returns a predefined identifier,
OUTSIDE if the global row/column to be
converted resides out of the local matrix.

lcl2gblRow
lcl2gblCol

Converts the process’ local row/column
into its corresponding global row/column.

 4

gbl2lcl

Converts a global coordinate
(gblRow,gblCol) of a matrix cell into its
corresponding local coordinate
(lclRow,lclCol) and returns the coordinate
of the process (prRow,prCol) that locally
owns the matrix cell.

getContxt

Returns the context, contxt of the process
grid in which the matrix is distributed. The
contxt serves as a reference for the unique
process grid and the partitioning technique
used by the processes. Two sets of data can
be distributed in an identical fashion by
using the context of one of them as the
partitioning technique identifier for the
scatter method of the other:
Matrix::scatter(contxt);

descriptor

A one-dimensional array containing
information about the distributed matrix:
contxt, gblRows, gblCols, rowBlk, colBlk,
startPrRow, startPrCol and lclRows.

Table 5: Summary of MPI routines.

Routine Function

MPI_Send
Sends data from the calling process to
another process identified by the process
label.

MPI_Receive

Inverse operation of MPI_Send. Data is
received by the calling process from
another process identified by the process
label.

MPI_Scatter

Distributes distinct uniform-sized blocks
of data in an array from the calling
process to distinct members of a process
group. It is a primitive form of the
DDPI’s scatter method; it neither
partitions disingenuously nor maps the
data onto a process grid.

MPI_Gather

Inverse operation of MPI_Scatter.
Collects distinct uniform-sized blocks of
data from all members of a process
group into an array of the calling
process. It is a primitive form of the
DDPI’s gather method; it does not take
into account the partitioning technique
or the process grid.

MPI_Bcast
Sends local data from the root process to
all members of a process group.

MPI_Reduce

Reduces data elements from all
members of a process group into a
single value and places the result on the
root process.

MPI_Allreduce
Similar to MPI_Reduce but the reduced
result is distributed to all members of a
process group.

provide complete information pertaining to the
distributed data, fundamental message passing functions
may still be needed for more elaborate parallel

programming. These functions are available from MPI
(Table 5).

3.3 Step 3: Assembling Local Computational

Results

At the completion of local computations, the processes
may need to synchronize, gather and reduce their local
computation outcomes to reflect the overall result of the
parallel computation. To synchronize the processes, the
function MPI_Barrier can be used. The data gathering
procedure can be as simple as assembling the local data
of processes into a single array while the reduction
process may include operations such as multiplication
and summation. For the former, MPI provides a data
assembler routine called MPI_Gather. Alternatively,
DDPI provides an advanced version of this function
which is also the inverse operation of its scatter routine:

Matrix::gather();

The routine assembles the previously partitioned and
distributed data matrix into its original form and places it
on the root process. The reduction process on the other
hand can be executed using two of the MPI reduction
routines listed in Table 5 (MPI_Reduce and
MPI_Allreduce). Finally, the resources allocated for the
parallel computation can be released and the
computation can be terminated by issuing the exit
commands of both MPI and DDPI libraries:

DDPI_Exit();
MPI_Finalize();

The presented three major steps of parallelization are a
simple outline of the parallelization strategy with DDPI.
DDPI can be extended for more complex parallel
computing solutions such as in cases with multiple sets
of distributed data, multiple types of partitioning
techniques and multiple topologies of process grids.

4 Experimental Results and Discussion

In this section, parallelization results of data clustering
and neural network batch training are presented. The
experiments were conducted on a Linux cluster
consisting of two computers with each having two 1.6
GHz Athlon SMP CPUs interconnected by a 1 Gbps
gigabit ethernet switch. The computers have 2 GB and 1
GB of memory respectively. The cluster’s performance
reached 6.435 Gflops when measured using the Linpack
benchmark (Dongarra, 2002) with Basic Linear Algebra
Subprograms (BLAS) library (Dongarra et al., 1990)
optimized by Automatically Tuned Linear Algebra
Software (ATLAS) (Whaley et al., 2001). Its maximum
performance could not be measured because it was
limited by the amount of physical memory.

4.1 Concurrent Data Clustering

Data clustering, which is an NP-complete problem
(Garey et al., 1982) of finding groups in heterogeneous
data by minimizing some measure of dissimilarity, is one
of the fundamental tools in data mining, machine

 5
learning and pattern classification solutions. Of all the
many available clustering techniques, the k-means center

Input
k : number of clusters
X : data set nSamples nDimension×∈ℜ
Output
centers : cluster centers k nDimension×∈ℜ

Step 1: Initialization
Select a set of k starting points, the initial cluster centers

 where:
j

centers
uuuuur

1, ,j k= L

()1 , ,
j Tj j k n

nDimensioncenters centers centers ×= L
uuuuur

Dimension∈ℜ The
selection may be done using the Forgy or the random
partitioning technique.

Forgy technique:

• set as k random samples of the data set
j

centers
uuuuur

Random partitioning technique:
• partition the data set into k segments randomly

• assign each as the centroid of those
segments, where centroid is the mean value of
the samples assigned to it

j

centers
uuuuur

Step 2: Data membership computation
For each sample nX

r
,

1, ,n nSamples= L

()1 , ,
Tn n n nSamples nDimension

nDimensionX X X ×= ∈ℜ
r

L
compute its membership:

2

1; arg min
(|)

0 ;

n j
j n

jif l X centers
m centers X

otherwise

= −
=
⎧⎪
⎨
⎪⎩

r uuuuur
uuuuur r

Step 3: Data membership weight assignment

For each sample nX
r

, set its weight to unity:
() 1nw X =
r

Step 4: Center recalculation

For each center , recalculate its location from all
samples

j

centers
uuuuur

nX
r

, according to their membership and weights:

1

1

(|) ()

(|) (

nSamples j n n

j
n

nSamples j n n

n

m centers X w X X
centers

m centers X w X

=

=

=
∑

∑

uuuuur r r r
uuuuur

uuuuur r r
)

n

Step 5: Convergence condition
Repeat steps 2 to 4 until convergence. The objective
function that the k-means algorithm minimizes is:

()
{ }

2

1...1

| min
nSamplesn j n

KM
j kn

Perf X centers X centers
∈=

= −∑
r uuuuur r uuuuur j

Figure 3: The sequential k-means clustering algorithm

based clustering algorithm, despite of its local minimum
solutions, stands out as a popular tool due to its low
computational complexity and straightforward

implementation (Estivill-Castro and Houle, 2001).
Figure 3 depicts the k-means clustering algorithm which
finds k clusters in a data set of size
nSamples×nDimension. For a single iteration of the
search space (steps 2 to 4), the k-means algorithm has
the computational complexity of

()O nSamples nDimension k× ×

The k-means primary advantage of low computational
complexity will therefore be inhibited when the number
of samples is large. Motivated by this shortcoming when
using k-means with large databases, several parallel
implementations of the technique have been introduced
(Dhillon and Modha, 1999; Kantabutra and Couch,
2000; Ng, 2000; Zhang et al., 2000). According to the
analysis by Kantabutra and Couch, their algorithm
requires heavy network loading due to rebroadcasts of
the data set and therefore only about half of the CPU
time is utilized. On the other hand, the data parallel
approaches adopted by the other three implementations
are superior since only essential local statistics are
broadcasted at each iteration, which substantially
reduces the interprocessor communication latency.
Figure 4 lists the steps in the data parallel approach.

Step 1: Initialization

Partition the data set into nProcs partitions and
distribute them to the local memory of the
respective processes. On the root process, initialize
centers values and make them global values by
broadcasting them to all processes.

Step 2: Local computation
On each process, compute local data memberships,
local centers and local performance using local data
sets and global centers.

Step 3: Global center recalculation
Compute new global centers using summed local
centers and summed local data memberships.
Compute the global performance by summing local
performances.

Step 4: Convergence condition
If global performance has converged, terminate
computation and return global centers, otherwise
start next iteration from step 2.

Figure 4: The data parallel approach to parallelize k-
means type clustering algorithms

With this approach, it is possible to reduce the k-means
computational costs of each iteration (steps 2 to 4) to

nSamples nDimension kO
nProcs
× ×⎛ ⎞

⎜ ⎟
⎝ ⎠

provided that nSa (Zhang et al., 2000).
By exploiting the similarity of the data parallel approach
adopted by DDPI, a parallel k-means algorithm can be
implemented in a straightforward manner using DDPI.

mples nProcs>>

 6
Figure 5 compares the sequential implementation of k-
means with its parallel counterpart which is implemented
via DDPI’s row striped partitioning interface. It is
evident that with only several additional lines, the k-
means algorithm can be converted for concurrent
computations with DDPI. The original algorithm flow is
still preserved which permits further modifications of the
algorithm even by users with little understanding of
parallel computing.

Input
k : number of clusters
X : data set matrix
nSamples : number of data samples
nDimension : data dimension
Output
centers : cluster centers
Variable
meanSE : the k-means performance

sequential k-means parallel k-means
data = X;
// intialize centers

meanSE = BIG_NUM;
do {
 oldMeanSE = meanSE;
 nSE = 0; mea
 for j = 1 to k
 dataCntj = 0;
 for col = 1 to
nDimension
 centers_j,col = 0;
 endfor
 endfor
 for row = 1 to nSamples
 minDistancerow =
BIG_NUM;
 for j = 1 to k
 sumDistance = 0;
 for col = 1 to
nDimension
 sumDistance =
sumDistance +
 (datarow,col –
center)sj,col

 endfor

2;

 if (sumDistance <
minDistance) row

 minDistancerow =
sumDistance;
 centerLabel = j; row

 endif

 endfor
 crow = centerLabelrow;
 for col = 1 to
nDimension
 centers_crow,col =
centers_crow,col +
 datarow,col;
 endfor
 dataCntcrow = dataCntcrow
+ 1;
 meanSE = meanSE +
minDistancerow;
 endfor;

 for j = 1 to k
 for col = 1 to
nDimension
 centersj,col =

centers_j,c

 endfor
ol/max(dataCntj,1);

 endfor
} while (meanSE <
oldMeanSE);

MPI_Init();
DDPI_Init();
Matrix::Matrix(nSamples,nDimension,X);
Matrix::scatter(ROW);
data = Matrix::data;
myNode = MPI_Comm_rank();
if (myNode == 0)

endif
// intialize centers

MPI_Bcast(center , k); s
a SE = BIG_NUM; me n

do {
 oldMeanSE = meanSE;
 meanSE_ = 0;
 for j = 1 to k
 dataCnt_ = 0; j

 for col = 1 to nDimension
 centers_j,col = 0;
 endfor
 endfor
 for row = 1 to Matrix::getLclRows();
 Dis ancmin t ero
 for j = 1 to k

w = BIG_NUM;

 sumDistance = 0;
 for col = 1 to nDimension
 sumDistance = sumDistance +
 (datarow,col – centersj,col)2;
 endfor
 if (sumDistance < minDistance) row

 minDistancerow = sumDistance;
 centerLabel = j; row

 endif
 endfor
 crow = centerLabelrow;
 for col = 1 to nDimension
 centers_crow,col = centers_
 data

crow,col +
row,col;

 endfor
 dataCnt_cr
 meanSE_ = meanSE_ + minDistance

ow = dataCnt_crow + 1;
row;

 endfor;
 MPI_Barrier();

MPI_Allreduce(centers_,centers,MPI_SUM);

MPI_Allreduce(dataCnt_,dataCnt,MPI_SUM);
 MPI_Allreduce(meanSE_,meanSE,MPI_SUM);
 for j = 1 to k
 for col = 1 to nDimension
 centersj,col =
 centersj,col/max(dataCntj,1);
 endfor
 endfor

} while (nSE < oldMeanSE); mea
DDPI_Exit();
MPI_Finalize();

Figure 5: Sequential and parallel k-means comparison

In order to empirically evaluate the performance of the
parallel k-means, several experiments were conducted
with varying number of data samples. For this purpose,
synthetic data sets were generated using an algorithm
presented by Zhang (Zhang, 2001). The number of
clusters (k = 8), the dimension size (nDimension = 8)
and the data set sizes are similar to the ones adopted by
Ng (Ng, 2000) since his hardware performance is within
the range of the Linux cluster used in this research. The
speedup (3) with respect to the execution time of the
sequential implementation is shown in Figure 6.

()
()

executionTime 1
executionTime

nProcs
speedup

nProcs
=

= (3)

It can be observed that the speedups gained from the
parallel k-means are almost equal to the ideal case which
indicates linear speedup. In the largest data set
(nSamples = 640,000), the speedup is 3.76 on 4
processors. The speedup is only impaired when the data
set is relatively small (nSamples = 80,000).

number of data samples
(nSamples)

1

2

3

4

5

1 2 3 4

Number of processors (nProcs)

Sp
ee

du
p

640K

320K

160K

80K

ideal

Figure 6: The k-means speedup after parallelization

Recently, Hamerly and Elkan have evaluated another
center based clustering algorithm called k-harmonic
means and found it to be superior to the k-means
algorithm in terms of the computed centers’ quality
(Hamerly and Elkan, 2002). It appears from their
findings that, on the contrary to the k-means algorithm,
the k-harmonic means algorithm (Zhang, 2001) is robust
to initial starting points of the centers. A parallel
implementation of the k-harmonic means technique with
DDPI is conducted to evaluate the consistency of the
DDPI’s performance in varied clustering problems.
Hence, a concurrent k-harmonic means algorithm was
implemented with the DDPI’s row striped partitioning
interface and a set of experiments was executed similar
to that of the k-means algorithm. Figure 7 shows the
results of this set of experiments. The results also
demonstrate that it is possible to achieve almost linear
speedups with the DDPI’s parallelizing interface for
other clustering techniques such as the k-harmonic
means algorithm.

 7
number of data samples

(nSamples)

1

2

3

4

5

1 2 3 4

Number of processors (nProcs)

Sp
ee

du
p

640K

320K

160K

80K

ideal

Figure 7: The k-harmonic means parallelization speedup

4.3 Concurrent Batch Learning for Neural
Networks

The learning phase of a neural network is
computationally intensive especially when the batch
training is employed as opposed to the stochastic
technique. With batch training, at each iteration, the
entire data set needs to be considered in order to
compute the parameters’ gradient for an iterative
gradient based optimization scheme (such as the
commonly used error backpropagation algorithm).
Conversely, for the stochastic training, at each iteration,
the gradient is computed after considering only a single
sample of the data set. There are however, some
instances when the batch learning is preferred over the
stochastic technique (LeCun et al., 1996).

When large data sets are considered for batch training,
the training phase can be parallelized to reduce the
computational costs. Parallelization strategies that are
available include training each network of a multi-neural
network architecture on a dedicated processor,
parallelization at the neuron or synapse level, and
parallelization using the data parallel approach
(Sundararajan and Saratchandran, 1998). Interestingly,
akin to the data clustering problem, the data parallel
approach appears to be the most favourable technique
due to its simplicity and performance (Schikuta and
Weidmann, 1997; Rogers and Skillicorn, 1998). The
parallelization steps of a general neural network batch
training algorithm with the DDPI’s interface are shown
in Figure 8. In addition to saving memory space by only
allocating a portion of the data set on the local
memories, the approach can also be applied for both
single and multiple neural network architectures.

Step 1: Initialization
• Let nProcs be equivalent to the number of

processors available in the homogeneous parallel
computing environment.

• Place the training data set on an
nSamples×nDimension matrix accessible by the
root process. Partition the matrix into nProcs
partitions using DDPI’s row striped partitioning
technique and distribute them to all processes.

• On the root process, initialize the neural network
parameter values and make them global values by

broadcasting them to all processes.
Step 2: Local gradient computation
• On each process, compute local empirical error and

local accumulated gradients using the local data
and global parameter values.

Step 3: Global parameter value adjustment
• Sum all local accumulated gradients and divide

them by the total number of samples (nSamples) to
obtain the effective global gradient.

• Sum all local empirical errors to obtain global
empirical error.

• Adjust the parameter values using the global
gradients through an iterative gradient based
optimization procedure.

• Broadcast the new global parameter values to all
processors.

Step 4: Convergence condition
• If global empirical error has converged, terminate

computation and return global parameter values,
otherwise start next iteration from step 2.

Figure 8: Parallelization steps of batch training

In order to assess the performance of the parallel batch
training algorithm, a set of experiments was conducted
with the classic Multilayer Perceptron (MLP) and the
error backpropagation algorithm. The training was done
on a data set with varying number of data samples and
fixed number of iterations. The batch training speedup
with respect to the execution time of the sequential
implementation is shown in Figure 9. It is clear that
DDPI’s performance is also consistent in the batch
training problem. Furthermore, a dedicated neural
network parallelization library by Boniface et al.
(Boniface et al., 1999) was reported to only achieve
speedup of 3.6 on 8 processors whereas with DDPI it is
possible to attain speedup up to 3.87 on only 4
processors (nSamples = 247731). However it should be
noted that their experiment was conducted with the
Kohonen Self-organizing Map on a network system
more than 3 years ago. Their poor performance is also
possibly due to their neuron parallelism strategy which
causes heavy network loading.

number of data samples
(nSamples)

1

2

3

4

5

1 2 3 4

Number of processors (nProcs)

Sp
ee

du
p

247731

120K

60K

30K

ideal

Figure 9: The MLP batch training speedup

 8
5 Conclusion

A simple yet effective interface for parallelizing k-means
type clustering algorithms and neural network batch
training has been described in this work. DDPI’s almost
ideal speedup performances appear to be consistent on
large data which are comparable to dedicated hand
coded implementations or other existing sophisticated
solutions. DDPI’s simplicity of implementation,
promotes adoption by users with little understanding of
parallel computing technicalities. In the future, DDPI
can be extended for applications on a heterogeneous
cluster by partitioning the workload according to the
performance and resources of the individual nodes in the
cluster.

References

Agarwal, A., Kranz, D. A. and Natarajan, V. (1995).

“Automatic Partitioning of Parallel Loops and Data
Arrays for Distributed Shared-Memory
Multiprocessors.” IEEE Transactions on Parallel
and Distributed Systems. Vol. 6 No. 9. 943-962.

Boniface, Y., Alexandre, F. and Vialle, S. (1999). “A
Library to Implement Neural Networks on MIMD
Machines.” Proc. of the 5th International Euro-Par
Conference on Parallel Processing (Euro-Par ‘99).
Toulouse, France. 935-938.

Carpenter, B., Zhang, B. and Wen, Y. (1997). “NPAC
PCRC Runtime Kernel Definition.” Technical Report
CRPC-TR97726. Center for Research on Parallel
Computation, Rice University, USA.

Chen, J. and Taylor, V. E. (2002). “Mesh Partitioning for
Efficient Use of Distributed Systems.” IEEE
Transactions on Parallel and Distributed Systems.
Vol. 13 No.1. 67-79.

Dhillon, I. S. and Modha, D. S. (1999). “A Data-
Clustering Algorithm on Distributed Memory
Multiprocessors.” Large-Scale Parallel Data Mining.
Lecture Notes in Computer Science. Vol. 1759. 245-
260.

Dongarra, J. J., Croz, J. D., Hammarling, S. and Duff, I.
S. (1990). “A Set of Level 3 Basic Linear Algebra
Subprograms.” ACM Transactions on Mathematical
Software. Vol. 16 No. 1. 1-17.

Dongarra, J. J. (2002). “Performance of Various
Computers Using Standard Linear Equations
Software.” Technical Report CS-89-85. University of
Tennessee, USA.

Estivill-Castro, V. and Houle, M. E. (2001). “Robust
Distance-Based Clustering with Applications to
Spatial Data Mining.” Algorithmica. Vol. 30 No. 2.
216-242.

Garey, M. R., Johnson, D. S. and Witsenhausen, H. S.
(1982). “The Complexity of the Generalized Lloyd-
Max Problem.” IEEE Trans. Inform. Theory. Vol. 28
No. 2. 255-256.

Hamerly, G. and Elkan, C. (2002). “Alternatives to the
k-means algorithm that find better clusterings.” Proc.
of the 11th ACM International Conference on
Information and Knowledge Management (CIKM
2002). McLean, USA. 600-607.

Kantabutra, S. and Couch, A. L. (2000). “Parallel K-
means Clustering Algorithm on NOWs.” NECTEC
Technical Journal. Vol. 1 No. 6.

Karypis, G. and Kumar, V. (1998). “A Fast and High
Quality Multilevel Scheme for Partitioning Irregular
Graphs.” SIAM Journal on Scientific Computing.
Vol. 20 No. 1. 359-392.

LeCun, Y., Bottou, L., Orr, G. B. and Müller, K-R.
(1996). “Effiicient BackProp.” Neural Networks:
Tricks of the Trade. 9-50.

MPI Forum. (1998). “Special Issue: MPI2: A Message-
Passing Interface Standard.” The International
Journal of High Performance Computing
Applications. Vol. 12 No. 1-2. 1-299.

Ng, M. K. (2000). “K-Means-Type Algorithms on
Distributed Memory Computer.” International
Journal of High Speed Computing. Vol. 11 No. 2.
75-91.

Prechelt, L. and Hänßgen, S. U. (2002). “Efficient
Parallel Execution of Irregular Recursive Programs.”
IEEE Transactions on Parallel and Distributed
Systems. Vol. 13 No. 2. 167-178.

Rogers, R.O. and Skillicorn, D.B. (1998). “Using the
BSP Cost Model to Optimize Parallel Neural
Network Training.” Future Generation Computer
Systems. Vol. 14. 409-424.

Schikuta, E. and Weidmann, C. (1997). “Data Parallel
Simulation of Self-organizing Maps on Hypercube
Architectures.” Proc. of the Workshop on Self-
Organizing Maps (WSOM ‘97). Helsinki, Finland.
142-147.

Sundararajan, N. and Saratchandran, P. (1998). “Parallel
Architectures for Artificial Neural Networks.” Los
Alamitos, USA: IEEE Computer Society Press.

Whaley, R. C., Petitet, A. and Dongarra, J. J. (2001).
“Automated Empirical Optimization of Software and
the ATLAS Project.” Parallel Computing. Vol. 27
No. 1-2. 3-25.

Zhang, B. (2001). “Generalized K-Harmonic Means –
Boosting in Unsupervised Learning.” Proc. of the 1st
SIAM International Conference on Data Mining
(SDM ‘01). Chicago, USA.

Zhang, B., Hsu, M. and Forman, G. (2000). “Accurate
Recasting of Parameter Estimation Algorithms Using
Sufficient Statistics for Efficient Parallel Speed-Up:
Demonstrated for Center-Based Data Clustering
Algorithms.” Proc. of the 4th European Conference
on Principles of Data Mining and Knowledge
Discovery (PKDD 2000). Lyon, France. 243-254.

