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AssrRecr. Preaiausly, an eutornatian of a DNA mmputing rcodad methd far the

HamiJtoni,an Path Prcblen (EPP) hos been implementd bosed on, LightCgcler Sgstem.

In this stud,y, a simiJar reoilmrt approach is implemented baseil on DNA Engine Opti-
con 2 System. The rcadott appmaeh consists of tuo steps: rcnl-time arnplification in
vitro us'i,ng TaqMowbaseil rcal-time PCR, followed by on in sili,co phase. The in silico
phase consists of a d,ata clwtering algorithm and an information processing to ertract
the Homiltonian path after the TaqMan "YES" and "NO" rmct'i,ons haue been identi,f,etl.
The resutt indicates that the ou,tomation of DNA mnputing rcadout method con be effi-
ciently implementeil on DNA Engi'ne Optieon 2 System.
Keywords: DNA computing, Ha,miltonian path problem, Real-time PCR

1. Introduction. A new computing paradigm based on DNA molecules appeard in
1994 when L. M. Adleman [1] launched a novel in ui,tro approach to solve the so-called
Ha,miltonian Path Problem (HPP) with seven vertices by DNA molecules. The goal of
the HPP is to determine whether any path exists whieh eommenees at the 'start city'
and finishes at the 'end cit5r', and passes through each of the remaining cities exactly
once. In conventional silicon-based computers, information is stored as binary numbers
in silicon-based memories; in this approach, he encoded the information of the vertices by
random DNA sequences. The computation is performed in bio-molecular reaction fashion
involving procedures such as hybridization, denaturation, ligation and Polymerase Chain
Reaction (PCR). The output of the computation, also in the form of DNA molecules can
be read and printed by a process called electrophoretical fluorescence.

Existing models of DNA computation are based on various combinations of bio-operati.
ons, which are synthesizing, mini,ng, annealing (hybrid,izati,on), melti,ng (ilenaturati,on),
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a,mpfuing (copying), separating, ertmct'ing, cutting, Ii,gati,ng, substi,tuting, detecti,ng a;n.d

rvading [2]. Based on this model, the DNA computation implementation can be classified
into three important aspects: nucleic acid design, DNA algorithms and readout method.
The first step for wet-lab experiment of DNA computation is to find a good set of DNA se-

quences. After that, the desired sequences are synthesized based on the specific problem.
Then, the computational part of the DNA algorithms is performed, where m'ini,ng, annenl-
i,ng (hybrid,izati,on), melting (denaturat'ion), ampli,fyi,ng (copyi,nd, sepamt'i,ng, ertracting,
cutting, Iigating, substituting and detecting are fully applied to implement the algorithm
for the computation. The final part of the implementation is visualization of the output
result, where the reailouf operation can be implemented by utilizing the biotechnology,
such as DNA sequencing. The readout method implementation issue is stated in [3] as

an important drawback of current DNA computation, which requires the developments
of high-throughput screening technologies to overcome the limitation imposed by existing
readout methods. However, the readout problem receives less attention from researchers,

instead of computational part of DNA computing.
Io [4], a technique for reading out a.rbitrary graphs with up to n nodes using an n x n

biochip incoryorating standardized DNA sequenees was proposed, which made the biochip
universal for all graphs of the size. Such graph can be Directed Ha,miltonian Path (DHP)
at large, with atl graphs being superimposed with each other. The superposition of graphs
can be diluted by detecting n2 different quanturn dot barcode labels within the spots on
the universal biochip. Then, the partial readout of special class of permutation graphs is
subjected to computer-based heuristics for isolating individual graphs from a collection
of graphs. However, this method is not experimentally verified in the laboratory

Previously, Ibrahim et aI. [5] implemented a TaqMan based real-time Polymerase Chain
Reaction (PCR) for reading out DNA solution that encodes the Hamiltonian path- The
readout method, which has been implementd using a Lightclcler System, consists of an
in uitro computation and an i,n s'i,Ii,co information processing. Several TaqMan reactions
were performed to investigate the order of the l{amiltonian path in the dru oifro eompu-
tation part. The output of the real-time PCR can be distinsuished as either 'YES" or
"NO" reaction. After that, the output from the i,n ui,tro computation was subjected into
in silico algorithm to produce the Hamiltonian path-

Recently, Saaid et al. [6] proposed a data clustering technique to automatically identify
the output of the real-time PCR. Fuzzy C,-Means (FCM) clustering algorithm is applied
to oeparate the 'YES and "NO" reactions. lt was sho.wn that the FCM is capab,Ie to
cluster the two different reactions of real-time PCR.

In this paper, based on work in [6], an automation system for DNA computing readout
method, which is implemented using DNA Engine Opticon 2 System and also consists of
in uitro-i,n sili,co approach, is reported. During the in silico information processing phase,
Alternative Frzzy C-Means (AFCM) a.nd FCM clustering algorithm are implemented for
automatic elassifieation of 'YES" and "NO" reactions.

2. Basic Notation and Principle. First of a\l, u11o1u2@1usq"1ua6y denotes a double-
stra,nded DNA (dsDNA), which contains the bas+pairs subsequerc€s, u1, 't)2, 16 and o4,

respectively. Here, the subscripts in parenthesis (4, b, c and d) indicate the length of
each respective base-pair subsequence. For instance, ,rl1(zo) indicates that the length of the
double-stranded subsequerc€, u1 is 20 base-pairs (bp). When convenient, a dsDNA may
also be represented without indicating segment lengths (e-g., ulu2usua).

A reaction denoted by TaqMan(ro, rh, us) indicates that real-time PCR is performed
using forward primer us, r€v€rs€ primer u1 and TaqMan probe u;. Based on the proposed
approach, there are two possible reaction conditions regarding the relative locations of
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the TaqMan probe and reverse primer. In particular, the first condition occurs when the
TaqMan probe specifcally hybridizes to the template, between the forward and reverse
primers, while the second occurs when the reverse primer hybridizes between the forward
primer and the TaqMan probe. As shown in Figure 1, these two conditions would result
in different a,mplification patterns during the real-time PCR, glven that the same DNA
template (i.e., assuming that they occurred separately, in two different PCR reactions).
The higher fluorescent output of the first condition is a typical amplification plot for the
real-time PCR. In contrast, the relatively lower fluorescent output of the second condition,
which reflects the cleavage of a lower number of TaqMan probes via DNA polymerase due
to the 'unfavourable' hybridization position of the reverse primer, is due to linear rather
than exponential amplification of the template. Thus, TaqMan(ors, uk, ut)-: YES if an
amplification plot similar to the first condition is observed, TaqMan(t.r6, ukr ar) : NO if
an amplification plot simila.r to the second condition is observed.
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FlcuRs 1. An exarnple of a,mplification plots eorresponding to TaqMan(us,
uk,, ut): YES (first condition) and TaqMan(uo, a*, ut): NO (second con-
dition) implemented on DNA engine opticon 2 system

3. The Real-Time PCR-based Readout Approach Implemented on DNA En-
gine Opticon 2 System. In DNA computing for HPP, an output of an in vitro compu--
tation can be represented by a dsDNA ao@syu612o)ue12s1u412s1ue1zoyu11zo1, where 1tr" 11amil-
tonian path V" -+ Vu -+ V -+ Va -+ Ve - Vt, begins at node 7o, ends at node [,
and contains intermediate nodes Va, V", V6 and,I{ respeetive}y. In the readout imple-
mentation, the starting and ending nodes are already known. Note that the presence of
all intermediate nodes is also known in advance. The problem is how to determine the
specific order of the intermediate nodes for a Ha,miltonian path.

3.1. The in vitro phase. Tbe in ui,tro paft, of the approach consists of [(lVl - 2)' -(tyt- 2\\/2 reaJ-time PCR reactions, each denoted bf'TaqMan(as, ux, ar\ for all /c and l,
such that 0 < k < lyl -2, t <I <lyl -1 and k < l, where lVl is a number of nodes. For
the seven nodes Harniltonian path, Vo -+ Vt -+ Va -+ Vz -+ Vs -+ Vs -+ V6, ten different
TaqMan reactions are performed with DNA template usu1u4u2usa3u6- All the TaqMan
reactions required for the readout along with the "YES" and "NO" classification a,re as

follows:
(1) TaqMan(nu, ut, az) : YES
(2) TaqMa,n(uo, ut, us) : YES
(3) TaqMan(uo, ut, oa) : YES
(a) TaqMan(ro, ur, zs) : YES
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(5) TaqMan(uo, rr, us) : YES
(6) TaqMan@o, az,, ua) -- NO
(7) TaqMan(uo, ur, us) : YES
(8) TaqMan(uo, rz, ua) : NO
(9) TaqMan(uo, u", un) : NO
(10) TaqMan(u6, a4, u5): YES
At first, a pool of l4Gbp input molecules axesyull2syua(2olu2(2o)a5(20)us(20)u6(20y is pr+'

pared, via standard protocol of parallel overlap assembly (POA) of single-stranded DNA
strands (ssDNAs). For this purpose, 13 ssDNAs are required, including additional ssD-
NAs, which act as link sequences for self-assembly. These strands are listed in Table
1. After completion, amplification via PCR was performed using the same protocol
as POA. The forwa,rd primers and reverse primers used for the PCR reaction were 5'-
CGTCAAGGCCGTCTCTATAT-3' a"nd 5'-GTAGATTAAGAAGGTGCGCG-3', respec-
tively- The PCR product was subjected to gel electrophoresis and the resultant gel image
was capturd, ffi shown in Figure 2. The 14Gbp band in lane 2 shows that the input
molecules have been successfully generated. Afterwards, the DNA of interest is extracted.
The final solution for real-tipe PCR wa$ prepared via dilution of the extracted solution,
by adding ddH2O (Maxim Biotech, Japan) into 100p1.

Tanr,p 1. The required single-stranded DNAs for the generation of input molecules

Narne DNA Sequences (5'-3') Lengbh (mer)
Ug CGTCAAGGCCGTCTCTATAT 20
U1 CCACTGGTTCTGCATGTAAC 2A

U4 TCCACGCTGCACTGTAATAC 20

U2 TGGACAACCGCAGTTACTAC n
Ug ATGCGCCAGCTTCTAACTAC 20
Ug AGGAAACCTCACGACAGTCT 20

U6 CGCGCACCTTCTTAATCTAC 20
uoat GAACCAGTGGATATAGAGACGGCCTTGACG 30
utuq GCAGCGTGGAGTTACATGCA 20
uau2 CGGTTGTCCAGTATTACAGT 20
uzus GCTGGCGCATGTAGTAACTG 20
utuz GAGGTTTCCTGTAGTTAGAA 20
uru6 GTAGATTAAGAAGGTGCGCGAGACTGTCGT 30

Ten sepa,rate real-time PCR reactions were performed in parallel, in order to implement
the first stage of the proposed HPP readout. After the initial activation step at 95"C for 15
minutes, the a,mplification consists of 45 cycles of denaturation and annealing/extension,
performed at 94qC for 15s and 60qC for 60s, respectively. The resulting real-time PCR
amplification plots are illustrated in Figure 3. After all real-time PCR reactions are
completed, the i,n uitro otttpnt is subjected to an in si,li,co phase to produce the satisfying
Ha,miltonian path of the HPP instance.

3.2. In silico phase.

3.2.L. FCtttt and AFCtrrI chntering algwithms. Once the in vitro phase is completed, the
data from DNA Engine Opticon 2 System was exported into a computer. These data were
written in text file format, which show the fluorescence intensity from the first to the 46th
thermal cycle for all 10 different TaqMan reactions. These data are then subjected to a
clustering algorithm based on FCM and AFCM.
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Ftcunp 3. Output of real-time PCR for readout of Vs -+ V1-+ Va 1V21
Va -+ Vs -+ V6 implemented on DNA engine opticon 2 system. Reaction I
to 10 indicate the TaqMan(u6, uk, at) reactions.

Fwzy Clustering has become awell known and powerfirl method in cluster analysis, and
has been applied in marry fields such as image segmentation [tZ] and speaker recognition

[13]. FCM is a data clustering technique based on the optimization of objective function

[4' c/v
J(u,Y): t L,fu"r)* ll"i - aoll' (1)

n:t j:r
where rr. is the data, yi is the cluster center, N is the number of data, C is the number of
cluster, and rn indicates the fuzziness vahre index. [l"i -grll is Euclidean distance between
15 and ya. Erch, data point in the data set is required to belong to exactly one cluster. Let
X : {q,rz,.-. , riy} be a collection of data. By minimizing the objective function (1),
X is classified into C homogeneous clusters, where the y6 values in Y : {yt,y",' ' ' ,Ucl
are the cluster centers. In FCM, U : (tu)x*6' is a fuzzy partition matrix, in which Aci;

indicates the membership degree of each data point in the data set to cluster i. The ralue

I t t t t llttttlTtt2llt?5zl''lrs$Jttttl€.r
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U should satisfy the following conditions:

&: € [0,1], vi : 1,.. . ,c, vj : 1,... , N
C

IPot : 1, Vi:1," ' 'Ni:1

The cluster center can then be calculated as:
lV

D (u)**i
j:L

, Yi: t,... rC (4)Ai:
D(w)*

and tbe tuny partition matrix, U, is updated using the follouring equation:

1Pii:ffi (5)

-D-(.iffi1/
AFCM, proposed by Wu and Yang [7], is based on the minimization of an objective

firnction:
CN

J(u,Y): t f {rni)- (t - "*p 
(-Bll*i - s'll'))

i:l j.:l
This objective function inrolnes an oqronential distance between ci and y;, which is given
by,

(2)

(3)

d(xi,vi): (r - errp (-p llri - #ll\)'t'
where fl is a positive constant, defined by:

( iw- olt'\ 'p:l%-l
\,v )

and r is defined as:

":rfu)
[.N )

The necesary condition fsr minimi-ing (6) is given in (10) and (11):

(6)

(7)

(8)

Ui:

/v

D fu*r)*ut P FPll"i - stll') ri
j=1

JV

D (l*r)*u*p (-Pll"i -vll')j-1
I

, Vi : l,... rC

(e)

(10)

)="

c
D

(1 - ur.p (-pll"i - a,ll'))
l-rii :

-"' \ (t - exp (-Pll"i - snll'))

(11)



1: matrix
Step 2:
Step 3:
Step 4:
Step 5:

Calculate the cluster center, Y.
Update the tuzzy partition matrix.
Calculate cost fuuction J.
If ll{/(t + 1) - ti(t)ll < e tben stop; otherwise, Bo b Step 2.
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Flcunn 4. The FCM and AFCM algorithms

Step 1: Initialize the membership matrix U with random values.
Step 2: Calculate the cluster center, Y.
Step 3: Update the hnzy partition matrix.
Step 4: Calculate cost funetion J.
Step 5: If llU(t + 1) - tr(t)ll < e then stop; otherwis, Bo to Step 2.

Step 6: Classifu each TaqMaa reaction 6sing the predefined rule.

Flcunp 5. Classification of TaqMan reaction using FCM and AFCM algorithms

The FCM and AFCM algorithm are described in Figure 4. The clustering algorithm
begrn by initializing the fuzzy partition matrix. At iteration step l, cluster center is calcu-
lated, followed by updating the partition matrix. Next the cost firnction J is calculated.
The process can be stopped if llU(t+l)-U(t)ll ( €, where e is the error value for stopping
criterion.

3,2.2. Implementation oJ elwtering olgodthn.In order to eluster the TaqMan reactioo
results into, 'YES" a,nd "NO" reactions, each reaction plot is represented as a vector,
*5 : {rip)t rje)t..- ,ri@s)\, where ri14 denotes the fluorescence intensity measured a,f-

ter arnplification cycle ith in TaqMan reaction j. The reactions a,re then clustered into
twogroups,withcenters atgt: {yt(t),Ut1zyt" ',Ur(ao)}mdyz:{Az$),U2121,....,UzVo)}.
These two centers can be viewed as a plot sirnilar to the TaqMan reaction 'YES" and
"N0". Then, the TaqMan reactions are classified into ..lES" and "NO" Broups, by com-
paring the partition matrix U. I-et us say that 92 represents the "YES" center, md gr
represent the uNO" center (note that y2 does not always represent the "YES" center,
when the clustering algorithm is run). We can say that W@6) >. gr(ao). Considcr exa,mple
values, Frr a,nd p21, which a,re equal to 0.6 and 0.4, respectively. The "YESU and "NO"
reactions can be determined by the following rule:

if (grtaol > ttz@s) and pri > Wj\ or (Uz@a) 2 Ur1ts1 and pzi > Iru)
ai : "YES"
else c7 : ttNO"

Based on the proposed rule, we can classify oj 0s a '(NO' reaction since p1i ) Lt2i and
Ur1+e1 <-Azqx1. Applying this rule, we carl classify the 'YES" and "NO" reactions for each
set of TaqMan reactions. The whole cla.ssification process can be described in Figure 5.
In this implementation, e : 0.00001, .l[ : L0, C : 2 and m:2. The clustering process
has been done using Matlab 7.0, using a computer with 2.8GHz processor and 2GB RAM.

Figures 6 and 7 shows the result of implementation of FCM and AFCM algorithm.
Fwzy partition values with the clas.sification of 'YES" and "NO" reactions are listed in
Tables 2 and 3.

3.2.3. In sil'6ca inforvnatien procress'ing. Bascd ou Tables 2 and 3, rmult from .AFCM im-
plementation was selected and subjected to an i,n si,Iico information processing as follows:

Input: N[0. . .lVl - 1] : 2 / / N[0, ?, ?, ?, ?, ?, 67

A[1...1r/l -2] :ll/lfork:ltolVl -3
// A[1, 1, 1, 1, 1]
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forl:lc+ltolVl-2'" 
ti r*rutan(oo, uo't") : Ifii. t
eke A[lc] : AUcl+ t
endif

endfor
NlAltcll : li

endfor
iitottut -2ll :lvl-2

t,
t
t

gr
Jotr
I

FreuRs 6- Output of real-time PCI with 'ryES' and "NO"

il#};i uv ncrvr "To'G"g 
algorithm with e11a61 > w(48)

=THi =i;idt =lf*'| +rnrvnr3 liro;" -eyl -er'
I 

-r1q6r! 

+t4r-'-

FrcuRs 7. output $.'"d-*i* *1.*t-; T;sr;Lo;' 
centers rm-

centers im-

too-i,
I

ir'"1lffi"; b;ilficM*"il;Jns atsorithm with y11a5; > uz1ts1

rn this ar gor*bm, ry .T:uv t* ro: *iY 
lJ l}$]#iffi1#Jli&11frritjb1ffiTffi

""ttt 
it-a"ni"d' In addition' an arraY

iefined to rocate thJ#Jrr.-i.r e3{t;; "ilr, 
u"."v ot J"r' The'inpui arrav N is first

ioiii*ri,*a to N ; iili, i, i;i, ii:r f;:,**5 ** ;l'1"':flf"#UinH#;.-li"*t, tnu asgregatio" *:3{ :"r:"lTilTJ;';; R t' ilo"'"u""d in each iteration

ffi 
:ttyiH"gJfJi?H;'H41"":*TJ'JH"Ty"il;;i;'-'e'eacuvalueork

Arrer the roop opu,Jtt;i7t - ; * "$b"q 
;-,h" I'l'ykJ ;iliili,T1$l :t'i:il:
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U'v sailina back all the noctt
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Itltt ffiiio..*.:
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TaqMan I,ttt lt2i Manual observation Reaction U11ml ) Uztast
t TaqMan(q,tr, t2 0.89454,0 0.105480 "YES'' "NO'
2 TaqMan{?ro,'ur, uz 0.606420 0.393580 "YES" .YES'

3 TaqMan(oo,'uL,'u4 0.972090 o.027907 .YES" "YES"
4 TaqMan(uo, ur, us 0.906060 0.093941 "YES" rITES'

5 TaqMan(uo, u2,'uz 4.fi2220 o.827780 "YES" "NO"
6 'IiqMan(ug,'t)2, Lt4 0.0r.8769 0.981230 "NO' *NO"

7 TaqMan(uo, Dzt u5 0.450780 0.549220 "YES'' "NCY'

8 TaqMan(uor't)*'u4 0.021623 0.978380 *N()" ooN0'

9 TaqMan(oo,'Dg, us o.4L7352 0.982650 "NO' ,,NOtt

10 TaqMan(ao, u+, us) a.xi7A0 0.032556 .YES" YES"

AUTOMATION OF DNA COMPUTINC &EADOUT METHOD

Teer.o 2. Partition matrix value for each TaqMan reaction based on FCM
clustering algorithm

Tesr,n 3. Partition matrix value for each TaqMan reaction based on AFCM
clustering algorithm

TaqMan reaction ItLj ltzi
Manual

obserrration
Reaction

(grraor > Yxret)
L TaqMan(uot'utt'u2 0.526750 0.4rc254 "YES" .YES"

2 Ta,qMan(ue, ur, ug 0.939490 0.060506 "YES" "YES'
3 TaqMan(oo, urt u4 0.906020 0.@3975 "YES" .YES"

4 TaqMan(uo, urt ?ts 0.970780 o.ow225 "YES' "YES"
5 TaqMan(u6, U2r as) 0.584t)4t) 0.415960 .YES" .YES"

6 TaqMan(uo, n2,'u4 0.000716 0.999280 "NO'' "NO''
7 TaqMan(uo,'u2, u5 0.84ti6tx) 0.1514tX) "YES" "YES"
8 TaqMan(tts,'us, 1t4 0.002650 0.997350 "NOo "NO'
9 TaqMan(uor'ug, l)E 0.0t)0141 0.w9860 'oNo" "NO"
10 TaqMan(us, a4, a5) 0.6r,8130 0.381870 "YES' .YES'

4. Discussion. In the in--uitrv implementation, the amplification resporures observed in
this study differ from the arnplification responses, which are typically obtained in the life
sciences and medicine. In particular, while in the life science and medical applications, the
initid copy number of the DNA template is normally very low but in the current study
the input molecule is actually a DNA specim exbracted from a polyacrylamide gel, which
enists at a high concentration. That is the main reason why the a,mplification signals in
the current study appeaxed more rapidly than normal.

Flom the implementation FCM and AFCM, it was shown that AFCM produced all
corrects classification of "YES" a,nd "NO" reactions, compaxe to FCM. In [6], the result
from real-time PCR is eorreetly classified into !aY€S?2 at'd '.'NOtt groups based on FCM
clustering algorithm. Meanwhile, implementation of FCM in this resea,rch produced two
errors, where in Table 2, TaqManl and TaqMan 5 were wrongly classified. This is be-
cause, FCM ts sensitive to noise and outllers [11], which result errors in the automatic
classification algorithms. To avoid noise and outliers conditions, several techniques have
been introduced to increase the robustness of the algorithms for clustering of object data,
such as Possibilistic C-Means (PCM) [8] and hnzy noiseclustering approach [9]. However,
the performance of PCM depends ona good initialization as well asaccurate estimation
of resolution or scale parameter, q [8]. In noiseclustering approach, the noise distance
parameter, d, is a user specified parameter and the clustering results could be sensitive

1915
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tovariations in the noise distance [10]. AFCM has been chosen for the implementation of
data clustering during the in silico phase since the exponential distance is robust, in terms
of handling of outliers and noises. F\rrthermore, AFCM does not require any pa,ra,meter

estimation compared to PCM and noise'clustering approach.

5. Conclusions. This research offers an automation of real-time PcR-based readout

approach for DNA computing, which is implemented on DNA Engine Opticon 2 System.

In the in ai,tro phase of the readout approach, each real-time PCR reaction is mapped to
a binary output ('YES" or "NO"), based on the occnrrence or absence of an exponential

a,mplification. In the in silico phase, by applying the AFCM clustering algorithm to
the output of real-time PCR, two different TaqMan reactions, 'YES" and "NO", can be

clearly distinguished. Then, the suhsequent i,n silieo informati,on processing is eapable of
determining the Hamiltonian path of the input instance.
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