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Abstract— Protein-protein interactions are important in a 

wide range of biological processes. The development of drugs 
that target such interactions is a very active research field. Hence 
predicting protein-protein interactions represent an important 
challenge in bioinformatics research. Machine learning 
techniques have been applied to predict protein-protein 
interactions. Most of these techniques address this problem as a 
binary classification problem. While it is easy to get a dataset of 
interacting protein as positive example, there are no 
experimentally confirmed noninteracting proteins to be 
considered as a negative set. 
Therefore, in this paper we solve this problem as a one-class 
classification problem using One-Class SVM (OCSVM). The 
hydrophobicity properties have been used in this research as the 
protein sequence feature. 
Using only positive examples (interacting protein pairs) for 
training, the OCSVM achieves accuracy of 72% using RBF 
kernel. These results imply that protein-protein interaction can 
be predicted using oneclass classifier with reliable accuracy. 

 
 

I. INTRODUCTION 
HE recent studies of molecular biology led the 
researchers to recognize that protein-protein interactions 
affect almost all processes in a cell [1], [2]. In the last few 

years, the problem of computationally predicting protein-
protein interactions has gain a lot of attention. It has been 
shown that proteins with similar functions are more likely to 
interact [2]. If the function of one protein is known then the 
function of its binding partners is likely to be related. This 
helps to understand the functional roles of unannotated protein 
by knowing its interaction partners. Drug discovery is another 
area where protein–protein interaction prediction plays an 
important role. 

For that reasons, identifying protein-protein interactions 
represents a crucial step toward understanding proteins 
functions. In the last few years, the problem of 
computationally predicting proteinprotein interactions has 
gain a lot of attention. Methods based on the machine learning 
theory have been proposed [3]-[5]. Most of these methods 
address this problem as a binary classification problem. 
Although, constructing a positive dataset (i.e. pairs of 
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interacting proteins) is relatively an easy task by using one of 
the available databases of interacting proteins, there is no data 
on experimentally confirmed non-interacting protein pairs 
have been made available. To cope with this problem, some 
researchers created an artificial negative protein interaction 
dataset for S. cerevisiae by randomly generating 100,000 
protein pairs from this organism that are not described as 
interacting in the Database of Interacting Proteins (DIP) [6] 
without putting any further restrictions on such pairs, as in [5].  

However, since only data of interacting proteins pairs 
(positive data) are available and sampled well, the problem of 
predicting protein-protein interactions is fundamentally a one 
class classification problem. In this respect, we propose a 
recent method, one-class support vector machines (OCSVMs) 
for proteinprotein interactions predictions.  

 

II. DATA SET AND FEATURES REPRESENTATION 
The protein interaction data was obtained from the 

Database of Interacting Proteins (DIP) [6]. The DIP database 
was developed to store and organize information on binary 
protein–protein interactions that was retrieved from individual 
research articles. The DIP database provides sets of manually 
compiled protein-protein interactions in Saccharomyces 
cerevisiae. The majority of DIP entries are obtained from 
combined, non-overlapping data mostly obtained by 
systematic two-hybrid analyses. The current version contains 
4749 proteins involved in 15675 interactions for which there 
is domain information. DIP also provides a high quality core 
set of 2609 yeast proteins that are involved in 6355 
interactions which have been determined by at least one small-
scale experiment or at least two independent experiments and 
predicted as positive by a scoring system [6]. 

The proteins sequences files were obtained for the 
Saccharomyces Genome Database (SGD) [7]. The SGD 
project collects information and maintains a database of the 
molecular biology of the yeast Saccharomyces cerevisiae. This 
database includes a variety of genomic and biological 
information and is maintained and updated by SGD curators. 
The proteins sequence information is needed in this research 
in order to elucidate the domain structure of the proteins 
involved in the interaction and to represent the amino acid 
hydrophobicity in the feature vectors. The construction of an 
appropriate feature space that describes the training data is 
essential for any supervised machine learning system. The 
amino acid hydrophobicity properties can be used to construct 
the feature vectors for SVM. The amino acids hydrophobicity 
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properties are obtained from [8]. The hydrophobicity features 
can be represented in feature vector as:  
 
x = [h1, h2, …, hi, …, hn]              (1) 

 
where k is the number of amino acid in the protein x, hi= 1 

when the amino acid is hydrophobic and hi = 0 when the 
amino acid is hydrophilic. 

 

III.  ONE-CLASS SUPPORT VECTOR MACHINES 
One-class classification problem is a special case from the 

binary classification problem where only data from one class 
are available and sampled well. This class is called the target 
class. The other class which is called the outlier class, can be 
sampled very sparsely, or can be totally absent. It might be 
that the outlier class is very hard to measure, or it might be 
very expensive to do the measurements on these types of 
objects. For example, in a machine monitoring system where 
the current condition of a machine is examined, an alarm is 
raised when the machine shows a problem. Measurements on 
the normal working conditions of a machine are very cheap 
and easy to obtain. On the other hand, measurements of 
outliers would require the destruction of the machine in all 
possible ways. It is very expensive, if not impossible, to 
generate all faulty situations. Only a method trained on just 
the target data can solve the monitoring problem.  

Basically, one-class SVM treats the origin as the only 
member of the second class (see Fig. 1). Then using relaxation 
parameters, it separates the members of the one class from the 
origin. Then the standard binary SVM techniques are 
employed. 

Fig. 1. Classification in one-class SVM 
  

The OCSVM algorithm maps input data into a high 
dimensional feature space (via a kernel) and iteratively finds 
the maximal margin hyperplane which best separates the 
training data from the origin. The OCSVM may be viewed as 
a regular two-class SVM where all the training data lies in the 
first class, and the origin is taken as the only member of the 

second class. Thus, the hyperplane (or linear decision 
boundary) corresponds to the classification function: 
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where w is the normal vector and b is a bias term. The 
OCSVM solves an optimization problem to find the function f 
with maximal geometric margin. We can use this 
classification function to assign a label to a test example x. If f 
(x) < 0 we label x as an anomaly, otherwise it is labeled 
normal. 

Using kernels, solving the OCSVM optimization problem is 
equivalent to solving the following dual quadratic 
programming problem: 
 

),(
2
1min

, jijiji
xxKαα

α
Σ              (3)  

 

Subject to 1,10 =Σ≤≤ iii and
vl

αα        (4) 

 
where αi is a Lagrange multiplier (or “weight” on example i 

such that vectors associated with non-zero weights are called 
“support vectors” and solely determine the optimal 
hyperplane), ν (nu), is a parameter that controls the trade-off 
between maximizing the distance of the hyperplane from the 
origin and the number of data points contained by the 
hyperplane, l is the number of points in the training dataset, 
and K (xi ,xj ) is the kernel function. By using the kernel 
function to project input vectors into a feature space, we allow 
for nonlinear decision boundaries. Given a feature map: 

 
NX ℜ→:φ                    (5) 

 
where φ maps training vectors from input space X to a high-

dimensional feature space, we can define the kernel function 
as: 

 
〉〈= )(),(),( jiji xxxxK φφ            (6) 

 
Feature vectors need not to be computed explicitly, and in 

fact it greatly improves computational efficiency to directly 
compute kernel values K(xi,xj). 

IV. RESULTS AND DISCUSSION 
We developed programs using Perl for parsing the DIP 

databases, sampling of records and sequences, and replacing 
amino acid sequences of interacting proteins with its 
corresponding feature. To make a positive interaction set, we 
represent an interaction pair by concatenating feature vectors 
of each proteins pair that are listed in the DIP-CORE as 
interacting proteins. Since we use domain feature we include 
only the proteins that have structure domains. The resulting 
positive set for domain feature contains 1879 protein pairs. 
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In our computational experiment, we employed the 
LIBSVM (version 2.5) software and modified it to train and 
test the one-class SVM proposed in this paper. This is an 
integrated software tool for support vector classification, 
regression, and distribution estimation, which can handle one-
class SVM. In order to train our one-class SVMs, we examine 
out the following four kernels find appropriate parameter 
values: 

 
• Linear: K(xi,xj)=xi

Txj. 
• Polynomial: K(xi,xj) = (γxi

Txj +r )d ,γ > 0. 
• Radial basis Function (RBF): 

K (xi, xj) =exp(γ║ xi− xj ║2), γ >0.   
• Sigmoid: K(xi,xj) = tahn(γxi

Txj+r). 
 

where γ (gama), r, and d are kernel parameters to be set for 
a specific problem. We carried out our experiments using the 
above mentioned kernels.  

The results of our experiments are summarized in Fig. 3. 
These results indicate that it is informative enough to consider 
the hydrophobicity properties of the amino acids in the protein 
pairs to facilitate the prediction of protein-protein interactions. 
These results also indicate that the difference between 
interacting and non-interacting protein pairs can be learned 
from the available data using one-class classifier. It is also 
important to note that the choice of the parameters has a clear 
impact on the classifier performance.  

Appropriate parameters for one-class SVMs with different 
kernels are set by the cross-validation process. We can see 
from this validation process that it is important to choose the 
appropriate parameters. As shown in Figure 2, OCSVM is 
very sensitive to the choice of parameters. However, since 
one-class SVMs with linear kernel does not have the 
parameter gama, we executed the cross-validation process 
only for parameter nu. Then the cross-validation accuracy is 
calculated in each run as the number of corrected prediction 
divided by the total number of data 
((TP+TN)/(TP+FP+TN+FP)). Then the average is calculated 
for the 10 folds. 

The best results were found by the Sigmoid kernel (Fig. 2 
(d)). Even though, the Sigmoid kernel could give as low 
accuracy as 29% with unsuitable choice of parameters, it 
achieves around 72% with proper choice of parameters. 
However, the RBF kernel is the most stable kernel that also 
gives a comparable accuracy.  

In addition, the one-class SVM approach is better reflecting 
the reality of the problem than the conventional binary 
classifiers. This is due to the fact that all the binary classifiers 
need to be trained using two classes. In contrast, one-class 
SVM is able to work, solely on the basis of target examples. 
Therefore one-class SVM has the advantage of using only real 
data in the training phase. 

 

 

 

 
Fig. 2. One-class SVM performance for proteins interactions using different 
kernels 
 

V. CONCLUSION 
The problem of predicting protein-protein interactions 

possesses the features of one-class classification problem 
where only data from target class (i.e. interacting proteins) are 
available and sampled well. Therefore, the objective of this 
paper was to show that the one-class SVM method can be 
applied successfully to the problem of predicting protein-
protein interactions. Experiments performed on real dataset 
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show that the performance of this method is comparable to 
that of normal binary SVM using artificially generated 
negative set. Of course, the absence of negative information 
entails a price, and one should not expect as good results as 
when they are available. In conclusion the result of this study 
suggests that protein-protein interactions can be predicted 
from domain structure with reliable accuracy. Consequently, 
these results show the possibility of proceeding directly from 
the automated identification of a cell’s gene products to 
inference of the protein interaction pairs, facilitating protein 
function and cellular signaling pathway identification. 

  
 

 

REFERENCES 
[1]  H. Lodish, A. Berk, L. Zipursky, P. Matsudaira, D. Baltimore, and J. 

Darnell, Molecular cell biology (4th edition). W.H. Freeman, New York, 
2000. 

[2]  B. Alberts, A. Johnson, J. Lewis, M. Raff, K.Roberts, and P. Walter, 
Molecular Biology of the Cell (4th edition). Garland Science, 2002. 

[3]  J. R. Bock and D. A. Gough, “Predicting protein-protein interactions 
from primary structure,” Bioinformatics, vol. 17(5), pp: 455-460, 2001. 

[4]  Y. Chung, G. Kim, Y. Hwang, and H. Park, “Predicting Protein-Protein 
Interactions from One Feature Using SVM,” In proceedings of 
IEA/AIE’04, pp:50-55, 2004. 

[5]  S. Dohkan, A. Koike and T. Takagi, “Prediction of protein-protein 
interactions using Support Vector Machines,” In Proceedings of the 
Fourth IEEE Symposium on BioInformatics and BioEngineering 

[6]  I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. 
Eisenberg, “DIP, the Database of Interacting Proteins: a research tool 
for studying cellular networks of protein interactions,” Nucleic Acids 
Research, vol. 30(1), pp: 303- 305, 2002. 

[7]  E. L. Hong, R. Balakrishnan, K.R. Christie, M.C. Costanzo, S.S. 
Dwight, S.R. Engel, D.G. Fisk, et al., “Saccharomyces Genome 
Database” http://www.yeastgenome.org/, (25th Dec 2005). 

[8]  T. P. Hopp and K. R. Woods, “Predicting of protein antigenic 
determinants from amino acid sequences,” Proc. Natl Acad. Sci. USA, 
78, 3824-3828, 1981.MillerE H 2003 IEEE Trans. Antennas Propagat.., 
to bepublished. 

 
 


	I. INTRODUCTION 
	II. Data Set and Features Representation 
	III.  One-Class Support Vector Machines 
	IV. Results and Discussion 
	V. Conclusion 

