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Abstract

One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within
cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because
of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties
of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the
corresponding experimental data. However, this is a challenging task because the available experimental data are
frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters
from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction
Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the
neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a
simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease
production models. The results showed that the accuracy and computational speed of the proposed method were better
than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the
estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters
were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was
employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a
plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed
method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study
is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low
quality experimental data.
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Introduction

Computational systems biology has become an increasingly

important research area in the recent years [1], [2]. This field of

research is aimed to gain better understanding of how complex

biological process respond as a system within living cells. This is

often facilitated by using computational models [1], [3], [4]. These

models are commonly constructed based on specific mathematical

formulations, such as ordinary differential equations (ODEs), to

measure the quantity of certain biochemical compounds within a

time unit. The development of these models usually involves two

stages: network structure identification and parameter estimation

[3], [4], [5]. The network structure identification stage is

conducted majorly by modelling experts, in which the structure

of the ODEs is mathematically verified [3]. Alternatively, the

parameter estimation stage is performed to evaluate if the model

parameters can accurately simulate the actual processes obtained

from the experimental analyses [3], [4].

In general, biological models are equipped with a set of

parameters to signify the physical properties of the systems, such as

kinetic constants and reaction rates. These parameters are

generally difficult to be identified in high-throughput experiments

[3]. Instead, they are rather estimated based on the available

experimental data. This is usually performed by calibrating the

model outputs with the corresponding experimental data. In most

cases, nonlinear optimization methods are utilized to find the

optimal parameters that can minimize the difference between the

model outputs and the corresponding experimental data. Howev-

er, this is a challenging task as the models are frequently hampered

by the nonlinearity of the biological processes [4], [5]. Hence,

parameter estimation is usually considered as a nonlinear multi-

modal problem, in which the estimation processes may sometimes

lead to several insignificant parameters that are less accurate if

only based on the actual biological processes [5]. Furthermore, the

available experimental data are often incomplete and regularly

exhibit a substantial level of measurement noise [5], [6]. These

limitations may cause difficulty in finding plausible parameters
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that represent the actual biological processes. This is a problem of

non-identifiability [7], which apprehends the tasks to uniquely

estimate the unknown parameters [8], [9], [10].

Currently, there is an increase of the number of nonlinear

optimization methods proposed to estimate the parameters in the

biological models [1], [4], [11]. The aim of these methods is to find

the optimal parameter set which can produce the model outputs

that closely fit into the corresponding experimental data. In

general, this problem is formulated as the fitness function, usually

based on the nonlinear least squares [12]. Conventionally,

derivative-based optimization methods are utilized, including

maximum likelihood [13] and gradient decent [14] methods.

More currently, a local optimization method, namely Extended

Kalman Filter (EFK) [15] method, is employed [16]. Lillacci and

Khammash [6], [10] introduced an improved EFK method that

incorporates the continuous model outputs and the experimental

measurements to estimate the parameters using state space

searching approach. Additionally, Zheng and co-workers [17]

proposed inequality constraints to improve the estimation by using

the EFK method. However, both improved methods commonly

require the use of model refinement phases to avoid the searching

processes from being trapped into the suboptimal solutions.

Furthermore, these methods need to consider the limitations of

the EFK method that heavily relies on a good set of initial values

for both states and parameters in the models [16].

In contrast, several previous works have presented prospective

achievements by using meta-heuristic methods [5]. Rodriguez-

Fernandez and co-workers [11] employed Scatter Search Algo-

rithm (SSA) [18] to estimate the parameters in benchmark

biological models. The study showed that the recombination

searching strategy applied by this method was robust to

measurement noise in the experimental data. Similarly, Particle

Swarm Optimization (PSO) [19] and Genetic Algorithm (GA) [20]

methods were also used to estimate the parameters in biological

systems, which showed promising results [21], [22]. More recently,

evolutionary-based meta-heuristics methods have received re-

markable attentions [1], [3], [23]. Generally, these methods utilize

evolutionary operations such as crossover, mutation, and selection

operations to exploit the information of the solutions in the

population. Tashkova and co-workers [3] suggested that the use of

Differential Evolution (DE) [24] method is more practical

compared to the existing meta-heuristic methods. However, it

was also presented that the method may use a substantial amount

of computational cost to obtain the best solution [1], [3]. Despite

the capabilities, there is no guarantee that these methods will

converge to the global optimum solutions [5].

To overcome these limitations, the hybrid meta-heuristics

methods are utilized [2], [3], [25]. Commonly, these methods

combine different searching strategies from the distinctive

methods. Rodriguez-Fernandez and co-workers [26] introduced

a new robust hybrid method based on the Evolutionary Strategy

(SRES) [27] method. The proposed method had successfully

reduced the computational time while handling the measurement

noise effectively. In addition, Chen and Wang [28] introduced a

new hybrid method which incorporates the DE method with a

geometric mean mutation. The method was evaluated using a

cellulose hydrolysis model. The experimental results showed that

the method was capable to estimate the initial values of the model

parameters, in which later were used for gradient-based optimi-

zation approach. We had proposed a new hybrid optimization

method based on PSO and DE that showed prospective

achievement in dealing incomplete and noisy experimental data

[29]. In a more recent work [30], we introduced a new hybrid

optimization method based on Firefly Algorithm (FA) method [31]

and DE methods. To enhance the efficiency of the computational

time of the existing methods, the proposed method was used to

discriminate the solutions into two sub-populations based on the

current fitness values. The sub-population that contained solutions

with plausible fitness was exploited for further improvement using

a proposed searching strategy based on the FA and DE methods.

In this paper, a new hybrid meta-heuristic method is proposed.

The method, called Swarm-based Chemical Reaction Optimiza-

tion (S-CRO) method, is developed based on the combination of

the FA method and a recently proposed evolutionary method,

Chemical Reaction Optimization (CRO) [32]. In particular, the

proposed S-CRO method is distinguished from the previously

proposed method in [29], as the proposed method employs the

evolutionary operations of the CRO method to enhance the

swarm-based search strategy applied in the FA method, instead of

using evolutionary operations of DE method to enhance the PSO

method. Thus, this provides a new approach to retain the

robustness over the measurement noise that exhibits the experi-

mental data during the searching process [1], [3], [21]. The

effectiveness of the proposed method in estimating parameters was

evaluated using a simulated nonlinear model [33] and two

Figure 1. Parameter estimation using optimization method. The
parameter estimation procedure begins with a prediction from the
model and data obtained from experiments. The model predictions are
generated from an ODE solver.
doi:10.1371/journal.pone.0061258.g001
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biological models: synthetic transcriptional oscillators [34], and

extracellular protease production [35] models. The performances

of the proposed S-CRO method, in terms of convergence to better

fitness values and the computational cost used, were compared

with those produced by using the standard DE, FA, and CRO

methods. In addition, the model outputs generated by the

estimated parameters were validated using statistical analysis to

address the effectiveness of the method in term of non-

identifiability [30]. Furthermore, the method was also validated

for model selection, which was performed using the Akaike

Information Criterion (AIC) [30], [36]. The paper is organized as

follows: Firstly, the problem formulation is introduced and the

details of the FA, CRO, and the proposed S-CRO methods are

described. The validation analyses for non-identifiability and

model selection are also explained. Then, the simulation results

are presented. Next, the discussion on the obtained results is

addressed, which deliberates the contributions of this work. Lastly,

the paper is summarized in the conclusion section.

Methods

Problem Formulation
The parameter estimation of the biological models can be

formulated as follows. Suppose a model contains a biochemical

compound, s, that is formed as s u,Xð Þ, which consists of a set of

parameters, X~ x1,x2,x3,:::,xDf g, where D is the total number of

parameters, and the input signal, u. Thus, the reaction rate of the

compound s is given as follows

ds

dt
~g s u,Xð Þ,tð Þ
s t0ð Þ~s 0ð Þ

y~h s u,Xð Þ,tð Þze

8>><
>>:

ð1Þ

where g and h are the nonlinear functions, t is the sampling

time, y is the model output and e is the measurement noise, which

is generated by random Gaussian noise with zero mean [6,10,30].

Thus, the parameter estimation problem is aimed to find the

optimal parameter set, X̂X , which minimizes the difference between

the model output, y, and the corresponding experimental data,

yexp. This is commonly performed by using the nonlinear least

squared error function, f (X ), defined as follows:

f (X )~ arg min
XD

d~1

XN

n~1

yexp
n {yn xdð Þ

� �2 ð2Þ

where N is the total number of samples [30]. This function is

considered as the fitness function in most optimization methods.

Since the experimental data is hampered by the measurement

noise and is often incomplete, finding the plausible parameters that

may minimize this equation is difficult. Figure 1 shows the general

framework of solving parameter estimation problem using

nonlinear optimization methods.

Firefly Algorithm
The FA method is a swarm-based meta-heuristics method [31].

The method is inspired by the natural social behaviours of a firefly

population. In nature, the fireflies produce flashing light, which is

generated by bioluminescence chemical reactions. The light is

used to attract mating partners. The fireflies also use the light as a

communication medium to prevent potential preys. In the FA

method, the solutions are formulated as the fireflies which carry a

vector of variables used to compute the fitness functions. The

vector of ith solution, Xi, is formed as follows:

Xi~ xi1,xi2,xi3,:::,xiDf g ð3Þ

where D is the dimension size of the problem. Each ith solution

computes the individual fitness value, calculated by a specific

fitness function, such as non-linear least squared errors. The fitness

value can be represented as the light intensity of the natural firefly.

The fitness value of the current ith solution is compared with the

Figure 2. Swarm-based Chemical Reaction Optimization (S-
CRO) Algorithm. The proposed S-CRO method is composed of three
main steps as indicated by the shaded sections. The first step sorts the
population according to fitness into two groups: potential and weak
solution groups. In the second step, the potential solutions are
subjected to evolutionary operations. In the third step, a random
vector update is performed to the weak solutions in order to allow the
method to escape from the suboptimal solutions more effectively.
doi:10.1371/journal.pone.0061258.g002
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jth neighbouring solutions. If the fitness value of the neighbouring

solution is better than the current solution, the distance, rij , is

computed using the standard distance function, such as Euclidean

distance, as follows [31]:
rij~ Xi(t){Xj(t)

�� ��~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

d~1

xid{xjd

� �2

vuut ð4Þ

Using this information, the attractive value of each ith solution

is further calculated using the following equation [31]

Figure 3. The estimated parameter k1 and k2 for simulated nonlinear model over the number of iterations by the proposed S-CRO
method. The plots show the parameter estimation of the simulated nonlinear model. The dashed lines represent the upper and lower boundaries
values, bold lines represent the actual parameter values, and the circles represent the estimated parameter values. Graph A represents the estimated
parameter k1 and graph B represents the estimated parameter k2 .
doi:10.1371/journal.pone.0061258.g003
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b~b0e{mrij
2

ð5Þ

where for each ith firefly with its corresponding jth neighbor, b
is the attractive value, m is the predefined light absorption

coefficient and b0 is the initial attractive value [31]. Then, this

attractive value is used to update the vector of the ith solution:

Xi(t)~Xi(t)zb Xj(t){Xi(t)

� �
zrand1 rand2{

1

2

� �
ð6Þ

where rand1 and rand2 are uniformly distributed random values

between 0 to 1 [31]. Thus, this permits the population to move

towards the solution that represents the current best fitness value

and exploits the searching space more effectively [31]. The

searching process is repeated until the maximum number of

iterations is reached.

Artificial Chemical Reaction Optimization
The Chemical Reaction Optimization (CRO) is another meta-

heuristic method, which is based on the chemical reactions of

molecules to reach low energy stable state [32]. The method

manipulates the reactions involving molecules including collision,

synthesis and diffusion. In these reactions, the energy is transferred

to a stable state is reached. In this method, these molecules are

formulated as solutions. Each solution holds two properties:

potential and kinetic energies [32]. The potential energy

represents the fitness value calculated using the fitness function.

On the other hand, the kinetic energy, KE , represents a tolerance

measurement for the solution to be transformed into a less

favourable solution, thus permitting the method to escape the local

optima more effectively [32].

In this method, the searching process can be divided into two

major actions: single and multi-molecule reactions. The single-

molecule reaction usually involves only one solution to be

improved using on-wall collision or decomposition processes

[32]. Biologically, the on-wall collision occurs when a molecule

bumps into a cell wall and then bounces into another direction

within the cell. The offspring solutions are mostly less distinctive

compared to the parent solution before the collision [32]. For the

ith solution, the solution intends to gain better fitness from the

neighbouring jth solution. The vectors in this solution are updated

only if the following rule is met

f (Xi)zKEi
§f Xj

� �
ð7Þ

in which the following equation is formed

KEj
~ f (Xi)zKEi

{f (Xj)
� �

|a ð8Þ

where a[ LR,1½ �, in which LR is the loss rate that limits the

maximum percentage of kinetic energy lost [32]. Alternatively, the

decomposition process occurs when a molecule is diffused into two

or more molecules after the collision with the cell wall. The

resultant molecules are supposedly to be much different compared

to the original molecule. This process is executed if the following

rule is met:

f (Xi)zKEi
§f (X�ii)zf (X��ii�ii) ð9Þ

where X�ii and X��ii�ii are the offspring solutions from the original

solution, Xi, produced after the collision. Based on this rule, a new

variable is assigned as follows:

temp~f (Xi)zKEi
{f (X�ii){f (X��ii�ii) ð10Þ

which is used to generate new kinetic energies, KE�ii
and KE��ii�ii

, as

follow:

KE�ii
~temp|k ð11Þ

KE��ii�ii
~temp| 1|kð Þ ð12Þ

Table 1. Performance comparison of DE, FA, CRO, and S-CRO methods.

DE FA CRO S-CRO

Noise: 5%

Average Fitness Value 3.9261027 8.3561025 8.8761027 7.2161029

Standard Deviation 4.3561027 7.1161025 6.5161027 8.4361029

Computational Time (s) 83.1 103.4 91.9 72.2

Noise: 10%

Average Fitness Value 1.8261023 5.5361024 7.0161023 8.9161026

Standard Deviation 2.1161023 4.2161024 5.2561023 1.0561026

Computational Time (s) 98.8 110.8 107.5 81.9

Noise: 15%

Average Fitness Value 2.9561022 8.2261021 6.3161022 5.1561024

Standard Deviation 2.0161022 7.4261021 5.7761022 1.2761024

Computational Time (s) 117.8 200.8 135.5 97.9

doi:10.1371/journal.pone.0061258.t001
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where k is a uniform random number between 0 and 1 [32].

The value is used to generate two newly formed solutions and

which are then added into the population.

For multi-molecule reaction, there are two important processes,

namely inter-molecule collision and synthesis. The inter-molecule

collision involves two solutions that collide with each other and

bounce away in two separate directions. The effect of the energy

change of the solutions is similar to those in the on-wall collision,

except that this process involves two solutions instead of a single

solution. The process is performed if the following rule is met [32]:

f (Xi)zKEi
zf (Xj)zKEj

§f (X�ii)zf (X�jj) ð13Þ

in which the following variable is produced

temp~ f (Xi)zKEi
zf (Xj)zKEj

� 	
{ f (X�ii)zf (X�jj)
� �

ð14Þ

to generate new kinetic energies, KE�ii
andKE�jj

, as follow

KE�ii
~temp|k ð15Þ

KE�jj
~temp| 1{kð Þ ð16Þ

Thus, these values are used to generate two newly formed

solutions and are added into the population. Otherwise, a synthesis

process is performed, which involves two solutions to be combined

together after the collision. This process is executed if the following

rule is accepted:

f (Xi)zKEi
zf (Xj)zKEj

§f (X�ii) ð17Þ

Based on this rule, the kinetic energy of the newly produced

solution, X�ii, is generated as follows:

Figure 4. Convergence behaviours of the DE, FA, CRO, and S-CRO methods for the synthetic transcriptional oscillators model. The
plots show the average best fitness values of DE, FA, CRO, and the proposed methods in each iteration. Graph A, B, and C represents the convergence
behaviours for 5%, 10%, and 15% measurement noise, respectively.
doi:10.1371/journal.pone.0061258.g004
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KE�ii
~f (Xi)zKEi

zf (Xj)zKEj
{f (X�ii) ð18Þ

As a result, the value of KE�ii
is substantially large compared to

KEi
and KEj

as the value of f (X�ii)is expected to be equal to f (Xi)

or f (Xj) [32]. This process is important to allow the method to

escape the local optima more effectively. The process is iterated

until the maximum number of iterations is reached.

Swarm-based Chemical Reaction Optimization (S-CRO)
In this paper, a new hybrid optimization method is proposed

based on the CRO and FA methods. The method is developed to

introduce the combinatorial searching strategy employed by the

evolutionary operations in the CRO method to the swarm-based

search strategy of the FA method. This is due to the fact that the

evolutionary operations are practical to handle the measurement

noise in the experimental data [1], [3], [30]. Basically, the ith

Figure 5. Data fit of model outputs produced by the estimated parameters and the corresponding experimental measurements for
the synthetic transcriptional oscillators model. The data points (circles) represent synthetic measurements obtained by adding Gaussian noise
to the model prediction (dotted line). The straight lines represent the reconstructed model using the parameters estimated by the proposed S-CRO
method. Graph A, B, C, and D represents concentrations of RNA activation, RNA inhibition, ON-state switch Sw21, and ON-state switch Sw12,
respectively.
doi:10.1371/journal.pone.0061258.g005

Table 2. Estimated parameters by DE, FA, CRO, and S-CRO
methods using the noisy and incomplete experimental data
(15% white Gaussian noise).

Parameter Actual DE FA CRO S-CRO

k1( mM) 0.57 0.52 1.18 0.52 0.56

k2 1.5 1.90 1.31 2.09 1.5

k3 ( mM) 2.5 2.31 3.32 2.45 2.5

k4 6.5 5.91 6.03 7.21 6.5

k5 6.5 6.4 5.95 6.4 6.45

doi:10.1371/journal.pone.0061258.t002
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solution, Xi, are formulated as follows:

Xi~ xi1,xi2,xi3,:::,xiDf g ð19Þ

where d~ 1,2,3,:::,Df g is the number of parameters to be

estimated. A number of NP solutions are used. The vectors of each

solution are initiated randomly within the search space as the

following equation:

Xi~X L
i zrand3| X U

i {X L
i

� �
ð20Þ

where rand3is a uniformly distributed random value between 0

to 1, while X L
i and X U

i are the predefined lower and upper bound

values, respectively. The fitness value of each solution is evaluated.

Based on the value, the solution with best fitness value among the

population is selected as the current global best solution, Xbest.

The S-CRO method incorporates initial selection step, in which

the population is sorted based on the fitness values. Then, this

sorted population is divided into two major sub- populations. The

first sub-population, X sub1, contains a set of solutions that generate

potential fitness values whereas the other sub-population, X sub2,

consists of solutions that hold least substantial fitness values

[29],[30]. The solutions in the first sub-population are submitted

for neighbouring improvement step. In this step, the fitness value

of the ith solution is compared with its neighbouring solutions. If

the value of the jth neighbouring solution is better than the ith

solution, the distance of these solution, rij , is computed. Then, the

attractiveness value, b, is calculated. According to this value, the

vectors of the ith solution are updated using equation (6). Next, the

ith solution is subjected for evolutionary combinatorial step. This is

performed by applying the evolutionary operations adopted from

the CRO method. Firstly, a random number is generated and if

the value is less than 0.5, the ith solution is submitted for the on-

wall collision (if the value is less or equal to 0.33) or decomposition

processes (if the value is greater than 0.33) [32]. Otherwise, if the

random value is higher than 0.5, the inter-molecule collision (if the

value is greater than 0.7) or synthesis processes (if the value is less

or equal to 0.7) are executed into the solution [32]. Since these

processes involve two solutions, the ith solution and another

randomly chosen neighbouring solution are used.

Conversely, the solutions in the second sub-population, X sub2,

are subjected for random update step. This is performed to ensure

that the fitness values of these solutions are improved for the next

iterations. Moreover, this step is also implemented to permit the

method to escape the local optima more efficiently. The random

update is executed using the following equation:

X sub2
i(tz1)~Xbest(t)zrand4| X sub2

i(t) {Xbest(t)

� 	
ð21Þ

where rand4 is a random value between 0 and 1 [30]. Different

to our work in [29], this step requires vectors of the current best

solution to assist the randomization process so that the newly

formed weak solutions may consist of potential vectors that will

produce better fitness for the next iterations. After this step, the

first and second sub-populations are merged to form the updated

population. The steps are repeated until the maximum number of

Table 3. Non-identifiability validation (15% white Gaussian noise).

RNA activator RNA inhibitor ON-state switch Sw21 ON-state switch Sw12

Real Variance (jn) 9.2861022 8.0461022 1.3361021 1.2861022

Variance Point (ŝs2
n) 9.2661022 8.0461022 1.3261021 1.2761022

Variance Interval [8.4361022, 1.0261021] [7.3261022, 8.8961022] [1.2161021, 1.4761021] [1.2561022, 1.3761022]

x2Test Pass

doi:10.1371/journal.pone.0061258.t003

Table 4. Model selection validation (15% white Gaussian noise).

Model RNA activator RNA inhibitor ON-state switch Sw21
ON-state switch
Sw12

Real Variance (jn) 9.2861022 8.0461022 1.3361021 1.2861022

Z1 Point (ŝs2
n) 9.2661022 8.0461022 1.3261021 1.2761022

Interval [8.4361022, 1.0261021] [7.3261022, 8.8961022] [1.2161021, 1.4761021] [1.2561022,
1.3761022]

AIC 22.846104

x2Test Pass

Z2 Point (ŝs2
n) 6.6161021 5.1161021 2.5661021 9.2961022

Interval [6.0161021, 7.3061021] [4.6461021, 5.6461021] [2.3361021, 2.8361021] [8.4561022,
1.0361021]

AIC 22.266104

x2 Test Fail

doi:10.1371/journal.pone.0061258.t004
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iterations is reached. Figure 2 illustrates the algorithm of the

proposed S-CRO method.

Identifiability Analysis
To demonstrate the effectiveness of the proposed method in

estimating accurate and reliable parameters, a statistical analysis

based on the error variance of the random variables of noise is

used [6], [10], [30]. Suppose a model is represented as follows:

ds

dt
~g s u,Xð Þ,tð Þ
s t0ð Þ~s 0ð Þ

yn~hn s u,Xð Þ,tð Þzen

8>><
>>:

ð22Þ

where n~ 1,2,3,:::,Nf g is the number of samples. Thus, the

measurement noise is obtained using the following equation:

en~yn{hn s u,Xð Þ,tð Þ ð23Þ

By executing the methods, an estimated parameter set, X̂X , is

found. Hence, if X̂X is near to X, then hn s u,X̂X
� �

,t
� �

is close to the

output hn s u,Xð Þ,tð Þ, then the variance of êen is supposedly close to

the variance of en. Let ŝs2
n be the variance of êen. The point estimate

of variance ŝs2
n is computed as follows:

ŝs2
n&jn~

1

2

XN

n~1

êenð Þ2 ð24Þ

Subsequently, the interval estimates of ŝs2
n is corresponded to the

confident level of c~1{d [6], [10], [30], which is formed using

the following equation

Njn

x
N,1{d

2

ƒŝs2
nƒ

Njn

x
N,d

2

ð25Þ

with a confidence level of 100c%. In other words, if the real

variance s2
n is not lie within these intervals, then the model output

yn could not have been generated by the estimated parameter set,

X̂X . Therefore, the parameter set X̂X is considered as not plausible

for the given experimental data with a confidence level of 100c%

[30]. In this paper, a significance level, d, of 0.05 is set, in which

giving the confidence level of 95% [6], [10], [30].

Model Selection
Due to the various uncertainties of the experimental environ-

ment, it is important to choose a plausible model that may perform

consistent predictions according to the given experimental data

[6], [37]. In this paper, the model selection is conducted to assess

which environment is more feasible to fit the model prediction.

The validation is performed using two approaches. The first

approach is suggested by [6] and [10], which is presented in the

previous sub-section. Let two distinctive models of the form in

Equation (1), which are constructed as follows:

Z1 :

dsz1

dt
~gz1

sz1
u,Xð Þ,t

� 	
sz1 t0ð Þ~sz1 0ð Þ

y~hz1
sz1

u,Xð Þ,t
� 	

ze1

8>>>><
>>>>:

ð26Þ

Z2 :

dsz2

dt
~gz2

sz2
u,Xð Þ,t

� 	
sz2 t0ð Þ~sz2 0ð Þ

y~hz2
sz2

u,Xð Þ,t
� 	

ze2

8>>>><
>>>>:

ð27Þ

For both models, the same experimental data are used [6], [10],

[30]. Later, the variance points and intervals are computed using

these data.

The second approach is applied from [30] and [36], in which

the Akaike Information Criterion (AIC) is employed. The AIC

validation test is calculated using the following equation:

AIC~N ln
MSE

N

� �
z2D ð28Þ

where MSE is the mean squared error that generated from the

best fitness value, while N and D are the number of samples and

estimated parameters, respectively [30]. Generally, this equation

Table 5. Parameter values of extracellular protease
production model.

Parameter Value Lower Boundary
Upper
Boundary

ksyn(s21) 0.04 0.02 0.06

kdeg (s21) 0.0004 0.0002 0.0006

kdephos(s21) 0.15 0.05 0.30

ksyn1 (s21) 0.04 0.02 0.06

kphos (s21) 0.004 0.002 0.006

ka (s21) 0.025 0.010 0.035

kd (s21) 0.1 0.05 0.20

kr1 (s21) 7 5 9

Iro (#/s) 0.02 0.005 0.04

kDim (s21) 12 10 14

kr (s21) 7 5 9

kdeg m (s21) 0.0099 0.0001 0.0100

IrMax (#/s) 0.4 0.2 0.6

Io 0.004 0.002 0.006

IMax (#/s) 0.048 0.02 0.06

R (s21) 7 5 9

kb (s21) 7 5 9

A cell volume is assumed to be 10215 litre and the copy numbers (#) is used as
a unit for effective concentration. 602 # corresponds to 1 mM/l concentration
[28].
doi:10.1371/journal.pone.0061258.t005
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implies that the model that has smaller AIC value is considered as

the best model [36].

Results

Simulated Nonlinear Model
The proposed S-CRO method was firstly evaluated using the

simulated nonlinear model [33]. This was important to show the

effectiveness of the proposed method in finding the accurate

parameters. The time series data was generated based on the

following discrete equations:

A tz1ð Þ~k1A(t)zA(t)B(t)z0:1z0:01e1(t) ð29Þ

B tz1ð Þ~k2B(t)zA(t)B(t)z0:1z0:01e2(t) ð30Þ

y(t)~B(t)z0:01e3(t) ð31Þ

where the values of parameter k1 and k2 are 0.8 and 1.5,

respectively, while e1, e2, and e3 are the independent zero mean

noise [16], [33]. The time series data was produced by running the

simulation of this model for 800 time points. The upper and lower

boundaries of the parameter k1 and k2were set as follow:

0:1ƒk1ƒ1:0 and 1:0ƒk1ƒ2:0. The initial attraction,b0, and

the light absorption coefficient, m, were fixed to 0.5 and 0.01,

respectively. The proposed S-CRO method was executed with 50

iterations. Figure 3 illustrates the results of the estimation by using

the S-CRO method. These results showed that the proposed

method was capable to accurately estimate the parameters within

a relatively small number of iterations.

Small Scale Model: Synthetic Transcriptional Oscillators
The performance of the proposed method for estimating the

parameters in biological models is first evaluated using a synthetic

model of transcriptional oscillators [34]. This model is basically a

cell-free model, in which the prediction can be studied without the

prior knowledge of the existing in vivo experiments [34], [38]. The

model is proposed to simulate the complex networks of the

regulatory perturbation of deoxyribonucleic acid (DNA) templates.

The model is used to fit in the arbitrary synthetic circuits in a

modular fashion [34]. The model is constructed based on the

following reactions:

dA

dt
~k1Czk2D{A ð32Þ

dB

dt
~k3D{B ð33Þ

dC

dt
~

1

1k4zBk4
zC ð34Þ

dD

dt
~

Ak5

1k5zAk5
zD ð35Þ

where A and B are the ratios of the RNA activator and inhibitor,

respectively, meanwhile C and D are the fractions of ON-state

switch Sw21 and switch Sw12, respectively [34]. The values of the

parameters k1,k2,k3,k4,and k5, are 0.57 mM, 1.5, 2.5 mM, 6.5,

and 6.5, respectively [34]. The model is downloaded from

Biomodels database [39].

Table 1 presents the performance comparison of the proposed

S-CRO method over the standard DE, FA, and CRO methods in

terms of average best fitness values and the efficiency of these

methods in utilizing the computational cost. In this paper, the

experimental data is generated in silico, in which the model

predictions are added with 5%, 10%, and 15% of white Gaussian

noise [6], [10]. The methods were executed with 100 independent

runs in a same workstation powered by Intel Core i5 1.5 GHz of

central processing unit (CPU) and 4.0 GB of memory using a 64-

bit platform. Each method used 20 solutions and 100 iterations.

For the DE method, the mutation and crossover coefficient were

set to 2.5 and 1.5, respectively. For the FA and S-CRO method,

the initial attraction, b0, and the light absorption coefficient, m,

were fixed to 0.5 and 0.01, respectively. The lower and upper

Table 6. Performance comparison of DE, FA, CRO, and S-CRO methods.

DE FA CRO S-CRO

Noise: 5%

Average Fitness Value 1.8961025 4.1461023 8.7361025 7.2161027

Standard Deviation 2.1161025 4.9961023 5.6761025 1.1561027

Computational Time (s) 109.3 181.9 120.9 93.4

Noise: 10%

Average Fitness Value 1.6761022 1.5561021 9.3461022 4.7761025

Standard Deviation 1.8261022 1.9861021 8.7161022 3.9961025

Computational Time (s) 161.5 256.6 183.9 107.4

Noise: 15%

Average Fitness Value 5.126101 9.816102 7.876101 8.1161022

Standard Deviation 8.786101 8.226102 7.936101 5.5261022

Computational Time (s) 243.9 351.3 279.92 150.5

doi:10.1371/journal.pone.0061258.t006
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boundaries of the parameters were set as follows: 0:1ƒk1ƒ1:0,

1:0ƒk2ƒ2:0, 1:5ƒk3ƒ3:0, 5:0ƒk4ƒ7:0, and 5:0ƒk5ƒ7:0.

The results exposed that the proposed S-CRO method was

capable to find better average fitness values compared to the other

methods. In addition, the small number of standard deviation

suggested that the fitness values found by the S-CRO method were

also consistent for the independent runs. More importantly, the

results showed that the proposed method evaluated within an

acceptably small amount of computational time. This supports the

evidence that the evolutionary operations incorporated with the

swarm-based search strategy applied by the S-CRO method could

utilize the computational cost more effectively than the other

methods. Furthermore, Figure 4 shows the convergence behav-

iours of the methods in finding the average best fitness values.

Initially, the DE and S-CRO methods presented a competitive

achievement but as the iterations progressed, the proposed method

began showing its advantage due to its capability in converging

more frequently. This suggests that the random update step

implemented by the S-CRO method was effective to permit the

method for escaping the sub-optimal solutions.

To demonstrate the effectiveness of the method in estimating

the plausible parameters using the noisy and incomplete exper-

imental measurements, the model outputs produced by the

estimated parameters were compared with those produced by

the actual parameters and the experimental measurements.

Figure 5 shows that the outputs produced by the reconstructed

model were close to those produced by the actual parameters. This

shows that the proposed S-CRO method was robust to the noisy

and incomplete experimental data. Moreover, Table 2 shows the

estimated parameters by the S-CRO method compare to the other

methods using noisy and incomplete experimental data. To

address the reliability of the S-CRO method, the statistical analysis

for non-identifiable parameters is presented. The results are shown

in Table 3. According to the analysis, the real variance errors for

the RNA activator and inhibitor, as well as ON-state switch Sw21

and Sw12 were 9.2861022, 8.0461022, 1.3361021, and

1.2861022, respectively. Overall, the variance points computed

using the outputs of the reconstructed model were close to the real

variance. Prominently, these variance points lay within the

variance intervals, which suggest that the model outputs were

valid based on the given noisy and incomplete experimental data

with 95% confidence level.

The S-CRO method was also verified for estimating plausible

parameters between two different models. To elucidate this

Figure 6. Convergence behaviours of the DE, FA, CRO, and S-CRO methods for the extracellular protease production model. The
plots show the average best fitness values of DE, FA, CRO, and the proposed methods in each iteration. Graph A, B, and C represents the convergence
behaviours for 5%, 10%, and 15% measurement noise, respectively.
doi:10.1371/journal.pone.0061258.g006
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capability, the model defined in Equation 32–35 was modified by

changing the values of k1, and k3 parameters to zero. Hence, the

original and modified models were named as Z1 and Z2,

respectively. Table 4 presents the results that compare these

models based on the same experimental data. Based on this table,

the error variance points computed in the modified model were

mostly differed from the real variance points. Moreover, the real

variance points did not lie within the calculated variance intervals.

Additionally, the validation test showed that the AIC values of the

model Z1 were smaller than the model Z2. This proved that the

proposed S-CRO method was able to discriminate the parameters

of these two different models using the same experimental data.

Large Scale Model: Extracellular Protease Production
Naturally, bacterial cells like Bacillus subtilis are capable to

produce their own nutrient and converge to the steady growth

phase by implementing several adaptation strategies. The most

substantial strategy used by these bacteria is large scale extracel-

lular protease secretion [35]. Commonly, this process is performed

by subtilisin (AprE) and bacillopeptidase (bpr) genes that encode the

Figure 7. Data fit of model outputs produced by the estimated parameters and the corresponding experimental measurements the
extracellular protease production model. The data points (circles) represent synthetic measurements obtained by adding Gaussian noise to the
model prediction (dotted line). The straight lines represent the reconstructed model using the parameters estimated by the proposed S-CRO method.
Graph A, B, C, D, E, and F represents concentrations of AprE, DegU, DegUP, Dim, mAprE, and mDegU, respectively.
doi:10.1371/journal.pone.0061258.g007
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involved enzymes to secrete and degrade proteins from the

environment. These genes are majorly expressed by DegS–DegU

two-component system [35]. The DegS sensor protein is needed to

phosphorylate the DegU protein so that the AprE gene expression

is triggered [35]. The model is given by the following reactions:

dA

dt
~ksynE{kdegA ð36Þ

dB

dt
~kdephosC{kdegBzksyn1F{kphosB ð37Þ

dC

dt
~kphosC{2 kaC2

� �
z2 kdDð Þ{kdegC{kdephosC ð38Þ

dD

dt
~kaC2zkdD{kdegD ð39Þ

dE

dt
~

kr1

Rzkr1

Iro
D

kDim
z1

1z D
kDim

z D2

k2
Dim

z R
kr

z
IrMaxD2

k2
Dim 1z D

kDim
z D2

k2
Dim

z R
kr

� �
0
BB@

1
CCA

{kdeg mE

ð40Þ

dF

dt
~

IokbzImaxD

Dzkb

� �
{kdeg mF ð41Þ

Where A,B,C,D,E, and F are the concentrations of AprE, DegU,

DegUP, Dim, mAprE, and mDegU, respectively [35]. The model

contains 17 parameters and the values of these parameters are

listed in Table 5. The model is obtained from Biomodels database

[39].

Table 7. Estimated parameters by DE, FA, CRO, and S-CRO methods using the noisy and incomplete experimental data (15% white
Gaussian noise).

Parameter Value DE FA CRO S-CRO

ksyn(s21) 0.04 0.047 0.031 0.042 0.04

kdeg (s21) 0.0004 0.00032 0.00051 0.00049 0.00039

kdephos(s21) 0.15 0.22 0.13 0.25 0.149

ksyn1 (s21) 0.04 0.051 0.025 0.058 0.04

kphos (s21) 0.004 0.0041 0.0052 0.0038 0.004

ka (s21) 0.025 0.0249 0.0245 0.023 0.0249

kd (s21) 0.1 0.099 0.095 0.122 0.099

kr1 (s21) 7 6.51 7.01 7 7

Iro (#/s) 0.02 0.022 0.02 0.015 0.02

kDim (s21) 12 13.1 12.03 12.8 11.98

kr (s21) 7 7.01 5.21 6.95 7

kdeg m (s21) 0.0099 0.0102 0.0085 0.0092 0.0099

IrMax (#/s) 0.4 0.39 0.38 0.39 0.4

Io 0.004 0.0032 0.0054 0.0036 0.0039

IMax (#/s) 0.048 0.053 0.037 0.052 0.0479

R (s21) 7 6.5 6.89 6.5 7

kb (s21) 7 6.72 7.21 6.8 7

doi:10.1371/journal.pone.0061258.t007

Table 8. Non-identifiability validation (15% white Gaussian noise).

AprE DegU DegUP Dim mAprE mDegU

Real Variance (jn) 1.4761025 1.596101 4.5461023 1.8361026 3.0161024 1.7661024

Variance Point (ŝs2
n) 1.4761025 1.596101 4.5561023 1.8361026 3.0161024 1.7661024

Variance Interval [1.3861025,
1.5861025]

[1.486101, 1.706101] [4.2561023,
4.8861023]

[1.7161026,
1.9661026]

[2.8161024,
3.2361024]

[1.6561024,
1.8961024]

x2Test Pass

doi:10.1371/journal.pone.0061258.t008
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For this simulation, all competitive methods were run using 50

solutions and 200 iterations. For the DE method, the mutation and

crossover coefficient were amplified to 3.0 and 2.5, respectively.

For the FA and S-CRO methods, the initial attraction and the

light absorption coefficient were altered to 0.7 and 0.05,

respectively. Table 6 describes the comparison of performance

among the DE, FA, CRO, and S-CRO methods. Again, the S-

CRO method had shown better average fitness values while

maintaining the achievement of finding these values consistently

by having the small number of standard deviation. Similar to the

previous model, the experimental data for this model is also

generated by adding 5%, 10%, and 15% of white Gaussian noise

to the model predictions [6], [10]. Based on these results, it is

proven that the evolutionary combinatorial step of the proposed

method is practical in handling noisy and incomplete experimental

data. Similar to the former simulation, the S-CRO method also

presented better computational cost utilization compared to the

other methods. This can be seen from the relatively small amount

of computational time consumed. It was also suggested that the

discrimination strategy employed in the initial selection step might

have contributed to this result. This was due to the fact that only a

specific number of solutions were considered to be evaluated using

the method. The convergence behaviours of the involved methods

are presented in Figure 6. According to this figure, it is clearly

observed that the proposed method converged to the average best

fitness values more rapidly than the other methods. Although the

performance of the DE method was quite competitive, the random

update step of the S-CRO method allowed the method to escape

the sub-optimal solution more frequently.

The capability of the proposed S-CRO method in handling the

noisy and incomplete experimental measurements is presented in

Figure 7. In general, the parameters that had been estimated by

the proposed method might have generated the model outputs

which closely fitted with those produced by the actual parameters,

even though the noisy and incomplete experimental data were

used. Table 7 describes the comparison of the estimated

parameters by the proposed method over the existing methods.

On the other hand, the results of the statistical analysis employed

for validating these parameters are described in Table 8. For this

model, the real variance error computed were 1.4761025,

1.596101, 4.5461023, 1.8361026, 3.0161024, and 1.7661024

for the concentrations of AprE, DegU, DegUP, Dim, mAprE, and

mDegU, respectively. Similar to the results presented in the former

experiment, the variance points calculated using the model outputs

produced by the estimated parameters were close to the values of

the real variance points. Essentially, these variance points lay

within the computed variance intervals. This proved that the

model outputs produced by these parameters were valid with 95%

confidence level. Therefore, the S-CRO method had been

considered as robust to the noisy and incomplete experimental

data.

The results of the model selection are shown in Table 9. In this

simulation, the model in Equation 36–41 was adjusted by

changing the values of three parameters, ksyn, kd , and kdeg m to

zero. Similar to the former simulation, the original and modified

models were denoted as Z1 and Z2, correspondingly. The results

presented that the real error variance points of the DegUP, and

Dim concentrations did not lie in the computed variance intervals

for the modified model. This suggests that the estimated

parameters for the modified model might have produced the

model outputs that were not valid to the corresponding

experimental measurements with 95% confidence level. More-

over, the results also showed that the AIC values of the original

model were smaller than the modified model. Again, this

simulation showed the effectiveness of the S-CRO method in

selecting a plausible model using the given experimental

measurements.

Discussion

Computational systems biology plays an important role in

understanding the dynamics of biological systems. This is due to

the fact that the biological components involved in the systems

often interact with each other to perform specific functions.

Therefore, the analyses of individual components are restrictive

and impractical [1], [2], [3]. However, this study is commonly

hampered by the imperfection of the experimental data obtained

in the in vivo experimental setups [3], [4], [9]. As a result, the

investigations of the complex cellular processes are frequently

difficult and ineffective [1], [8]. To elucidate this challenge, a

computational modelling approach is exploited. This approach

focuses on the design and development of computational models to

represent the dynamics behaviours of the biological systems. This

is performed by constructing mathematical formulation, namely

ODEs, to derive the processes over a specific range of times. These

models often depend on a set of parameters that represent the

physiological properties of the systems, such as the reaction rates

and kinetic constants. These parameters are normally unavailable

Table 9. Model selection validation (15% white Gaussian noise).

Model AprE DegU DegUP Dim mAprE mDegU

Real Variance (jn) 1.4761025 1.596101 4.5461023 1.8361026 3.0161024 1.7661024

Z1 Point (ŝs2
n) 1.4761025 1.596101 4.5561023 1.8361026 3.0161024 1.7661024

Interval [1.3861025,
1.5861025]

[1.486101, 1.706101] [4.2561023,
4.8861023]

[1.7161026,
1.9661026]

[2.8161024,
3.2361024]

[1.6561024,
1.8961024]

AIC 23.216104

x2Test Pass

Z2 Point (ŝs2
n) 1.4861025 1.596101 9.5961023 2.3161025 3.0161024 1.7961024

Interval [1.3861025,
1.5861025]

[1.486101, 1.706101] [8.9761023,
9.6261023]

[2.1661025,
2.4861025]

[2.8161024,
3.2361024]

[1.6761024,
1.9261024]

AIC 22.106104

x2Test Fail

doi:10.1371/journal.pone.0061258.t009
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in the experimental data. Thus, these parameters are rather

estimated by fitting the model output with the corresponding

experimental data using nonlinear least squares techniques. As the

experimental measurements are noisy and incomplete, the

estimation of these parameters is usually challenging and often

needs the use of practical nonlinear optimization methods [1], [4],

[5].

Recent studies have shown a number of optimization methods

to estimate the parameters in the biological models. The local

optimization methods, especially those that are developed based

on the EFK methods, have presented potential achievements in

dealing with the experimental measurements [6], [17]. Neverthe-

less, these methods generally need to be incorporated with the

global optimization methods since the EFK methods are only

practical to estimate parameters based on the initial values [16].

Due to these limitations, a number of previous works had

considered the use of meta-heuristics methods as the methods

are generally robust to the measurement noise. Recently,

Evolutionary Computation (EC) methods such as GA and DE

methods are pondered due to their effectiveness in finding

plausible parameters using noisy and incomplete experimental

data [1], [5]. Despite of this advantage, the meta-heuristics

methods commonly require a significantly huge amount of

computational times [1]. This disadvantage often hinders the

methods to converge the search for better fitness values frequently.

Therefore, hybrid meta-heuristics methods are commonly exploit-

ed to overcome these drawbacks [2], [3], [25].

In this paper, a new hybrid optimization method based on the

FA and CRO methods is proposed. The new method, called S-

CRO method, is developed by incorporating the evolutionary

operations adopted from the CRO method to improve the swarm-

based search strategy employed by the FA method. The

evolutionary operations are often considered practical to handle

measurement noise and incompleteness of the experimental data

during the estimation of the model parameters [1], [3]. In general,

the method is developed to investigate the effectiveness of the new

evolutionary strategy, applied using the CRO method into the

swarm-based search strategy of the FA method. Thus, this can

provide a new approach to handle noisy and incomplete

experimental data in the parameter estimation problem. Further-

more, the S-CRO method also introduces a step to rank the

population based on the fitness values and divide this population

into two sub-populations. This is performed to reduce the

computational cost faced by most conventional meta-heuristics

methods [3]. The effectiveness of the proposed method, specifi-

cally in the parameter estimation problem, was verified by using a

simulated nonlinear model, and two biological models: synthetic

transcriptional oscillators and extracellular protease production

models. The performance of the proposed method was compared

with those from the existing DE, FA, and CRO methods. In

addition, the proposed S-CRO method was tested for non-

identifiability and model selection. These tests were crucial to

validate the capability of the proposed method in estimating

reliable and identifiable parameters based on the experimental

data [6], [9], [17], [30], [36].

The simulation results showed that the proposed method was

capable to consistently find better fitness values than the other

methods. This provides evidence that the evolutionary operations

incorporated with the swarm-based search strategy is practical to

handle uncertainty in the experimental data. More importantly,

the proposed method also requires an acceptably small amount of

computational time. This shows that the initial selection step

employed by the method to discriminate the solutions that hold

potential fitness values with those that have incompetent fitness

values is indeed practical to reduce the computational time. Also,

it was observed that the parameters estimated using the proposed

S-CRO method could generate model outputs that are valid

according to the experimental data. The results showed that the

outputs produced by the reconstructed models fitted well with the

outputs from the actual parameters even though noisy and

incomplete experimental data were used. Different from the work

presented in [30], the present method considered the parameter

boundaries before the estimation. By doing this, the estimation of

the parameters had been improved especially in a model with

substantially large number of parameters. In addition, the

statistical analysis based on the error variance points and intervals

supported that these outputs were produced by the valid

parameters estimated by the using proposed method. In terms of

model selection, the results presented that the outputs of the

modified models had failed the validation test, which suggest that

the method is also capable to estimate plausible parameters based

on given experimental measurements.

Inclusively, the proposed S-CRO method had shown prospec-

tive achievement on estimating parameters. The proposed

searching strategy that incorporates the evolutionary operations

adopted from the CRO method had presented its effectiveness in

handling the measurement noise and incompleteness of the

experimental data. Additionally, the initial selection step employed

by the proposed S-CRO method had also shown its prominent

potential, especially in term of utilizing the computational time.

The simulation results suggested that the proposed method is

capable of estimating both small and large numbers of parameters.

Due to the achievements in the practical non-identifiability, it is

preferable to extend the capability of the proposed method in

handling structural non-identifiability problem. This is because the

problem often involves advance knowledge on the model structure

[7], [9], [38], which can lead to further discoveries in selecting

feasible routes of the pathways that are particularly important in

the commercialized biotechnology engineering.

Conclusions

In this paper, a new hybrid optimization method is proposed to

estimate the parameters of the biological models. The proposed

method, S-CRO method, incorporates the evolutionary operations

based on the CRO method to enhance the swarm-based searching

strategy employed by the FA method. The method is developed to

improve the parameter estimation capability of the current

optimization methods, especially when noisy and incomplete

experimental measurements are involved. The method also utilizes

an initial selection step that selects the solutions with feasible fitness

values in order to enhance the utilization of computational cost.

The effectiveness of the proposed S-CRO method was validated

using simulated nonlinear, synthetic transcriptional oscillators, and

extracellular protease production models. The simulation results

suggested that the proposed method is capable to consistently find

better fitness values compared to the other existing methods.

Furthermore, the tests also presented that the parameters

estimated by using the S-CRO method can produced model

outputs that are valid to the corresponding experimental data.

Also, the proposed method was tested for non-identifiability and

model selection, which showed that the method is capable to

estimate reliable parameters and select appropriate models based

on the given experimental data.
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