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ABSTRACT. Previously, weighted kernel regression (WKR) for solving small sample prob-
lems has been reported. The proposed WKR has been successfully employed to solve ratio-
nal functions with very few samples. The design and development of WKR 1is important
in order to extend the capability of the technique with various learning techniques. Based
on WKR, a simple tteration technique is employed to estimate the weight parameters be-
fore WKR can be used in predicting the unseen test samples. In this paper, we investigate
two learning techniques in estimating the weight parameters. For this purpose, a Ridge
Regression (RR) and a guided search based on Particle Swarm Optimization (PSO) are
used to investigate the capability of WKR in solving small sample problems. It is found
that RR and PSO are better than iteration technique in terms of computational time and
flexibility of defining the objeclive function to estimale weight paramelers, respectively,
without sacrificing the qualily of prediction, as supported by the conducted experiments.
Keywords: Weighted kernel regression (WKR), Ridge regression (RR), Particle swarm
optimization (PSO), Small samples

1. Introduction. In general, the kernel based regression aims at regressing the unknown
function based on the available training samples. In real world applications, to obtain
sufficient training samples is too expensive when dangerous real measurements have to
be performed [1]. The application of learning from small samples has gained increasing
attention in many fields, such as in semiconductor manufacturing [2], and engine con-
trol simulation [3]. There are numerous techniques [4] in machine learning for regression.
However, all the available techniques mainly focus on solving sufficient training samples
problem. As most existing techniques perform well under sufficiently large training sam-
ples, the performance of those techniques degrades as the size of samples decreases.

WKR has proved to solve small samples with high accuracy for theoretical functions [5]
and application in semiconductor problem [2]. Basically, WKR framework is based on the
Nadaraya-Watson Kernel Regression (NWKR). To design a WKR, one must estimate the
weight parameters, W, before it can be used to predict unseen samples. In the existing
WKR, the parameter estimation is simply based on the primitive iteration technique. In
this study, we focus on introducing alternative estimation techniques for WKR in order
to extend and to investigate the capability of the WKR in solving small sample problems.

In this study, the capability of Ridge Regression (RR) and Particle Swarm Optimization
(PSO) is investigated in estimating the weight parameters. RR is initially introduced to
address the numerical instability of the matrix inversion and to ensure a lower variances
model. This technique adds a positive constant to the inverse matrix term to make the
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matrix non-singular [6]. On the other hand, PSO is inspired by the social behavior of
birds in nature (7]. PSO is a very popular choice to solve optimization problem, easy to
implement, and computational efficient.

2. Weighted Kernel Regression Review. The concept of the WKR is introduced
in the following. Given training samples, {z;,;},_,, where n is the number of training
samples, z; € R? is the input and y; € R is the target output. WKR is the technique
to regress the output space by mapping the input space ¢ to ®. In general WKR is a
modified Nadaraya-Watson kernel regression (NWKR) by expressing the weight based on
the observed samples through a kernel function. The existing WKR relies on the Gaussian
kernel function as given in Equation (1).

1 (=X - Xl)
e 1
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where h is the smoothing parameter. As in NWKR, the selection of smoothing parameter,

h, is important to compromise between smoothness and fitness {8]. As in existing WKR,
Equation (2) is employed to determine the value of h.

h = max (|| Xgs1 | = | Xsl|?) where1 <k <n—1and | Xeul® > |1 Xl (2)

The kernel matrix K = [K;;], where i = j = 1,...,n, with a generalised kernel matrix
based on the Gaussian kernel is given in Equation (3). The matrix K transforms the linear
observed samples to non-linear problems by mapping the data into a higher dimensional
feature space.
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Imn WKR, the most popular function for regression problems is used to minimize the
sum of squared error (SSE) in order to estimate the weight parameters, W.

min f (W) « min | Kw - y|* (4)
Once the optimum weight is estimated, the model is ready to predict any unseen samples
(test samples). The test samples can be predicted by using Equation (5).
n d \
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3. Investigated Learning Techniques. In this study, the investigation to estimate
weight parameters will be based on the RR and PSO, which are subjected to the inverse
matrix solution and guided search on the problem space, respectively.

3.1. Ridge regression. Ridge regression exiends Equation (4) by adding the L, regu-
larization term in order to avoid the singular matrix problem. This is to ensure a lower
variance model by compromising between solving the equation and at the same time
keeping the w small. In this investigation, function to be minimized is given in Equation
(6)-

freg (W) = | Kw — ylf* + X fwll® (6)
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where ) is a positive constant value. Differentiating Equation (6) with respect to w gives
the closed form solution in estimating the weight parameter as given in Equation (7).

W = (KTK + )™ KTy )

In this investigation, only small A value is used as to avoid multicollinearity effect from
the kernel matrix as the given training samples are small and true samples.

3.2. Particle swarm optimization. In PSO algorithm, every particle represents the
possible solution in the problem space. Each particle flies over d-dimensional problem
space for searching the optimum solution by updating its own velocity, v; 4 (t), and posi-
tion, p;q (L) with respect to the fitness function. The current velocity of each particle is
updated based on the personal best previous position by every i*® particle, pﬁm , and the

global best previous position found so far by the swarm, pgb”‘. The d* dimensional of
the velocity and position for i*® particle is updated using Equation (8) and Equation (9),
respectively.

Vi (t+1) = vea () + eary (P5™ = ea () + cara (b0 —pia(®)  (®)
Pia(t+1)=pia(t) +via(t+1) (9)

where ¢ is the iteration value, ¢; and ¢, are the cognitive and social coefficients, 7y and 79
are random values in the range [0, 1] and k is the inertia weight. The cognitive and social
coefficients control the tendency of particles to move toward its own or the entire particles
position. The random values provide randomness exploitation for particle in the problem
space. Meanwhile, the inertia weight controls the exploration of particle in finding the
optimum solution. In PSO, the inertia weight is decreased overtime with typically large
initial value and the equation is given as follows:

kinit — kfinal

k= ki —
ne iteration

X iteration, (10)
where k;n;: and kfinq are the predefined initial and final value of the inertia weight respec-
tively, iteration is the maximum number of iteration and steration, is a current iteration.
In this investigation, Equation (4) is used as the fitness function in estimating the weight
parameters. The value of k;n; is purposely chosen to be large and the kfinu value is
chosen not to be very small as each particle is allowed to explore in wider problem spa.ce
In general, the weight parameter to be estimated corresponds to the found value of pﬂ

4. Experimental Results and Discussion.

4.1. Setup experiment. Several experiments were performed to validate the quality of
every parameter estimation techniques. Three functions, which are defined as Test 1, Test
2 and Test 3, are given in Equations (11)-(13), respectively. These functions, which are
taken from [1], are used for the validation purpose.

y=2°, z€l0,1] (11)
y = 0.01z + 0.02z% + 0.9z°, z € [0,1] (12)
y=1—exp(—2z*), z€[0,1] (13)

The given training samples are on the intervals of 0 < z < 1. The experiment is
repeated ten times, where in each run only ten randomly generated samples are used for
training. Equation (14) is used to evaluate the performance for all test functions.

MSE = 73" (fire — yrasic W)Y (14)
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where [ is the number of the test data, f;,.. is the true value of the tested function and
Soredict (W) is the predicted value. A grid of 101 test samples (I = 101) is generated in
the interval [0, 1]. The parameter settings for all investigation are summarised in Table 1.

TABLE 1. Parameter settings for every investigated learning technique

Technique Parameter Settings
PSO swarm size = 100, iteration = 500, ¢; = c; = 1.4, kinir = 2.5, kfina = 0.4
RR A= 1le-10

Iteration iteration = 10000 or MSE < 1e-10

4.2. Results. The performances and the computational times are tabulated in Tables 2-
4. The performances indices for all test functions are measured based on the MSE of ten
experiments and the recorded computational time is the average time of ten experiments.
The quality regression for all techniques is comparable where PSO recorded the highest
MSE for all tests. Also, PSO has small uncertainty in finding the final solution as it is
categorized as stochastic optimizer. The uncertainty can be traced through the fluctuation
in MSE curve of PSO technique as shown in Figure 1. However, for other techniques the
average MSE gradually decrease as the number of training samples is increased. However,
PSO is able to estimate the weight parameters in non-closed form solution. It is also
important to highlight that introducing the Lo term in solving Equation (4) avoids the
multicollinearity effect. The computational of RR is faster compared with PSO.

TABLE 2. Results of ten experiments to predict Test 1 function

Technique | Average %::‘!:;:::n Minimum { Maximum Corlr]@:ipnli:a;‘.;()m
PSO 1.39E-04 | 3.18E-04 2.17E-07 1.15E-03 19.73
RR 2.44E-06 | 8.34E-06 2.08E-09 3.25E-05 4.37
Iteration [5] | 9.17E-06 | 2.84E-05 1.50E-08 1.11E-04 6.02

TABLE 3. Results of ten experiments to predict Test 2 function

Technique | Average ]S_.’)t:‘ﬁgff;; Minimum | Maximum C°‘,Fil‘_:::ag‘s‘3’“
PSO | 8.70E06 | 3.06E-05 | 128500 | 1.19E-04 19.80

T RR 9.71E-00 | 481E-00 | 592612 | 1.49F-08 432

Tteration [5] | 7.81E-00 | 1.37E-08 | 4.99E-11 | 3.04E-08 5.98

TABLE 4. Results of ten experiments to predict Test 3 function

Technique | Average %::\?i:::n Minimum | Maximum Cm;?mu:;a;;;m
PSO 2.42E-04 | 3.82E-04 1.24E-05 1.56E-03 20.08

~ RR 8.49E-05 | 3.13E-04 6.15E-08 1.22E-03 4.52

Iteration [5] | 1.26E-04 | 3.82E-04 1.05E-07 | 1.50E-03 6.27
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FIGURE 1. The improved performance with increased training samples for
each technique except for PSO. MSE curve for Test 1 (a), Test 2 (b), and
Test 3 (c).
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5. Conclusions. In this study, we investigate different types of learning techniques for
WKR in solving small sample problems. RR and PSO are used for the investigation
to compare with the iteration technique. Three experiments are conducted to show the
effectiveness and practicability of WKR when using two different learning techniques. It
is found that, all the investigated techniques give a comparable prediction quality in terms
of the MSE value.

Although PSO is capable of solving non-closed form solution problem, it requires longer
computational time and a small uncertainty exists in estimating the weight parameter.
Meanwhile, RR is found to be fastest technique in estimating the weight parameter but
it will fail to solve non-differentiable problem. As PSO is capable of solving non-closed
form solution, the additional future work will include the investigation of different loss
functions to be associated with WKR.
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