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Assrnecr. Prcvi,ouslg, wei.ghteil kemel rcgrcssion (WKR) for solvi,ng amall sample prob-
lems h;os beetl rcWrtd. Theprc,p.oad WKRltasben Siifld,eSpNIA er.npt|yedta satuplvti;a-
nal functiorw with aery few samples. The desigw and, deaelopment of WKR is irnportont
in ord,er to ectend the mpability of the technique ui,th uari,ous learning trchniqaes. Baseil
on WKR, a dneple iteration trchniqae is errcplogd to estimate the weightprvrneters be-

Jorc WKR cnn be used in predieting the tmsen test samples. In this pary4 we iwestigate
two le,anfing techniqtes'in estirnating the weight porametera. For this pufpose, a Ridge
Rqression (RR) anil, a guid,ed, search basd, on Particle Swarrn Optim'i,zation (PSO) are
used to inaestigate the capabikty of WKB in solving smoW sarnple probtems. It is found
that RR and PSO ore better thon iterut'ion teclmique in terms of urnputational t'imc and

fi,exibility of d,efining the objectiue fincti.on to est'irnate weight pararneters, respectiaely,
wi,tliaut iaaificing thc quality of pruilietian,'as sufoadCd bU thi. ianducteil espennftntb.
KeSrwords: Weighted kernel regression (WKR), Ridge regression (RR), Particle swaxm
optimization (PSO), Small sa,mples

1. Intrildudtiori. In general, the kernel based idgressiirn aiins rit regressing the uilkno\rru
function based on the available training samples. In real world applications, to obtain
sufficient training saffrples is too expensive when dangerous real measurements have to
be peifoimed [1]. The applibation ci,f leriiiing &oin Smatl samplbs has gained incfeasing
attention in ma,ny fields, such as in semiconductor manufacturing [2], and engine con-
trol simulation [31. There a,re numerous techniques [a] in machine learning for regression.
Hovrever, a,}} the available techniques mainiy foeus on sohring strffieient training sarnpk
problem. As most existing techniques perform well under sufficiently large training sa,m-
ples, the performa,nce of those techniques degrades as the size of sarnples decreases.

WKR bas proved to solve small sa,mples with high accuracy for theoretical functions [5]
a,nd application in semiconductor problem [2]. Basically, WKR fra.msrrolk is based on the
Nadaraya,Watson Kernel Regresion (NWKR). To design aWKR, one must estimate the
weight parameters, lll, before it can be used to predict unseen samples. In the existing
WKR, the pararneter estimation is simply based on the primitive iteration technique. In
this studg we focus on introducing alternative estimation techniques for WI(R in order
to extend and to investigate the capability of the WKR in solving small sa.mple problems.

In this study, the capability of Ridge Regression (RR) and Particle Swarm Optimization
(PSO) is invmtigated in estimating the weig;ht paramete$. RR is initially introduced to
address the numerical instability of the matrix inversion and to ensure a lower variances
model. This technique adds a positive consta,rt to the inverse matrix term to make the
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matrix non-singula [6]. On the other hand, PSO is inspired by the social behavior of
birds in nature [4. PSO is a rery popular choice to solve optimization problem; easy to
iinplement, and computational efficient.

2. Weighted K6rirel Regrdssiox Review. Ttre concept of the WKR is introduced
in the following. Given training sa.mples, {u,At],?=r, where n is the number ef fl6ining
sa,nrplm, rr € fr9 is the input ffid U € S is the target output. WKR is the technique
to regrdss the output spaee by mapping the input space Sf to ffi. In general WKR is a
modified Nadaraya-Watson kernel regression (NWKR) by expressing the weight based on
the observed sarnples through a kernel function. The existing WKR relies on the Gaussia,n

kernel function as given in Equation (1).

(1)

where h is the smoothing para,meter. As in NWKR, the selection 6f sp66fhing para,meter,

h, is important to compromise between smoothness and fitness l8I, A" in existlng'WKR;
Equation (2) is employed to determine the value of h.

h:max(llxo*rll'-llxnll') where 1<k <n-l and llx**rll2 > llxoll' e)
The kernel matrix K :Wtil, where i: i:1,...,n', with a generalised kernel matrix

based on the Gaussian kernel is given in Equation (3). The matrix K transforms the linear
obsenrcd samples to non-liner problems by mapping tte data inbo a higher dimensional
feature space-

i*i

{n WKR, the most popular funetion for regression proHerns is tr,sed to minimize the
sum of squared error (SSE) in order to estimate the weight para"rneters, 17.

min J (W) e min [Kra - s*2 (4)

Once the optimum weight is estimated, the model is ready to predict any unseen sa,mples
(test sa.mplm). The test sa,mples can be predicted by using Equation (5).

E (*,'fu) :

& IiiV.dstigeted Lbaiintiiig Tbchiii<ities. In this Study, the intestigation to estimate
weight pararneters will be based on the RR and PSO, which are subjected to the inverse
matrix solution and guided search on the problem space, respectively.

3.1. RidgA iA$il*Sii*i. Ridge iegression eiteirrils E4natiotr (4) tt aiklihg the L2 iegu-
la"rization term in order to avoid the singular matrix problem. This is to ensure a lower
varitnce model by compromising between solving the equatioq and a! the sa,me time
keeping the tu small. In this investigation, function to be minimized is givea in Equation
(6).

K(x,xr):ft."*Cl!#e
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f,"s-(W\ : tlKu - vll' + I l!ut!2 (6)
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where ) is a positive constant value. Differentiating Equation (6) with respect to u gives
the closed form solution in ctimating the weight parameter a.s given in Equation (7).

w : (KrK + \I)-L Krs (z)

In this. investigation, ody siixalf I value is rised as to avoid, multidollinbarity effeet frona
the kernel matrix as the given training sa.mples are small and true sa,mples-

3.2. Partibki swdiri4 offiniitldti-on. In PS.O algorithm, ev€i1r liarticle r'eiiibsents the
possible solution in the problem space. Each particle flies over d-dimensional problem
space for searching the optimum solution by updating its own velocity, uu (t), and posi-
tion, pr;d (f) with icspc€t to thc fitass frin€tibn. The Cur.rent vcloeit}' of eaeh ba$idli! iS

updated based on the personal best previous position by every ith particle , ffi, and the
global best previous position found so far by the sw€lrm, fu*'. The #h dimensional of
the velocity a'nd position for ith particle is updated using Equation (8) and Equation (9),
respectively.

ur,a(t+ t) : ku6,4(t) * c1ry W - ptatt)) + "rn (f:* - kd$)) G)

pt,a(t + 1) : p;,a(t) *'.)td(t + t) (9)

where t iS the iteration valud, cl and dz are the CognitivC a.nd social Coeffibientg t1 arrd &
are random valuc in the range [0,1] and /c is the inertia weight. The cognitive and social
coefrcients control the tendency of particles to move toward its ovrn or the entire particles
positibn. The rairdoiii \ialu€sprovide i exploitatiion bt padieb in thc problen
space. Meanwhile, the inertia weight controls the errploration of particle in finding the
optimum solution. In PSO, the inertia weight is decreased overtime with typically large
initial %lue and thC equation ii ginen as follows:

k: kat - 
r':i - !l'^ x iteratim4

Nteronan
(10)

where k;n;1 and kpnat are the predefined initial and final value of the inertia weight r6pec-
tivelg iteration is the ma:rimum number of iteration aad, iteratiorh is a current iteration.
In this intesti$ation, EQriatioii (A) is used as the fitness fuiretion in estimatin$ the *eight
parameters. The value of le*,t is purposely chosen to be la,rge and thLe k1aa value is
chosen not to be very small as each particle is allovred to explore in wider problem space.
In general, the weight para.meter to be estimated corresponds to the found value of fy

4. Experimental Results and Discussion.

4.1. Setup experiment. Several experiments were performed to validate the quality of
every para,trreter estimation techniques. Three functions, which are defined as Te.st 1, Test
2 a,nd Test 3, are given in Equations (11)-(13), respectively. These functions, which are
taken from [1], are used for the validation purpose-

v-n?, r€[0,tr]

U:0.01r*0.0212 *0.913, r e [0,1]

u :1- exp (-z*\, s € [oi 1]

(1 1)

(12)

(13)

The given training sa,mples a,re on the intervals of 0 < r I l. The experiment is
repeated ten tims, where in each run only ten randomly generated samples are used for
training. Equation (14) is used to ermluate the performance for all test functions.

MSE: lI(t**" - fy";aa(I4l))' (14)
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where I is the number of the test data, ft u. is the true value of the tested firnction and
fe,rat* (W) is the predicted value. A gnd of 101 test samples (/ : 101) is generated in
the interval [0,1]. The parameter settings for all investigation are slrrurarised in Table 1.

TagLF, 1. Paraiueter settirrgs. for every investigated learning techrrique

4:2: Results. Tbe performances and the computational timm are tabulated in Tables 2-
4. The performances indices for all test functions are measured based on the MSE of ten
experiments and the recorded computational time is the average time of ten experiments.
fire qualit5r r€gdSSion for al} teifiniques iB cctmparable wbere PSO. recorded the highest
MSE for all tmts. AIso, PSO has small uncertainty in finding the final solution as it is
categorized as stochastic optimizer. The uncertainty can be traced through the fluctuation
in IvISE eiifre of PSO tedhnique as shourii in Figuie 1. Hos/ctei, for othCi techriiques the
average MSE gradually decrease as the number of training sa"mples is increased. However,
PSO is able to estimate the weight para,meters in non-closed form solution. It is also
important to highlight ttiat iatrodueing thb Lz teim in sol"ing Equatiori ( ) avoids the
multicollineaxlty effect. The computational of RR is faster compared with PSO.

TaBr,e 2. Results of teii eiperiments to predict Test 1 ftuidtion

Technique Average $tandard
D€viatiitn Minimum. Maxhnum Uomputation

Tiiire (s)
PSO 1.39F-04 3.188-04 2.LTF.-O7 1.15803 19.73
RR, 2.44F-06 8.348-06 2.08E-09 3.25F-05 4.37

Iteration f5l 9.17F-06 eB4F-05 1.50F-08 1.11F04 6.02

Teer,p 3. Resdts of ten expei.'irneirts to. prcdi€t Test 2 funatiba

Tai*l,p 4. Results of teii exlibrirnbnts to predict Rlst 3 function

Technique Parameter Settings
PSO sw{iiui idz€ : 10n, iteiatioin - 500., ctr : c2: 1.4, ktuit: 2.5, kit"a: 0.4
RR A : 1e-10

Iteration iteration : 10000 or MSE < 1e.10

Technique Average Standard
D€vietiilii Mininrrrn Maximum L)omputation

TiirIe (s)
PSO 8.70806 3.06F-05 1.28D09 1.19804 19.80
RR 2.71F-A9 4.81F-09 5.92F,-12 1.49F-08 4.32

Iteration 15 7.81E-09 1.37808 4.99F-11 3.94F-08 5.98

Technique Average
Standard
Dftvietialri Minirnum Maximum L,omputation

Tiiire (s)
PSO 2.42V04 3.82804 1.248-05 1.56803 20.08
RR 8.49E-05 3.13F-04 6.15!]-08 L.22F-03 4.52

Iteration [5J 1.26F04 3.82804 1.05F-07 1.50D03 6.27
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FIGU-nE 1. The improiveil i2eifciiiiiiiiice rilith iiidibii3ed tiiiifing baiiiiiil,a* fot
each technique except for PSO. MSE curve for Test I (a), Test 2 (b), and
Test 3 (c).
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5. Conclusions. In this study, we investigate different typm of learning techniques for
WI{R in solving small sample problems- RR and PSO are used for the investigation
to compare with the iteration technique. Three experiments are conducted to show the
efiectiveness and practicability of WKR when using two different learning techniques. It
is found that, all the investigated techniques grve a comparable prediction quality in terms
of the MSE value.

Although PSO is capable of solving non-closed form solution problem, it requires longer
computatkiiial tiind and a bmall uhcertainty exiBtb ih estimriting the ri'eight pardnieter.
Meanwhile, RR is found to be fastest technique in estimating the weight parameter but
it will fail to solve non-differentiable problem. As PSO is capable of solving non-closed
form solution, the additi,oiul future woik ririll inelude the invstigation of difierent lsss"

ftrnctions to be associated with WKR.
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