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AasrRact. Atthaugh nxachi,ne t*iaiag nxethidds, strch'as fi,nahom forcsts, haaE fun de-
aeloped ta conelate suruiuol outcomes with a set of genes, Iess study has ossessel the
abilities of these methods in inurporat'ing pathutag inforrnation Jor analyzing micrar-
rcy data. In geneml, genes that arc identified aithoat inutporcting biologiml knowledge
are firore dfficult to interprct. Thus, the pathway-based survi,aal andysis using machine
lenrning methods wpresents a promis'i,ng apprcach for genemting new biologienl hgpoth-
esis frorn mict'oanag studies. The two popular aariants of random torests used in this
reseatvh for surwiaat tato are rundorn sanvi,aat forests snd bivori,ate node-splitting rcn-
dom surviaal forcsts. Therc arc thrce types of datasets u,sd, for th'is reseorch anil each
dotaset with a thrce-leuel outcome. This rcsurvh whi,ch mrnporcd the four splitting rules
aaailabte i* inndam winioal fornats l;a i;ilentifuIc;g-** test i3 the nast acc:ui,ete in terfnl
of prvdi,ction error. To eaaluate the arcurvcy of pathway bosd survhtal opproach, this
rese.arvh ansiderd employing area under the receiaer opemting charo"cteri,stie curve for
censared, data. The trse aJ rand;orn $;lrohtol fwesis for nmtinal tttwn>es in anolyzing
rnicroarray d,ata allows rcswryhers to obtoin resa,lts that orc rnorc closelg ti,e,il wi,th the
biological mrchan'isrn of diseases.
Ke5rwords: Palhway, Surviyal outcomes, Microarray data, Random forests, Random
survival forests, Bivariate node-splitting random survival forests

1. Introduction" Altltough numerous. metbods have ben developed to analyae microar=
ray data based on single genes or the whole set of genss, they do not make use of pathway
information. In the past several years, microarray data have been used for survival anal-
y€iB through s€veral methods. Correlating gene exprdssion dttb with survival outcomes
on the pathway level may lead to biologically more meaningfirl information for prognosis
biomarkers. The two popular variants of random forests for the analysis of survival data
afe iandom siiivital blsts [1] aiid bivariate nod+splitting random siiivival forests [2].

This research dmcribes a, pathway-based method using random survival forests to an-
alyze gene expression data with survival outcomes on the pathway level. The proposed
method represents a promising approach for researchers to identify important pathways
for predicting patient prognosis and discover important genes within those pathways. This
research which also compared random survival forests with different split criteria to assess
the performance of the proposd approach in identiffig ra,ndom survival forests with Iog
rank test is the most accurate in terms of prediction error. The proposed method was
applied to three different data.sets where one dataset with a three-level outcome.
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2. Materials and Methods. The two versions of random forests used for this research
are random survival and bivariate node-splitting random survival forests. There is a
difference between random forests classification and regression and the random survival
forests. The key difference is the outcome of interest is a set of survival times with the
correspondiug censoring indicator for the survival counterpart. Figure 1 shows the ffow
chart of pathway analysis for survival outcomes using random survival forests.

FIcUiqs 1. The flow chdi"t of pathway analysis for survival outdoriies using
random survival forests

2.1. Raiialom sulrvival biests. Reildoin Siiivival Foi€std (RSF) tC an Cxteiasiils of
Breiman's Random Forsts to survival analysis settings. Algorithm uses a binary re-
cursive tree growing procedure with different splitting rules for growing an ensemble cu;
mulative haaard function. An (but-of-badt estimate of Harrell?s coneordance index [3J
is provided for assessing prediction. The algorithm used by random survival forests is
broadly described as follows:

Step 1 Draw ntree bootstrap sa,mple from the origiual data. Note that each bootstrap
samples excludes approximately one-third of the sample data called out-of-bag
(ooB)'

Step 2 A survival tree is grown for each of the bootstrap sample.
Step 3 At each node of the tree, select Jm predictors at random for splitting.
Step 4 Split on a predictor irsing a suivivd.l splitting criterion. A node iS Split on that

predictor which maximizes survival differences across daughter nodes.
Step 5 Repeat Steps 3 and 4 until each terminal node contains no more than 0.632 times

thb numbrir of events.
Step 6 Calculate an ensemble cumulative hazard estimate by combining information from

the ntree trees.
Step ? Compute an out-of-bag (OBB) erroi fdtii fof the etusemblb CIIF.

2.2. Bivariate combination split. By considering the much-reduced dimension in a
pathway-based setting, a bivariate splitting criterion is feasible. From the four splittitrg
rules, LR split criterion performed the best and is chosen to implement three approaches to
use bivariate splitting strategies in random survi'ual forests by modifying the C embedded
code in the R program [2]. fhe stratery is to split on the best pair of covariates at every
node split by changing Step 4 of the above algorithm:

$tp.p 4 Using the LR splitting qrite.non, a node is split using the predictar p.arr frqm Etep
3 that maximizes the survival differences between daughter nodes by finding best
split of the form ra * ni ( c for i + j.
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This approach is called bRSF LR for bivariate random survival forests with LR splitting
criterion. This stratqgr helps take into aacount the ctnelations arnong genes in the
pathway.

3, &e-sults and, Discussiox"

3.1. Datasets. A total of 1308 pathways were used for the analysis. These pathways
are wired diagrams of genes and molecules from KEGG and BioCarta; There are a.lso a
few sigual processing pathways and others related to human diseasm. A summary for the
real data used in this analysis is given in Table 1. The Breast dataset [4] is classified into
luuiLinal, basril and apocrinc classies- Both Lunga 15] and Lung-b [6] datasets are luirg
cancer datasets and provide outcome as ogood'or'poor'ones.

Tesln 1. The datwets used in this researeh

Dataset Number of patients Genes Response type
Breast 49 222L5 'I'hree tumor types
Lung-a 86 7129 Normal /tumor
Lung-b 62 12600 Normal /tumor

3.2. Experimeiital i€srilts- ThiT research paper applied RSF to assess their abilities
in giving biological insights based on three different microarray datasets. To assess the
stability of the concordance error rate, this research paper first calculated the lGfold
Cross validation fo'r RSF with different spilt critdria tising 1308. patbways fi'om the thr€
different datasets. Flom Table 2, the observed random survival forests with log rank test
split rule (RSF LR) gave the lowest mealr of error rates a.mong the three different datasets
used. Flom the finding, the LR splittin$ Criterion iS Chd'sen frir this analysis tibdause the
mea.n of error rates are the lowest and it performs best in terms of prediction error.

Tlnr,n 2. Mean of error rat€ for thtee different datasets using RSF

Datasets Iogrank conserve logrankscore ra,ndom
Brea^st 0.5393 o.5624 0.5548 0.5646
Lung-a 0.5420 0.5730 0.5562 0.5813
Lung-b 0.5511 0.5784 0.5850 u.5E35

Table 3 shows the best five pathways of RSF on breast cancer dataset a.mong 435 path-
ways. It has been found that the highet AUC value was achieved by sulfur metabolism
pathway as it has been suggested that defective sulfirr metabolism might be related to
carcinogenesis [7]. Besides, the lovrest pvalue was achieved by BC-multi-step pathway.
The new multi-step pathways of breast cancer progresion have been delineated through
genotypic phenotypic correlations in the past few years [8]. The lon'est mean of error rate
was achieved by BC-IL3 sigualing pathway. Small mean of error rate based on gene in a
grven pathway would indicate the pathway a.s potentially interesting.

Table 4 shows the best five pathways of breast cancer dataset using bRSF. This dataset
seemed to do slightly better than the results in Table 3. BO-Ras-independent pathway
was. sbori,:ir to havb highaxrt AUC vailue and BGderegulation of c-mfc-indueed patbudy
was shown to have lowest pvalue and lowest mean of error rate. The ras mutation is
infrequent in breast cancer although aberrant function of ras signal transduction pathway
is thought to be bommon iA hiiinan bieast eancer [9]. Myc deiegulation contfibrites to
breast ca.ncer development and progression and is associated with poor outcomes [10].
Application of RSF and bRSF to two other datasets had done as well.



Pathways
Number.of

genes
RSF LR
pvalue

RSF LR
AUC

Mean of
error rate

BC-IL 3 siepaline pathwav 15 0.0100 0.6539 0.3817
BGMutti-step pathway t0 0.0042 0.7459 0.393r

BGMechanisms of transportation 19 0.1685 0.6955 0.4044
BGRole of PPAR-gamma 72 0.1325 0.6923 0.4006

Sulfur metabolism I 0.0231 0.7784 0.4108
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Teslp 3. The best five pathways of RSF on breast cailcer dataset

TABT,E 4- The bst fia'a p.athrrays of bRSF on broast cfiiccr datasct

Pathways
Number of

genes
bRSF'L}f
Fvalue

bKSI'LK
AUC

Mean of
error rate

Alkaloid biosynthesis 6 0.0019 0.7905 0.3503
BGDeregulation of

Gmye-induced pathway 15 0.0017 0.8710 0.3172

ts(.Lllrk and Pl-3 Kinase 33 0.0435 o.7952 o.4t41
BC-Presenilin action 10 0.0519 0.7762 0.4722

BGRas-Independent pathway 20 0.0125 0.8883 u.3424

TimedCpeirdent ROC asattsis I$ an extension of th€ eoacCpt of ROC erirves for tim+
dependent binary disease variablm in censored data. Figure 2 shows the timedependent
ROC curve from censored survival data for breast cancer dataset using RSF LR. Each
pathway is fepiesented by diffeient Color ih the ROC ciiw€. Flom the Anding, the AUC
value for SuHur metabolism is the highest arnong others. The a,rea under the curve for
this pathway is the largest compared with others and for the ROC curve, it yield a point
in ROC spaee whieh is ii{tafci to thc y{i')rit *hieb ineans the ciuvc wil} bc at ttrc uppcr
left corner of the ROC space.

l f4sJ#ri{w:;
ROC,ilethd=HilE

Pdrw.y
<l

0-0 0.2 0.4 0.8 0.8 't.0

FP

Frcune 2. The time-dependent ROC curve of breast c&r\eer dataset using
RSF LR
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Last but not least, the splitting criterion used in growing a tree have involved survival
time and censoring information. The three difierent datasets have their own survival
time and censoring status. Performance of random survival forests also depended on the
censoring rate. If most of the cases are deaths, then the performance of error rate was
good or vice versa- Even though the sa,rnple size for a dataset is larger than others, il
most of the censoring in the dataset is higher a,nd thus performa,nce of error rate is poor.

4. Conclusions. This research described a pathway-based approach tor analyzing mi-
croarray data with survival outcome using random survival forests with univariate and
bivariate node splits. The LR test approach helps to identify pathways that are good at
predicting patient's prognosis. AUC helps to identify pathways that are good at correctly
predicting patients who progress or survive past a certain time. Lastly, the concordance
error rate helps to identify the pathways that are biologically meaningfirl. The future work
would certaihly mdtiiatd ralid diaru the int€rest of other r€searChers to devdlop cith€r novbl
pathway-based methods based on multivariate variable selection for survival outcomes.
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