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Abstract. Advancements in pathway-based microarray classification approach 

leads to a new era of genomic research. However, this approach is limited by is-

sues regarding the quality of the pathway data as these data are usually curated 

from biological literatures and in specific biological experiment (e.g. lung can-

cer experiment), context free pathway information collection process takes 

place leading to the presence of uninformative genes in the pathways. Many 

methods in this approach neglect these limitations by treating all genes in a 

pathway as significant. In this paper, we propose a hybrid of support vector ma-

chine and smoothly clipped absolute deviation with group-specific tuning pa-

rameters (gSVM-SCAD) to select informative genes within pathways before the 

pathway evaluation process. Experiments conducted on gender and lung cancer 

datasets shows that gSVM-SCAD obtains significant results in identifying sig-

nificant genes and pathways, and in classification accuracy. 

Keywords: Pathway analysis, smoothly clipped absolute deviation, support 

vector machines, gene selection 

1 Introduction 

Incorporation of prior pathway data into microarray analysis has become a popular 

research area in bioinformatics due to the advantages in providing further biological 

interpretation compare to single gene microarray analysis. Such advantages further 

spurred the development of various approaches to identify informative genes and 

pathways that contribute to the certain cellular processes. The goal of the pathway-

based microarray analysis is to identify significant pathways and also genes within the 

pathways that contribute to the phenotypes of interest. This is in contrast to single 

gene microarray analysis that identifies only the significant genes. Two most common 

approaches in pathway-based microarray analysis are enrichment analysis approaches 

(EA) and machine learning approaches (ML) [1]. 

However, there are some challenges in pathway-based microarray analysis such as 

the quality of pathway data where some of the uninformative genes maybe included 
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into pathways while informative genes being excluded [2]. In order to deal with this 

challenge, researchers attempt to make improvement by removing unaltered genes in 

pathways [1] and include additional functional interpretation in EA approaches [3]. 

While for ML approaches, gene selection methods have been included to select in-

formative genes within a pathway before the classification model building instead of 

including all the genes within a pathway into the model building [2, 4, 5]. 

However, EA approaches considered all genes within pathways as equally im-

portant [1]. Alternatively, ML can select the only important genes within a pathway 

by including the gene selection method. In contrast to EA, ML aim to identify both 

relevant genes and pathways that related to the phenotypes of interest. Therefore, ML 

can bring more insight in a biological perspective. ML is used in this research due to 

its advantages. However, there are arguments against incorporating gene selection 

methods in ML where informative genes may be discarded [1]. This is due to the 

nature of microarray data where it can impose sparseness and biasness on the penalty 

function that act as the gene selection method in evaluating the informative genes [6]. 

Therefore, the efficient and robust gene selection technique is needed in order to deal 

effectively with the problems arise in pathway-based microarray analysis.  

Following the good results obtained from support vector machines (SVM) in clas-

sifying gene expression data, hybrid of SVM with smoothly clipped absolute devia-

tion (SCAD) penalty was produced, named as SVM-SCAD [7]. SCAD provides near-

ly unbiased coefficient estimation and select the important genes consistently com-

pared to other popular penalty function such as least absolute shrinkage and selection 

operator (LASSO) [8]. SVM-SCAD had proved its ability in selecting the informative 

genes and the method is comparable to LASSO penalty function. Hence, in order to 

identify both significant genes and pathways that related to phenotypes of interests, 

this paper proposed an improved of SVM-SCAD with group-specific tuning parame-

ters, termed as gSVM-SCAD. 

2 SVM-SCAD and the proposed method (gSVM-SCAD) 

2.1 SVM-SCAD 

Given a data set {(xi,yi)}, yi ϵ {-1,1} is the sample tissue with possible two classes yi = 

-1 and yi = 1 for each data set used in this paper, while xi = (xi1,… ,xid) ϵ Ɍ
d
 represents 

the input vector of expression levels of d genes of the i-th sample tissue. SVM is a 

large margin classifier which separates classes of interest by maximizing the margin 

between them using the kernel function [7, 9]. This has been widely used especially in 

microarray classification area [10]. SVM distinguish input variables into its classes by 

a margin of  

                             (1) 

[1-yif(xi)]+ is the SVM convex hinge loss function where  

                                



while penλ(β) is the penalty function with parameters λ, where β = (β1,…., βi) are the 

coefficients of the hyperplane, while c is the intercept of the hyperplane. Hinge loss 

function is a commonly used loss function in SVM in order to keep the fidelity of the 

resulting model to the data set [11]. However, the standard SVM can suffer from ir-

relevant data, since all the variables are used for constructing the classifier [7]. This is 

due to the usage of the L2 penalty in a soft-thresholding function for the common 

SVM. The detailed applications of L2 penalty in a soft-thresholding function and its 

drawbacks in identifying noises can be obtained from [7].  

A penalty function is usually used as a variable selection in the statistics, and in bi-

oinformatics it is called as gene selection. SCAD is different from other popular pen-

alty functions such as LASSO, also called the L1 penalty [8], this is because SCAD 

provides nearly unbiased coefficient estimation when dealing with large coefficients. 

This is contrary to other penalty functions that usually increase the penalty linearly as 

the coefficient increases [6]. SCAD penalty has the form of 

                 
 
    (2) 

where Pλ(βj) is a penalty function with tuning parameter λ for βj. For providing nearly 

unbiased, sparsity, and continuity estimate of β [7], the continuous differentiable pen-

alty function is defined as 
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where a and λ are tuning parameters with a > 2 and λ > 0 [6]. For a tuning parameter 

a, previous research suggested the parameter a = 3.7 due to the minimal achievement 

in a Bayes risk [6]. Therefore, in this research a = 3.7 is used while λ  is a tuning pa-

rameter obtained using generalized approximate cross validation (GACV) tuning 

parameter selection methods (as discussed latter). 

In order to surmount the limitations of the SVM due to its inability to distinguish 

between noise and informative data, SVM-SCAD was proposed by replacing the L2 

penalty in function (1) with (2), which takes the form 

       
 

 
                     

 
    (4) 

In order to select the informative genes, SVM-SCAD have to minimize the function 

(4) using the successive quadratic algorithm (SQA) and repeated for kth times until 

convergence, where k = 1,...,n. During the procedure, if   
 ˂ ϵ, the gene is considered 

as uninformative. Where β is the coefficient for the gene j in the kth iteration and ϵ is 

a preselected small positive thresholding value with ϵ = yi - f(xi). 

2.2 Tuning Parameter Selection Method 

In SCAD there are two tuning parameters namely a and λ that play an important role 

in determining an effective predictive model. The tuning parameter selection in SVM-



SCAD is used to estimate the nearly optimal λ in order to identify the effective predic-

tive model for SCAD. In this paper, the generalized approximate cross validation 

(GACV) [12] is used to select the nearly optimal λ. The formula as given below: 
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where n is a total number of samples,     is a degree of freedom where 

     
 

 
      

   

                
             

        
   

                  
             

    

where 
   

   
  

                      

     
 and            

  is the reproducing kernel hilbert 

space (RKHS) with SVM reproducing kernel K. If all samples in microarray data are 

correctly classified, then            and sum following 2 in     does not appear 

and                where   is the hard margin of an SVM [12]. The nearly opti-

mal tuning parameter   is obtained by minimizing the error rate from the GACV. 

2.3 The Proposed Method (gSVM-SCAD) 

In SVM-SCAD, the magnitude of penalization of   is determined by two tuning pa-

rameters a and  . Since a has been setup as 3.7 [6], there is only one parameter   left 

that play an important role. In order to incorporate pathway or set of gene data, the 

gSVM-SCAD used group-specific parameters    estimation. In this paper, there are k 

groups of genes where k = 1...n, each gene able to be in one or more pathways. We 

grouped the genes based on their pathway information from the pathway data. In or-

der to provide the group-specific tuning parameters, we modified (2) to the form of 

                   
 
    (6) 

where by allowing each pathway to have its own parameter λk as in (6) instead of 

general λ in (2), the genes within pathways can be selected and classified more accu-

rately. 

Table 1 illustrates the procedure of gSVM-SCAD. The procedure consisted of 3 

main steps. In the first step, the genes in microarray data are selected and grouped 

based on their prior pathway information from the pathway data. This process repeat-

ed for each pathway in the pathway data and there is a possibility that some genes are 

not involved in any pathways. From this step, the new sets of gene expression data are 

produced to be evaluated by the SVM-SCAD. In step 2, each pathway is evaluated 

using the SVM-SCAD. This procedure is started with the tuning parameter selection 

(step 2.1) where in this research, the grid search is applied. According to previous 

research, the best λ can be obtained in the range of 0 < λ < 2, therefore the grid search 

ranges from 0.001 to 0.009, 0.01 to 0.09, and 0.1 to 1 are used. The GACV is used to 

estimate the error for each tuning parameter value from the grid search. The nearly 

optimal tuning parameter produces the minimum GACV error. In step 2.2, the genes 

in the pathway are evaluated using SVM-SCAD and the informative genes within 

pathway is selected and selected while the non-informative genes are excluded from 



the pathway. In step 2.3, the informative genes obtained are classified between pheno-

types of interests using an SVM. The classification error from the selected genes for 

each pathway is calculated using 10-fold CV in step 3. Biological validation for top 

pathways is conducted using the information from the biological research databases. 

Table 1. The gSVM-SCAD procedure 

Input: GE: Gene expression data , PD: Pathway data , TP : Tuning parameter, λ 

Output: SP: Significant pathways , IG: Informative genes 

Begin 

Step 1: Grouping genes based on their pathway information 

              For j=1 to max number of pathways in PD do 

                     Find genes from GE that related to the pathway 

                     Select and assign the related genes as a one group 

              End-for 

Step 2: Evaluate the pathways 

   For j=1 to max number of pathways in PD do 

         Step 2.1: Estimation of TP using a GACV 

              For TP = 0.001 to 0.009 ,0.01 to 0.09 and 0.1 to 1 do 

                                     
 
 
                    

 

   
 

              End-for 

                       // best TP produces minimum GACV error 

         Step 2.2: Select the informative genes using the SVM-SCAD 
             Let    as the estimate of β at step k where k = 0, … , n 

             The value of    set by an SVM  

            While     not converge do 

                             Minimizing the  
 

 
 Σ[1-yif(xi)]+ + Σ

d
j=1 Pλk(  )  

                              k = k + 1  

                If   
  ≤   then 

                   The gene j considered as non-informative and discarded 

                End-if 

           End-while 

       Step 2.3: Classify the selected genes using an SVM 
Step 3: Calculate the classification error using a 10-fold CV 

  End-for 

End  

 

There are several main differences between gSVM-SCAD and other current meth-

ods in ML approaches. Firstly, it provides the genes selection method to identify and 

select the informative genes that are related to the pathway and the phenotype of in-

terest which provides more in biological aspect. Secondly, the penalty function SCAD 

is more robust when dealing with a high number of genes, and it selects important 

genes more consistently than other popular LASSO (L1) penalty function [13]. And 



lastly, with group-specific tuning parameters, the gSVM-SCAD provides more flexi-

bility in choosing the best   for each pathway so that each pathway can be assessed 

more accurately. Therefore, by selecting the informative genes within pathway, the 

gSVM-SCAD can be seen as the best method in dealing with pathway data quality 

problems in pathway-based microarray analysis. 

3 Experimental data sets 

The performance of the gSVM-SCAD is tested using two types of data, gene expres-

sion and biological pathway data. The role of biological pathway data is as a metadata 

or prior biological knowledge. Both gene expression and pathway data are the same 

as those used in previous research done by Pang and colleagues [14]. 

3.1 Gene expression data sets 

In gene expression data, it consists of m samples and n gene expression levels. The 

first column of the data represents the name of genes while the next column repre-

sents the gene expression levels. The data set forming a matrix of            
 

where      represents the expression level of the gene j in the tissue sample i. In this 

paper, two gene expression data sets are used: lung cancer, and gender. The informa-

tion of the data sets is shown in Table 2. 

Table 2. Gene expression data sets 

Name No. of samples No. of genes Class Reference  

Lung 86 7129 2(normal and tumor) [15] 

Gender 32 22283 2(male and female cells) unpublished 

3.2 Biological pathway data 

Total 480 pathways are used in this research. 168 pathways were taken from KEGG 

and 312 pathways were taken Biocarta pathway database. In a pathway data set, the 

first column represents the pathway name while the second column represents the 

gene name. 

4 Experimental results and discussion 

In this paper, to evaluate the performance of the gSVM-SCAD, we used a 10-fold 

cross validation (10-fold CV) classification accuracy. The results obtained from the 

gSVM-SCAD are validated with the biological literatures and databases. Since the 

limited pages for this paper, we only chose the top five pathways with highest 10-fold 

CV accuracy from both data sets for biological validation (commonly applied with 

several authors such as Pang et al. (2006) and Wang et al. (2008)). 



4.1 Performance evaluation 

For the performance evaluation of the SCAD penalty function, the SCAD was com-

pared with the popular L1 penalty function by hybridizing it with an SVM classifier 

(L1 SVM), obtained from R package named penalizedSVM [16]. The L1 SVM also 

applied with group-specific tuning parameters to determine λ. This experiment was 

done intentionally to test the robustness of the SCAD penalty in identifying informa-

tive genes when dealing with large coefficients compare to the L1 method. Then the 

gSVM-SCAD was compared with the current SVM-SCAD with respect to one gen-

eral parameter tuning for all pathways, the tuning parameters λ = 0.4 as used in previ-

ous research [7]. For comparison with other classification methods without any gene 

selection process, the gSVM-SCAD was compared with four classifiers that are with-

out any penalty function or gene selection method. The classifiers are PathwayRF 

[14], neural networks, k-nearest neighbour with one neighbours (kNN), and linear 

discriminant analysis (LDA). The purpose of this comparisons is to show that not all 

genes in a pathway contribute to a certain cellular process. The results of the experi-

ment are shown in Table 3. 

Table 3. A comparison of averages of 10-fold CV accuracy from the top ten pathways with 

other methods 

Method Lung Cancer (%) Gender (%) 

gSVM-SCAD 73.77 87.33 

L1-SVM 55.14 80.76 

SVM-SCAD 53.5 77.96 

Neural Networks 70.39 81.54 

kNN 61.73 82.44 

LDA 63.24 75.81 

PathwayRF  71.00 81.75 

 

As shown in Table 3, in comparing the gSVM-SCAD with L1-SVM and SVM-

SCAD, it is interesting to note that the gSVM-SCAD outperforms the other two pe-

nalized classifiers in both datasets with gSVM-SCAD is 18.63% higher than L1-SVM 

for lung cancer data set, and 6.57% higher in gender data set. This is due to the SCAD 

as a non-convex penalty function is more robust to biasness when dealing with a large 

number of coefficients β in selecting informative genes compared to the L1 penalty 

function [6]. Therefore the proposed method with SCAD penalty function is more 

efficient in selecting informative genes within a pathway compare to LASSO penalty. 

Table 3 further shows that the gSVM-SCAD had better results than SVM-SCAD, 

with 20.27% and 9.37% higher in lung cancer and gender data sets respectively. It is 

demonstrated that group specific tuning parameters in gSVM-SCAD provides flexi-

bility in determining the λ for each pathway compared to the use of general λ for eve-

ry pathway. This is because genes within pathway usually have a different prior dis-

tribution.  

In order to show that not all genes in a pathway contributed to the development of 

specific cellular processes, the gSVM-SCAD is compared with four classifiers. The 



results are also shown in Table 3. For lung cancer data, gSVM-SCAD outperformed 

all the classifiers, with 2.77% higher than PathwayRF, 3.8% higher than neural net-

works, 10.53% higher than LDA, and lastly 12.04% higher than kNN. For gender 

data, result obtained by gSVM-SCAD is 5.58% higher than PathwayRF, 5.79% higher 

than neural networks, 4.89% higher than kNN one neighbor and 11.52% higher than 

LDA. 

From the results in Table 2, the gSVM-SCAD shows a better performance when 

compared to almost four classifiers for both data sets. This is because the standard 

classifiers built a classification model using all genes within the pathways. If there are 

uninformative genes inside the pathways, it reduced the classification performance. In 

contrast, the gSVM-SCAD does not include all genes in the pathways into develop-

ment of a classification model, as not all genes in a pathway contribute to cellular 

processes, due to the quality of pathway data. 

4.2 Biological validation 

The gSVM-SCAD has been tested using the lung cancer data set that has two possible 

output classes: tumor and normal. The selected genes and the top five pathways pre-

sented in Table 4. For lung cancer data set, we used HLungDB [17] and genecards 

version 3.06 (www.genecards.org) to validate the selected genes within pathways. 

For the WNT signaling pathway, it is reported that the pathway plays a significant 

role in the development of lung and other colorectal cancers [18]. From 24 genes 

inside the pathways, 16 genes selected by the gSVM-SCAD where twelve genes were 

validated as related to the lung cancer development while other remaining genes are 

not contributing to the lung cancer. With respect to the second pathway, it also con-

tributes to the development of lung cancer, since the AKAP95 protein plays an im-

portant role in cell mitosis [19], the gSVM-SCAD identifies seven out of 10 genes 

included in the pathway with four genes such as DDX5, PRKACB, CDK1, and 

CCNB1 playing an important role in lung cancer development, while others have no 

evidence in lung cancer development.  

The gSVM-SCAD identifies that induction of apoptosis pathway as one of the lung 

cancer related pathway, where this pathway has been reported by Lee et al. [20] as 

one of the contributor to the lung cancer development. Thirteen out of eighteen genes 

in the induction of apoptosis have been selected by the gSVM-SCAD as the signifi-

cant genes, with thirteen genes being related to the lung cancer. For the Tyrosine me-

tabolism pathway, there are no references showing that this pathway is related to the 

lung cancer development. However, the gSVM-SCAD has selected several genes 

within this pathway that play an important role in the development of lung cancer, 

such as AOC3, DDC, GHR, TPO, NAT6, ALDH3A1, ADH7, MAOA, MAOB and 

ADH1C. This makes it possible that this pathway may relate to the development of 

lung cancer and thus prompting biologists to conduct further research on this path-

way. While for the Activation of Csk pathway, Masaki et al. [21] have reported that 

the activation of this pathway plays an important role in the development of lung 

cancer, with three genes marked as lung cancer genes. 

http://www.genecards.org/


Table 4. Selected genes from the top five pathways in the lung cancer data set. 

Pathways No. of genes Selected gene(s) 

WNT Sig-

naling Path-

way 

24 APC , MYC, AXIN1, GSK3B, CTNNB1 [18], 

HNF1A [22], CREBBP [23], HDAC1 [24], 

WNT1 [25], CSNK1A1 [26], CSNK2A1 [15],  

TLE1 [27] 

PPARD, PPP2CA, TAB1, DVL1 

AKAP95 

role in mito-

sis and 

chromosome 

dynamics  

10 DDX5 [28], PRKACB [15], CDK1 [29], CCNB1 

[30], PPP2CA, PRKAR2B, PRKAR2A 

Induction of 

apoptosis  

36 FADD [31], TNFSF10 [32], CASP3, CASP6, 

CASP7, CASP8, CASP9, CASP10 [20], BCL2 

[33], BIRC3 [34], TRAF [35], BIRC [36], 

TNFRSF25 [37] , RARA [38], TRADD, RELA, 

DFFA, RIPK1 

Tyrosine 

metabolism 

45 AOC3, NAT6, ADH7, MAOA, MAOB [15], 

DDC [39], ADH1C [40], GHR [41], TPO [42], 

ALDH3A1 [43], ADH5, PNMT, TAT, ARD1A, 

DBT,  AOC2, ALDH1A3, AOX1, PRMT2, FAH, 

ALDH3B2, KAT2A, ADH6, ADH4, GOT2 

Activation 

of Csk 

30 PRKACB, HLA-DQB1 [15], CREBBP [21] 

CD247, IL23A, PRKAR1B, GNGT1, CD3D, CD3E 

 

For the gender dataset, we used 480 pathways. For this data set, we were looking 

the genes within pathways that existed in the lymphoblastoid cell lines for both male 

and female [14]. The top 5 pathways with highest 10-fold CV accuracy are shown in 

Table 5. Our gSVM-SCAD had selected 11 genes out of total 726 genes within top 5 

pathways. From the 11 genes, 8 genes are proved to be related in lymphoblastoid cell 

lines for both male and female gender. 

Table 5. Selected genes from the top five pathways in gender dataset 

Pathways No. of genes Selected gene(s) 

Testis genes from xhx 

and netaffx 

111 RPS4Y1 [44] 

GNF female genes 116 XIST 

RAP down 434 DDX3X, HDHD1A [44] NDUFS3 

[45] 

XINACT 34 RSP4X, DDX3X, PRKX [44] 

Willard inact 31 RPS4X, STS [44], RPS4P17 



5 Conclusion 

This paper focuses to identify the significant genes and pathways that relate to pheno-

types of interest by proposing the gSVM-SCAD. From the experiments and analyses, 

the gSVM-SCAD is shown to outperform the other ML methods in both data sets. In 

comparison of penalty function, gSVM-SCAD has shown its superiority in selecting 

the informative genes within pathways compare to L1 SVM. By providing group-

specific tuning parameters, gSVM-SCAD had shown a better performance compare to 

an SVM-SCAD that provides a general penalty term for all pathways. Furthermore, 

majority of the genes selected by gSVM-SCAD from both data lung cancer and gen-

der data sets are proved as biologically relevance. 

Despite the good performance based on the comparisons done in this paper, 

gSVM-SCAD still possesses a limitation because SCAD penalty is a parametric 

method that relies on the parameter λ to balance the trade-off between data fitting and 

model parsimony [7] and the results will be affected if improper selection by the 

GACV. This can be seen in Table 4 where there are still a lot false positives. When λ 

is too small, it can lead to the overfitting of the training model and give too little 

sparse to the produced classifier; and if λ is too big, it can lead to the underfitting to 

the training model, which again can give very sparse to the classifier [7]. Therefore, 

further research regard this matter shall be done to surmount the limitation in gSVM-

SCAD. 
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