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Abstract. Inferring gene networks can be defined as the process of identifying 
gene interactions from experimental data through computational analysis. The 
aim is to infer gene network from gene expression data using dynamic Bayesian 
network (DBN) with different scoring metric approaches. The previous method, 
Bayesian network has successfully identified those gene networks but there are 
some limitations. Hence, DBN is able to infer interactions from a data set con-
sisting time series rather than steady-state data. This research is conducted in 
order to construct and implement gene network and to analyze the effect by ap-
plying a different scoring metric approach for modeling gene network. In order 
to achieve the goals, a discrete model of DBN is used with different scoring  
metric approaches which are BDe and MDL. The S. cerevisiae cell cycle path-
way is used for this research. To ensure the gene networks are biologically 
probable, this research employs previous annotation relative to the dataset. By 
having all of these implementations, this research is able to identify the effect of 
different scoring metric approaches, identify biologically meaningful gene net-
work within the gene expression datasets and display the results in convenient 
representations. 

Keywords: Dynamic Bayesian network, missing values imputation, gene  
expression data, gene regulatory networks, network inference. 

1 Introduction 

Dynamic Bayesian network (DBN) is well defined as a Bayesian network (BN) that 
represents sequences of variables. DBN can construct cyclic regulations using time 
delay information. DBN uses time series data for constructing causal relationships 
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among random variables. Friedman et al. [1] first applied DBN to the analysis of gene 
networks. They constructed a discrete DBN model and used the Bayesian Dirichlet 
equivalence (BDe) scoring metric for learning networks. Ong et al. [2] also used a 
discrete DBN model but combined it with prior biological knowledge and current 
observations to model the tryptophan metabolism in E. coli. They utilized a repetitive 
EM (Expectation-maximization) algorithm to compute scores in learning network 
structure. On the other hand, to avoid data loss due to discretization, Kim et al. [3] 
developed a continuous DBN model with non-parametric regression model based on 
B-splines to take into account of linear dependencies. To select the optimal network, 
Kim et al. [3] subsequently defined a scoring metric known as BNRCdynamic based on 
the Laplace approximation. 

Inferring gene networks can be defined as the process of identifying gene 
interactions from experimental data through computational analysis. Gene expression 
data from microarray are typically used for this purpose. The aim is to infer gene 
network from gene expression data using DBN with different scoring metric 
approaches. In addition, network visualization tools are available to indicate the 
network surrounding a gene of interest by extracting information from experimental 
data sets, such as Cytoscape [4]. We evaluated the efficiency of each scoring 
approach through the analysis of the S. cerevisiae gene expression data. 

2 Materials and Methods 

In previous works, researchers used BN which could not model a feedback loop 
because it did not have loops or cycles. In this section, we describe the details of the 
DBN-based model for inferring GRNs from gene expression data. In essence, the 
proposed model consists of three main steps: missing values imputation, construct 
gene network and evaluating network structures using scoring metric with respect to 
the given data. The following sub-sections discuss in detail for each of the three main 
steps. 

2.1 Experimental Data and Missing Values Imputation 

After all of the possibly used method and techniques identified, this is the stage where 
the researcher develops and implements a computational model based on the 
techniques in the previous steps. The model is implemented using BNFinder software 
[5]. This software allows for BN reconstruction from experimental data. Besides that, 
it supports DBN and if the variables are partially ordered, this also applies for static 
BN. It is written in python, and distributed under GNU GPL Library version 2. 

The experimental study is based on the S. cerevisiae cell cycle time-series gene 
expression data [6].  However, the dataset contains missing values which must be 
processed. Conventional methods of treating missing values include repeating the 
microarray experiment which is not economically feasible, or simply replacing the 
missing values by zero or row average. A better solution is to use imputation 
algorithms to estimate the missing values by exploiting the observed data structure 
and expression pattern. In view of this, we applied the k-nearest neighbor method 
(kNN) imputation algorithm [7] that is the most fundamental and simple classification 
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methods, and should be one of the first choices for a classification study when there is 
little or no prior knowledge about distribution of the data. 

2.2 Construction of Gene Networks 

The DBN is used to construct gene networks, hence producing directed acyclic graphs 
(DAGs).  For this research, we used Cytoscape for visualizing complex network and 
integrating these with any type of attribute data. 

After the gene networks have been constructed, the performance of the gene net-
works constructed using DBN is evaluated. To evaluate the gene performance, the 
networks constructed are compared with the sub-networks constructed by Dejori [8]. 
Dejori [8] has also implemented BN to construct gene networks from S. cerevisiae 
dataset which is the same dataset in this research. Therefore, the sub-networks con-
structed by Dejori [6] are the benchmarks for this research. 

We compared both of the methods by calculating True Positive (TP), True Nega-
tive (TN), False Positive (FP) and False Negative (FN). True Positive is the number 
of edges that exist in both network constructed by Dejori [6] and in the research. True 
Negative (TN) is the number of edges that do not exist in both networks (Dejori and 
this research). False Positive (FP) is the number of edges that exist in this research, 
but do not exist in the network by Dejori [8], while False Negative (FN) is the number 
of edges that exist in Dejori [8], but do not exist in this research. 

2.3 Evaluating Network Structures 

This research applies different scoring metric approaches in order to get the best net-
work structures. The scoring metric approaches used to test in this research are the 
BDe score and the MDL score. 

The BDe scoring criterion originates from Bayesian statistics and corresponds to 
posterior probability of a network given data. BDe uses Bayesian analysis to evaluate 
a network given a dataset. The Dirichlet distribution is a multinomial distribution that 
describes the conditional probability of each variable in the network, and has many 
properties that are useful for learning.  

The MDL scoring criterion originates from information theory and corresponds to 
the length of the data compressed with the compression model derived from the net-
work structure.  Besides that, MDL provides the criterion for the selection, prediction 
and estimation of models. The purpose of MDL is to discover regularities in observed 
data. Generally, both BDe and MDL scores were originally designed for evaluating 
discrete variables. 

3 Result and Discussion 

The sub-networks that are chosen to be compared are YPL256C sub-network  
and YOR263C sub-network. TP, TN, FP, and FN are calculated to evaluate the 
performance of the sub-networks constructed from this research. 
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3.1 YPL256C Sub-network 

Fig. 1 shows the YPL256C sub-network that is constructed by Dejori [8]. It can be 
seen that, the network consists of 12 nodes (genes) and 9 directed edges. However, 
the node for YGR108W does not form any edges with other nodes in the network. 
 

 

Fig. 1. YPL256C sub-network constructed by Dejori [8] 

As shown in Fig. 1, there is two directed edge from gene YPL256C to gene 
YIL066C and YIL140W. It shows that there is a causal dependency between these 
three genes. The functions of gene YPL256C are encoding for G1-cyclin which 
involves in regulation of the cell and activates Cdc28p kinase to promote the G1 to S 
phase transition. A YIL066C gene is a minor isoform of the large subunit of 
ribonucleotide-diphosphate reductase which is involved in DNA replication. Whereas, 
the YIL140W gene is an integral plasma membrane protein that is required for axial 
budding in haploid cells and has potential to Cdc28p substrate. Therefore, a causal 
dependence of YIL066C and YIL140W from YPL256C is biologically logical since 
their functions are correlated. 

As we look further, gene YGL021W contains characteristic motifs for degradation 
via the APC pathway and phosphorylated in response to DNA damage which is quite 
similar to A1k2p and to mammalian haspins. Gene YGL021W regulates YMR001C 
with multiple functions in mitosis and cytokinesis through substrate phosphorylation, 
also functioning in adaptation to DNA damage during meiosis. An unexpected result 
is the gene YGR108W does not connect any edge with other nodes. However, it does 
form edges with other nodes in the research done by Spellman et al. [6]. 

Fig. 2 shows the YPL256C sub-network that is constructed in this research using 
BDe and MDL scoring metric approaches. It is very clear that both networks consist 
of 12 nodes and 24 edges. It shows a different number of edges obtained in this 
research as compared to Dejori [8]. Through this research, we can see that several 
edges in the network are from cyclic regulation and have at least one directed edge 
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with other nodes. The network done by Dejori [8] does not show any cyclic regulation 
and the gene YGR108W failed to construct with any edge. About 20 new edges had 
been identified in this research. It is two times more compared to the result obtained 
by Dejori [8]. Hence, it is proven that DBN implemented in this research are able to 
construct cyclic regulation and form more potential edges between genes in a sub-
network. 

 

 

Fig. 2. YPL256C sub-network constructed with (a) BDe, (b) MDL scoring metric approaches 

Table 1 shows the comparison of edges formed in YPL256C sub-network between 
Dejori [8] and this research. True Positive (TP) is the number of edges that exists in 
both network constructed by Dejori [8] and this research. False Negative (FN) is the 
number of edges that exist in Dejori sub-network, but does not exist in network of this 
research. False Positive (FP) is the number of edges that exists in network of this 
research, but does not exist in Dejori [8]. True Negative (TN) is the number of edges 
that does not exist in both networks constructed by Dejori [6] and in this research. 
The sensitivity for this sub-network is 44% whereby 4 directed edges that exist in  
the network by Dejori [8] have been captured in this research as well. However, there 
are about 5 directed edges exist in Dejori [8] but it does not exist in the network  
of this research. The missing edge is between gene YPL256C to YIL140W and 
YIL066C, gene YER001W to YPL256C, gene YMR001C to YLR131C and 
YDR146C respectively. 

Table 1. Result of YPL256C sub-network 

 

Condition Number of Edges Statistical Measures 

TP 4 Sensitivity 
44.44% FN 5 

FP 20 Specificity 
84.96% TN 113 
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The specificity for this sub-network is approximately 84.96%. Gene YLR131C  
regulates both genes of YMR001C and YGL021W. Gene YLR131C encodes for tran-
scription factor that activates transcription of genes expressed in the G1 phase of the 
cell cycle. On the other hand, gene YMR001C is involved in regulation of DNA rep-
lication which encodes a protein. Furthermore, gene YIL066C is expressed only after 
DNA damage occurred in order to cope with the function of YMR199W. Gene 
YMR199W encodes for G1-cyclin which involved in regulation of the cell cycle. 
Therefore, it is biologically logical for YIL066C regulating the expression of 
YMR199W.  

3.2 YOL263C Sub-network 

In this study, we compared the YOR263C sub-network obtained from this research 
and YOR263C sub-network by Dejori [8]. Fig. 3 shows the YOR263C sub-network 
that is constructed by Dejori [8]. It can be seen that, the network consists of 8 nodes 
(genes) and 6 undirected edges. The undirected edge between YOR263C and 
YOR264W are the most conspicuous features in the sub-network because both genes 
are located next to each other on the DNA strand of chromosomes XV. However, the 
biological and molecular for both genes are still unknown. Gene YNR067C and 
YGL028C is another feature with high confidence level that is the undirected edge. 
YNR067C is a daughter cell-specific secreted protein with similarity to glucanases 
and it degrades cell wall from the daughter side causing daughter to separate from 
mother. The function of YNR067C is still currently unknown. The function of 
YGL028C is known to be a soluble cell wall protein and play a role in conjugation 
during mating based on its regulation by Ste12p. It also has an undirected edge with 
YER124C which may regulate cross-talk between the mating and filamentation 
pathways and deletion affects cell separation after division and sensitivity to alpha 
factor and drugs affecting the cell wall. Gene YGL028C is related to YLR286C which 
is an endochitinase required for cell separation after mitosis. YER124C has 
undirected edge with two nodes (YLR286C, YGL028C), and both nodes are 
functionally related to cell wall biogenesis, therefore it can be assumed that it is 
involved in cell wall biogenesis. Gene network constructed using BN have provided a 
testable prediction of an unknown gene function. 
 

 

Fig. 3. YOL263C sub-network constructed by Dejori 
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Fig. 4. YOL263C sub-network constructed with (a) BDe, (b) MDL scoring metric approaches 

Fig. 4 shows the YOR263C sub-network that is constructed in this research using 
BDe and MDL scoring metric approaches. It is very clear that both networks consist 
of 7 nodes and 13 edges. They show a different number of edges obtained in this 
research as compared to the result obtained by Dejori [8]. Through this research, we 
can see that several edges in the network are form cyclic regulation and have at least 
one directed edge with other nodes, while the network done by Dejori [8] does not 
show any cyclic regulation. The main difference between this research and Dejori [8] 
are that they can show the interactions between genes clearer. As we can see in the 
Dejori [8] sub-network, the edge formed between YOR263C and YOR264W cannot 
show which gene is regulating another. However, this research shown clearly that 
YOR263C is regulating YOR264W and it is a cyclic regulation. It means that the 
expression level of YOR264W is depending on YOR263C and YNR067C as well. 
About three new edges have been identified in this research. 

Table 2. Result of YOR263C sub-network 

Condition Number of Edges Statistical Measures 

TP 5 Sensitivity 
83.33% FN 1 

FP 3 Specificity 
80.00% TN 12 

 
Table 2 shows the comparison of edges in YOR263C sub-network between  

the network constructed by Dejori [8] and this research. The sensitivity of YOR263C 
sub-network is approximately 83.33%. There are about 5 cyclic edges formed in this 
sub-network. The specificity for this sub-network is approximately 80%. This shows 
that the DBN implemented in this research is capable of uncovering more potential 
edges, interactions and cyclic regulation between genes compared with the study by 
Dejori [8].  
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3.3 Performance of Scoring Metrics 

Table 3 summarizes the computation time comparison between scoring metric 
approaches of YPL256C sub-networks. MDL excels in speed as it had a computation 
time of 1 minute and 10 seconds while BDe took approximately 2 minutes. This 
concurs with the finding of Vinh et al. [9] which discovered that BDe is more time-
consuming than MDL. However, both scoring metric approaches obtained the same 
network results (24 edges and 12 nodes) and accuracy (as summarized in Table 1). On 
the other hand, Table 4 shows the computation time comparison between scoring 
metric approaches of YOR263C sub-networks. Both scoring metric approaches gave 
roughly the same computation time which is 1 second. This is probably due to the fact 
that YOR263C has a smaller network structure compared to YPL256C. Both scoring 
metric approaches also computed the same network results (13 edges and 7 nodes) as 
well as accuracy (refer to Table 2). The experiment with YPL256C showed that MDL 
has an advantage in computation time without compromising the accuracy for 
network inference. 

Table 3. YPL256C: Comparison of computational time between scoring metrics 

Sub-network 
Scoring Metric 

Approaches 
Computation Time 

(HH:MM:SS) 

YPL256C 
BDe 00:02:01 

MDL 00:01:10 

Table 4. YOR263C: Comparison of computational time between scoring metrics 

Sub-network 
Scoring Metric 

Approaches 
Computation Time 

(HH:MM:SS) 

YOR263C 
BDe 00:00:01 

MDL 00:00:01 

Table 5. Network scores between scoring metrics for YPL256C and YOR263C sub-networks 

Scoring Metric YPL256C YOR263C 

BDe 470.257 342.084 

MDL 704.546 504.177 

 
Table 5 shows the network scores obtained by both scoring metrics for YPL256C 

and YOR263C sub-networks respectively. Lower score are said to have optimal 
network structure. In both sub-networks, BDe performed better than MDL. 
Nevertheless, this scoring advantage did not influence much on the inference of 
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optimal network structure as both scoring metric approaches obtained the same 
network structure for YPL256C and YOR256C. 

4 Conclusion 

DBN has been widely utilized by researchers in gene networks inference from gene 
expression data as it is robust, able to handle feedback loops and the temporal aspect 
of time-series data. To learn the optimal network structure, BDe or MDL scoring 
metric are often employed in the DBN model. This research is conducted to analyze 
the influence of both scoring metrics on gene networks inference using DBN. Based 
on the experiments done on two S. cerevisiae cell cycle sub-networks YPL256C and 
YOR263C, we found that MDL has faster computation speed in larger network 
structure but BDe has an edge in representing exactness of statistical interpretation. 
Therefore, we suggest using MDL in exceptionally large networks as exponentially 
increased computation time would negate the statistical advantage of BDe. BDe is 
more suitable for smaller networks or in such circumstance whereby accuracy is much 
sought after. For future work, we would like to apply different scoring function that 
satisfies the score equivalence property. 
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