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Abstract. With the advancement in metabolic engineering technologies, recon-
struction the genome of a host organism to achieve desired phenotypes for ex-
ample, to optimize the production of metabolites can be made. However, due to 
the complexity and size of the genome scale metabolic network, significant 
components tend to be invisible. This research utilizes Flux Balance Analysis 
(FBA) to search the essential genes and obtain minimal functional genome. Dif-
ferent from traditional approaches, we identify essential genes by using single 
gene deletions and then we identify the significant pathway for the metabolite 
production using gene expression data. The experiment is conducted using ge-
nome scale metabolic model of Saccharomyces Cerevisiae for L-phenylalanine 
production. The result has shown the reliability of this approach to find essen-
tial genes for metabolites productions, reduce genome size and identify produc-
tion pathway that can further optimize the production yield and can be applied 
in solving other genetic engineering problems. 

Keywords: Metabolic engineering, minimal genome, essential genes, flux bal-
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1 Introduction 

Systems metabolic engineering has been recognized as a new paradigm for systemati-
cally designing novel strategies for improvement of microbial strain. This system 
level of understanding can be used to help researcher prioritize experimental projects 
to ensure efficiency in cost and time consumed. In silico metabolic engineering has 
enabled us to generate hypotheses and predictions systematically to ensure laboratory 
experiment can be conducted with prior knowledge for optimal results. The applica-
tion of ‘omics’ data for metabolic analysis along with validation to experimental data 
can be used to evaluate the significance of the model [1].  

Many approaches for optimizing microbial strains have been conducted using ge-
nome scale metabolic model of an organism. However these approaches did not  
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utilize gene expression analysis to aid in their prediction. Numerous amount of re-
search incorporate the genetic factors that contribute to the function of metabolic 
networks as proposed by Karp et al. [2] and Mlecnik et al. [3], but they can only iden-
tify groups of specified genes are important although only some genes within this 
known groups are contributing to the observe response. Probabilistic network models 
such as Markov Random Field [4] and Mixture Model on Graph [5] on the other hand 
able to confirm that the features to be logically connected within the metabolic net-
work but an assumption has to be made that is the gene expression is discretely distri-
buted. This may not correctly describe the underlying structure and mechanisms of 
the system. 

In this research, we took vanillin production in S. cerevisiae as a case study to test 
our approach. S. cerevisiae is considered one of the backbones in metabolic engineer-
ing as it is widely used in many applications [6]. High worldwide consumptions of 
vanilla and laborious and time consuming process of harvesting the product has urge 
the researchers to find a better alternative of microbial host. 

The next section of this paper will discuss about the methodology of this research 
which covers the processes involved in the approach and dataset used. Then it will be 
followed by experimental results obtained and discussions and finally conclusions 
which conclude the findings of this research. 

2 Methodology 

In this paper, we reduced the size of genomes by implementing gene deletion strate-
gies which is not done by previous methods by assuming that smaller number of es-
sential genes in genomes decreased the used of biochemical resources to produce 
metabolites thus a higher production of metabolites can be yield. In this research S. 
cerevisiae genome scale model (yeast.4.05.xml) [7] which consists of 1865 reactions 
and 1319 metabolites is used to show the enhancement of vanillin production. 

Here we have chosen vanillin production to test our approach. The process of for-
mation of vanillin is known as biotransformation of aromatic acids. The basic sub-
strate that can be used to produce vanillin in S. cerevisiae is L-phenylalanine thus, we 
can say that the production of vanillin increased when the production of L-
phenylalanine increased [8]. 

In the genome of an organism, essential genes are genes compulsory to be present 
and cannot be knockout as they would results in lower growth rates or exactly zero 
growth rates. One way to determine these genes is by conducting single gene knock-
out in Yeast metabolic model and determine based on the resulting growth rates of 
each knockouts. A series of single gene deletions were performed using the model in 
order to determine the essential metabolic genes. Minimize the genome size with the 
assumption that smaller genome size will have less competing production to vanillin. 

However, results derived from single gene knockout analysis would not sufficient 
for us to determine the effect of gene deletion in whole genome. This is because the 
numbers of genes are large and to perform combinations of multiple gene knockout 
would take a considerably huge amount of time to complete. By assuming that the 
genome consist of essential and non-essential genes for a particular process, we can 
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deduce that the genome remain functional as long as the essential genes still exist and 
those that are not can be neglected or taken out of the system. 

 

Fig. 1. General framework to minimize model 

One of the strategies to address this is to reduce the size of genomes by finding the 
minimal number of components without reducing the significant functional capabili-
ties. However, this reduction strategy is affected by the order of the genes that have 
been deleted. For instance, if a particular gene is deleted, it may have caused few 
other genes that are initially considered unessential to become essential and vice-
versa.  Another problem to address is the final growth rate. The resulting minimal 
genome will depend on percentage of final growth rate required, the larger the percen-
tage, the size of minimal genome can afford to be quite large. Figure 1 shows the 
framework to obtain essential genes and minimal genomes. 

It starts with a random model gene by deleting the gene and assessing the resulting 
growth rate. If the growth rate is considered acceptable (survival rate greater than 
threshold), the gene is permanently be deleted or otherwise it is placed back into the 
model. Then, new random gene is selected. When the resulting growth rate is calcu-
lated using FBA (dashed box in Figure 1), it is not only assessing the impact of this 
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one gene deletion. It assesses the impact of all previously permanently deleted genes. 
The same process is repeated until all genes have been accounted. Next, the process is 
repeated again but with a lower threshold. The deletion cycle continue until the final 
growth rate is reached.  

Next, we utilize KEGG database as our main reference for our pathways that is 
going to be extracted using microarray gene expression data. This experiment is based 
on the framework proposed by Hancock et al. [9] where more detailed explanation 
can be seen. In the initialization phase, the pathway structure is define where each 
gene is defined as node in the network and annotated by its gene code (G), reaction 
(R) and KEGG pathway membership (P). On the other hand, the edges that connect 
the nodes are identified as first substrate compound (CF); the product compound of 
first reaction (CM); final product compound (CT) and the final KEGG pathway mem-
bership of CT, (P) as in Eq. (1). 

 

 nodes = (G, R, P); edges = (CF, CM, CT, P) (1) 

 
In Eq. (2), the probability of y, a binary response variable given that X, which is a 
binary matrix where the columns represent genes, the rows represent a pathway, and 
value of one indicates that the particular gene is included within specific path is de-
fined that consist of two parts. First is the sum of probability πm, which is the proba-
bility of each component with y given that X with βm parameter and second, product 
of p(gk, labelk|gk-1; θkm), which is the probability of path travers on edge labelk. gk 
denotes the current gene and next gene in sequence, gk+1 where labelk is the edge an-
notation. The result of this 3M (Markov Mixture Model) is M components defined by 
θm = {θsm, [θ2m,…, θtm,…, θTm]}. The θm is probabilities of each gene clustered within 
each component and indicate the importance of the genes. The parameters πm, θkm and 
βm are estimated simultaneously with an EM algorithm where more detailed explana-
tion are discussed by Hancock and Mamitsuka [10]. 

 

  (2) 

 
By using set of genes that involved in the particular pathway, p-values for each path-
way are calculated using the hypergeometric distribution by summation of binomial 
coefficient. If the whole genome has a total of (m) genes, of which (t) are involved in 
the pathway under investigation, and the set of genes submitted for analysis has a total 
of (n) genes, of which (r) are involved in the same pathway, (x) is the number of 
pathway that have been chosen. Then the p-value can be calculated to evaluate 
enrichment significance for that pathway by Eq. 3: 

 
 

  (3) 
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FBA is a widely used and basic approach of constraints-based flux analyses and have 
shown to be successful for predicting growth, uptake rates and by-product secretion 
[11] without requiring the knowledge of metabolite concentration or the enzyme  
kinetics details of the system. FBA uses Linear Programming (LP) to maximize an 
objective function under different constraints. For example, to optimize an objective 
function denotes by Z at a particular period of time, c and v is reaction involved (e.g 
growth) typically the LP is formalized as in Eq. (4) and (5):  
 

  (4) 

 S . v = 0, vmin ≤ v  ≤ vmax. (5) 

 
Mass balance constraints are imposed by a system of linear equation, where 
stoichiometric S is an m x n matrix where m is the number of metabolites, and n is the 
number of reactions. vmin and vmax are set as lower and upper bounds on flux values 
that impose thermodynamic constraints that restrict directional flow of reaction, and 
capacity constraints. Using the minimal genome that consists of essential genes earlier 
and also the pathway membership, we initialized the stoichiometry matrix based on 
both of the results obtained. Using flux balance analysis we then calculate the 
optimization for our objectives function that is L-phenylalanine production and 
growth rate. 

3 Experimental Results and Discussion 

The experiment is conducted using glucose minimal media. The results obtained 
shows that the minimal genomes has an average size of 300 genes, approximately 
30% of the original size. After running the experiment with threshold of original 
growth rates, there are about 130 genes of minimal genome are detected as essential 
genes out of the original 924 genes that produce growth rates of 1.3276 mmol gDW-1 
hr-1. Figure 2 shows the number of genes for 10 runs compared to the original number 
for L-phenylalanine production. 

Logically, since only single gene deletion is performed we could not entirely 
conclude that the genome will survive and operates with only these genes because the 
number is considerably small compared to the original number of genes. Furthermore, 
the knockout process is dependent on just a single gene and the sequence of the genes. 
For example, if single gene A or B is knocked out, the cell may still survive but what 
if both of them are knocked out. Hence, the numbers of combinations are big.  

Therefore, the size and contents of the minimal genomes might be varied 
depending on which genes are deleted first. Another factor to consider is the final 
growth rate. If the desired growth rate is 90% of it was originally, the resulting 
minimal genome may be quite large. If much smaller growth rate is desired, then the 
minimal genome can afford to become much smaller. Another factor is the growth 
medium. Highly enriched media will aid in achieving a smaller minimal genome. 
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Fig. 2. Number of genes in minimize genomes 

Existence of a large number of flux routes or pathways in genome-scale metabolic 
models requires the use of optimization or computational methods to predict the 
alternative routes consist of essential genes and deletion of genes in which help to 
improve the production. FBA is guaranteed to produce optimal results but not 
necessarily unique due to the existence of a large number of pathways involves [12]. 
With the essential genes obtained we extract significant pathways that lead to the 
production of L-phenylalanine using microarray gene expression data. Figure 3 shows 
the pathway extracted that consist of compound names as the nodes and KEGG 
reaction numbers for L-phenylalanine. 

It is clear from set of compounds that made up the pathway, the highest path 
probability would be the transition and conversion alpha-D-glucose as the source 
moving towards the whole glycolysis pathway to produce pyruvate, CO2 and Urea. 
Pyruvate plays a critical role in balancing between fermentation and respiration and 
also a potential intracellular indicator for limitation of glucose [13]. Then NH3 is 
formed which leads to production of L-tyrosine and L-phenylalanine as final 
products. 

Using set of genes that involve in the pathway we calculate the p-value for the 
whole genome to investigate furthermore which metabolism are actually contributing 
to the metabolite production. The p-value obtained can be used to measure the gene 
membership in the pathway. Table 1 shows the top 5 pathways correspond to that 
particular set of genes. 

From the table it is obvious that Phenylalanine metabolism pathway has the lowest 
p-value with the highest gene ratio indicating the significant of the pathway with the 
gene set produce by the experiment. The pathways are considered to be highly 
statistically significant if having p < 0.01. This observation is probably caused by the 
production of L-phenylalanine and vanillin itself is a part of the component of the 
metabolism system therefore more number of genes is detected within this particular 
metabolism. 
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Figure 4 shows the result of glucose uptake rate effect towards the growth rate for 
both, new model (solid line) and original (dashed line). At the initial stage, with 
glucose uptake of 0 mmol gDW-1 hr-1 the maximum possible growth rate is 0 hr-1. At 
approximately 18 to 20 mmol gDW-1 hr-1 which is the biologically realistic uptake 
rate [14] we can see the the production of L- phenylalanine is slightly higher with 
1.3276 mmol gDW-1 hr-1 compared to the original 1.1596 mmol gDW-1 hr-1. 

 

Fig. 3. Significant metabolic pathway for L-phenylalanine production based on KEGG 
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Table 1. The pathway membership for L-phenylalanine based on KEGG pathways 

PATH PATHWAY NAME GENE 
RATIO 

BACKGROUND 
RATIO 

P-VALUE 

00360 Phenylalanine meta-
bolism 

41/221 161/4377 1.11E-16 

00010 Glycolysis / Gluco-
neogenesis 

35/221 79/4377 4.44E-16 

00020 TCA Cycle 21/221 58/4377 6.22E-15 
00250 Alanine, aspartate 

and glutamate meta-
bolism 

14/221 35/4377 1.63E-14 

00062 Arginine and proline 
metabolism 

13/221 29/4377 1.89E-14 

Normally, the biochemical production would increase along with cellular growth 
rate [15] hence, this indicate that the model able to survive and produce the desired 
products at optimal rate. Then the growth start to increase rapidly when enough 
glucose is available in the system meaning that the amount of ATP produce for 
growth has meet its requirement. After a certain period, the growth starts to increase 
less rapidly at one point until the end. This is due to the fact that at that particular 
point glucose is no longer the limiting factor for growth but instead its oxygen. In this 
condition the access glucose produce cannot be fully oxidize thus changing the flux to 
the production pathways. 

 

Fig. 4. Glucose uptake rate effect towards the growth rate for L-phenylalanine production 
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4 Conclusion 

In this paper, we proposed an approach to identify the essential genes that able to 
form a minimal genome without degrading the biological function using FBA. Then, 
based on the essential genes obtained, we construct a metabolic pathway from gene 
expression data for a particular production of metabolites of interest. FBA is used to 
produce a fitness function with the assumption that the genome is in a steady state 
condition whereby optimization of the objective functions, in this case L-
phenylalanine production can be conducted. 

Based on the experiment conducted on S. cerevisiae for L-phenylalanine 
production, the results shown that the information provided by gene expression 
analysis has improve the prediction of constraint based analysis such as FBA and can 
potentially be extend. The integration of different data such as gene expression data, 
transcriptional regulatory and metabolic flux data has also shown to be successful in 
metabolic engineering for various purposes. Hence, the next big challenge would be 
integrating these models to a more biologically significant representation of these 
interrelated networks. 
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