compare_pubmed_resulpubmed_output00countries00former_countries00world_map0get_authors_affiliationsxml_text0nodelist11net.sf.taverna.t2.activitiesxpath-activity1.5net.sf.taverna.t2.activities.xpath.XPathActivity <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE PubmedArticleSet PUBLIC "-//NLM//DTD PubMedArticle, 1st January 2015//EN" "http://www.ncbi.nlm.nih.gov/corehtml/query/DTD/pubmed_150101.dtd"><PubmedArticleSet><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">25560986</PMID><DateCreated><Year>2015</Year><Month>1</Month><Day>6</Day></DateCreated><DateRevised><Year>2015</Year><Month>1</Month><Day>7</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2015</Year><Month>Jan</Month><Day>6</Day></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions.</ArticleTitle><Pagination><MedlinePgn/></Pagination><Abstract><AbstractText NlmCategory="UNASSIGNED">Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Luongo</LastName><ForeName>Carl A</ForeName><Initials>CA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bu</LastName><ForeName>Jiexun</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Burke</LastName><ForeName>Nicole L</ForeName><Initials>NL</Initials></Author><Author ValidYN="Y"><LastName>Gilbert</LastName><ForeName>Joshua D</ForeName><Initials>JD</Initials></Author><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials></Author><Author ValidYN="Y"><LastName>Cummings</LastName><ForeName>Steven</ForeName><Initials>S</Initials></Author><Author ValidYN="Y"><LastName>Reed</LastName><ForeName>Christopher A</ForeName><Initials>CA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2015</Year><Month>1</Month><Day>6</Day></ArticleDate></Article><MedlineJournalInfo><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2014</Year><Month>10</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2014</Year><Month>11</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2014</Year><Month>11</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2015</Year><Month>1</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2015</Year><Month>1</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2015</Year><Month>1</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2015</Year><Month>1</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>aheadofprint</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-014-1052-3</ArticleId><ArticleId IdType="pubmed">25560986</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">25517019</PMID><DateCreated><Year>2014</Year><Month>12</Month><Day>29</Day></DateCreated><DateRevised><Year>2014</Year><Month>12</Month><Day>29</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2014</Year><Month>Dec</Month><Day>29</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electrospray Droplet Exposure to Organic Vapors: Metal Ion Removal from Proteins and Protein Complexes.</ArticleTitle><Pagination><MedlinePgn/></Pagination><Abstract><AbstractText NlmCategory="UNASSIGNED">The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>DeMuth</LastName><ForeName>J Corinne</ForeName><Initials>JC</Initials><AffiliationInfo><Affiliation>Department of Chemistry Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>12</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>12</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>12</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>12</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>aheadofprint</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac503865v</ArticleId><ArticleId IdType="pubmed">25517019</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="In-Data-Review"><PMID Version="1">25338221</PMID><DateCreated><Year>2014</Year><Month>12</Month><Day>24</Day></DateCreated><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>26</Volume><Issue>1</Issue><PubDate><Year>2015</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Gas phase reactivity of carboxylates with N-hydroxysuccinimide esters.</ArticleTitle><Pagination><MedlinePgn>174-80</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-014-1002-0</ELocationID><Abstract><AbstractText>N-hydroxysuccinimide (NHS) esters have been used for gas-phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O(18) were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas phase, where they are shown to be reactive, and the solution phase, where they are not regarded as reactive with NHS esters.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Peng</LastName><ForeName>Zhou</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials></Author><Author ValidYN="Y"><LastName>Bu</LastName><ForeName>Jiexun</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Barefoot</LastName><ForeName>Nathan Z</ForeName><Initials>NZ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>10</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2014</Year><Month>5</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2014</Year><Month>9</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2014</Year><Month>9</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>10</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>10</Month><Day>23</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>10</Month><Day>23</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>10</Month><Day>23</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-014-1002-0</ArticleId><ArticleId IdType="pubmed">25338221</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="In-Process"><PMID Version="1">25184817</PMID><DateCreated><Year>2014</Year><Month>10</Month><Day>03</Day></DateCreated><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1535-3907</ISSN><JournalIssue CitedMedium="Internet"><Volume>13</Volume><Issue>10</Issue><PubDate><Year>2014</Year><Month>Oct</Month><Day>3</Day></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Differential ion mobility spectrometry coupled to tandem mass spectrometry enables targeted leukemia antigen detection.</ArticleTitle><Pagination><MedlinePgn>4356-62</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/pr500527c</ELocationID><Abstract><AbstractText>Differential ion mobility spectrometry (DIMS) can be used as a filter to remove undesired background ions from reaching the mass spectrometer. The ability to use DIMS as a filter for known analytes makes DIMS coupled to tandem mass spectrometry (DIMS-MS/MS) a promising technique for the detection of cancer antigens that can be predicted by computational algorithms. In experiments using DIMS-MS/MS that were performed without the use of high-performance liquid chromatography (HPLC), a predicted model antigen, GLR (FLSSANEHL), was detected at a concentration of 10 pM (20 amol) in a mixture containing 94 competing model peptide antigens, each at a concentration of 1 μM. Without DIMS filtering, the GLR peptide was undetectable in the mixture even at 100 nM. Again, without using HPLC, DIMS-MS/MS was used to detect 2 of 3 previously characterized antigens produced by the leukemia cell line U937.A2. Because of its sensitivity, a targeted DIMS-MS/MS methodology can likely be used to probe for predicted cancer antigens from cancer cell lines as well as human tumor samples.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Dharmasiri</LastName><ForeName>Udara</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , 450 West Drive, 21-244, Chapel Hill, North Carolina 27599, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Isenberg</LastName><ForeName>Samantha L</ForeName><Initials>SL</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Armistead</LastName><ForeName>Paul M</ForeName><Initials>PM</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>K08 HL113594</GrantID><Acronym>HL</Acronym><Agency>NHLBI NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>09</Month><Day>11</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><OtherID Source="NLM">PMC4184456 [Available on 09/03/15]</OtherID><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">DIMS</Keyword><Keyword MajorTopicYN="N">Differential ion mobility spectrometry</Keyword><Keyword MajorTopicYN="N">FAIMS</Keyword><Keyword MajorTopicYN="N">cancer antigen</Keyword><Keyword MajorTopicYN="N">mass spectrometry</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>9</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>9</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>9</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>9</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2015</Year><Month>9</Month><Day>3</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">25184817</ArticleId><ArticleId IdType="doi">10.1021/pr500527c</ArticleId><ArticleId IdType="pmc">PMC4184456</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="In-Process"><PMID Version="1">25111536</PMID><DateCreated><Year>2014</Year><Month>09</Month><Day>02</Day></DateCreated><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>86</Volume><Issue>17</Issue><PubDate><Year>2014</Year><Month>Sep</Month><Day>2</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Tandem mass spectrometry in an electrostatic linear ion trap modified for surface-induced dissociation.</ArticleTitle><Pagination><MedlinePgn>8822-8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac502143p</ELocationID><Abstract><AbstractText>A variety of ion traps are used in mass spectrometry. A key feature shared by most of them is the ability to perform tandem mass spectrometry (MS/MS). The Orbitrap is perhaps the most notable ion trap in which MS/MS has yet to be performed. An electrostatic linear ion trap (ELIT) is analogous to an orbitrap in that ions are trapped using solely electrostatic fields. However, the relatively simple ion motion within an ELIT facilitates analysis of fragment ions produced within the device. In this report, we describe an ELIT to which we have added a target for surface induced dissociation (SID). When combined with our previously described method for isolating a precursor ion trapped in an ELIT,1 this apparatus enables MS/MS to be performed. Measurement of product ion m/z is facilitated by the fact that the ELIT is isochronous over the energy range of 1850-2000 eV so that changes to ion energy during SID do not cause major m/z shifts. We demonstrate MS/MS by isolating and dissociating each compound in a four component mixture of tetraalkylphosphonium cations. We also discuss the optimization of collision energy and the length of time that the SID target is available for collision, two parameters that are important in the performance of these experiments.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hilger</LastName><ForeName>Ryan T</ForeName><Initials>RT</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University , West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Santini</LastName><ForeName>Robert E</ForeName><Initials>RE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>08</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>8</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>8</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>8</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>8</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac502143p</ArticleId><ArticleId IdType="pubmed">25111536</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="In-Process"><PMID Version="1">24990303</PMID><DateCreated><Year>2014</Year><Month>08</Month><Day>07</Day></DateCreated><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>25</Volume><Issue>9</Issue><PubDate><Year>2014</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Optimization of peptide separations by differential ion mobility spectrometry.</ArticleTitle><Pagination><MedlinePgn>1592-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-014-0941-9</ELocationID><Abstract><AbstractText>Differential ion mobility spectrometry (DIMS) has the ability to separate gas phase ions based on their difference in ion mobility in low and high electric fields. DIMS can be used to separate mixtures of isobaric and isomeric species indistinguishable by mass spectrometry (MS). DIMS can also be used as a filter to improve the signal-to-background of analytes in complex samples. The resolving power of DIMS separations can be improved several ways, including increasing the dispersion field and increasing the amount of helium in the nitrogen carrier gas. It has been previously demonstrated that the addition of helium to the DIMS carrier gas provides improves separations when the dispersion field is the kept constant as helium content is varied. However, helium has a lower breakdown voltage than nitrogen. Therefore, as the percent helium content in the nitrogen carrier gas is increased, the highest dispersion field accessible decreases. This work presents the trade-offs between increasing dispersion fields and using helium in the carrier gas by comparing the separation of a mixture of isobaric peptides. The maximum resolution for a separation of a mixture of three peptides with the same nominal molar mass was achieved by using a high dispersion field (~72 kV/cm) with pure nitrogen as the carrier gas within the DIMS assembly. The conditions used to achieve the maximum resolution also exhibit the lowest ion transmission through the assembly, suggesting that it is necessary to consider the trade-off between sensitivity and resolution when optimizing DIMS conditions for a given application.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Isenberg</LastName><ForeName>Samantha L</ForeName><Initials>SL</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Caudill and Kenan Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Armistead</LastName><ForeName>Paul M</ForeName><Initials>PM</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>07</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2013</Year><Month>9</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2014</Year><Month>5</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2014</Year><Month>5</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>7</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>7</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>7</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>7</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-014-0941-9</ArticleId><ArticleId IdType="pubmed">24990303</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="In-Process"><PMID Version="1">24913396</PMID><DateCreated><Year>2014</Year><Month>06</Month><Day>10</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1096-9888</ISSN><JournalIssue CitedMedium="Internet"><Volume>49</Volume><Issue>6</Issue><PubDate><Year>2014</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Hydrogen/deuterium exchange in parallel with acid/base induced protein conformational change in electrospray droplets.</ArticleTitle><Pagination><MedlinePgn>437-44</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/jms.3369</ELocationID><Abstract><AbstractText>The exposure of electrospray droplets to vapors of deuterating reagents during droplet desolvation in the interface of a mass spectrometer results in hydrogen/deuterium exchange (HDX) on the sub-millisecond time scale. Deuterated water is used to label ubiquitin and cytochrome c with minimal effect on the observed charge state distribution (CSD), suggesting that the protein conformation is not being altered. However, the introduction of deuterated versions of various acids (e.g., CD3COOD and DCl) and bases (ND3) induces unfolding or refolding of the protein while also labeling these newly formed conformations. The extent of HDX within a protein CSD associated with a particular conformation is essentially constant, whereas the extent of HDX can differ significantly for CSDs associated with different conformations from the same protein. In some cases, multiple HDX distributions can be observed within a given charge state (as is demonstrated with cytochrome c) suggesting that the extent of HDX and CSDs share a degree of complementarity in their sensitivities for protein conformation. The CSD is established late in the evolution of ions in electrospray whereas the HDX process presumably takes place in the bulk of the droplet throughout the electrospray process. Back exchange is also performed in which proteins are prepared in deuterated solvents prior to ionization and exposed to undeuterated vapors to exchange deuteriums for hydrogens. The degree of deuterium uptake is easily controlled by varying the identity and partial pressure of the reagent introduced into the interface. Since the exchange occurs on the sub-millisecond time scale, the use of deuterated acids or bases allows for transient species to be generated and labeled for subsequent mass analysis.</AbstractText><CopyrightInformation>Copyright © 2014 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fisher</LastName><ForeName>Christine M</ForeName><Initials>CM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">charge state distribution</Keyword><Keyword MajorTopicYN="N">electrospray</Keyword><Keyword MajorTopicYN="N">hydrogen/deuterium exchange</Keyword><Keyword MajorTopicYN="N">protein folding</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2014</Year><Month>2</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2014</Year><Month>3</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2014</Year><Month>3</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>6</Month><Day>11</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>6</Month><Day>11</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>6</Month><Day>11</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.3369</ArticleId><ArticleId IdType="pubmed">24913396</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="In-Process"><PMID Version="1">24702054</PMID><DateCreated><Year>2014</Year><Month>05</Month><Day>06</Day></DateCreated><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>86</Volume><Issue>9</Issue><PubDate><Year>2014</Year><Month>May</Month><Day>6</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Affecting protein charge state distributions in nano-electrospray ionization via in-spray solution mixing using theta capillaries.</ArticleTitle><Pagination><MedlinePgn>4581-8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac500721r</ELocationID><Abstract><AbstractText>Borosilicate theta glass capillaries pulled to serve as nanoelectrospray ionization emitters are used for short time-scale mixing of protein and acid solutions during the electrospray process to alter protein charge state distributions (CSDs) without modifying the sample solution. The extent of protein CSD shifting/denaturing can be tailored by acid identity and concentration. The observed CSD(s) are protein dependent, and the short mixing time-scale enables the study of short-lived unfolding intermediates and higher charge states of noncovalent protein complexes, including those of holomyoglobin. Additionally, the theta tips provide a simple and inexpensive method for mixing nonvolatile reagents such as supercharging agents, which cannot be used with previously developed vapor leak-in techniques, with protein solutions during the electrospray process.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Fisher</LastName><ForeName>Christine M</ForeName><Initials>CM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>04</Month><Day>17</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>4</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac500721r</ArticleId><ArticleId IdType="pubmed">24702054</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">24671696</PMID><DateCreated><Year>2014</Year><Month>05</Month><Day>13</Day></DateCreated><DateCompleted><Year>2014</Year><Month>11</Month><Day>24</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>25</Volume><Issue>6</Issue><PubDate><Year>2014</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.</ArticleTitle><Pagination><MedlinePgn>1049-57</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-014-0861-8</ELocationID><Abstract><AbstractText>The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pilo</LastName><ForeName>Alice L</ForeName><Initials>AL</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>03</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>10450-60-9</RegistryNumber><NameOfSubstance UI="D010504">Periodic Acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>7790-28-5</RegistryNumber><NameOfSubstance UI="C009288">metaperiodate</NameOfSubstance></Chemical><Chemical><RegistryNumber>AE28F7PNPL</RegistryNumber><NameOfSubstance UI="D008715">Methionine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008715">Methionine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010504">Periodic Acid</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS579996 [Available on 06/01/15]</OtherID><OtherID Source="NLM">PMC4020970 [Available on 06/01/15]</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2014</Year><Month>1</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2014</Year><Month>2</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2014</Year><Month>2</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>3</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>3</Month><Day>28</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>3</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pmc-release"><Year>2015</Year><Month>6</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-014-0861-8</ArticleId><ArticleId IdType="pubmed">24671696</ArticleId><ArticleId IdType="pmc">PMC4020970</ArticleId><ArticleId IdType="mid">NIHMS579996</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">24474750</PMID><DateCreated><Year>2014</Year><Month>01</Month><Day>29</Day></DateCreated><DateCompleted><Year>2014</Year><Month>05</Month><Day>06</Day></DateCompleted><DateRevised><Year>2014</Year><Month>11</Month><Day>11</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1091-6490</ISSN><JournalIssue CitedMedium="Internet"><Volume>111</Volume><Issue>4</Issue><PubDate><Year>2014</Year><Month>Jan</Month><Day>28</Day></PubDate></JournalIssue><Title>Proceedings of the National Academy of Sciences of the United States of America</Title><ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation></Journal><ArticleTitle>Efficient and directed peptide bond formation in the gas phase via ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>1288-92</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1317914111</ELocationID><Abstract><AbstractText>Amide linkages are among the most important chemical bonds in living systems, constituting the connections between amino acids in peptides and proteins. We demonstrate the controlled formation of amide bonds between amino acids or peptides in the gas phase using ion/ion reactions in a mass spectrometer. Individual amino acids or peptides can be prepared as reagents by (i) incorporating gas phase-labile protecting groups to silence otherwise reactive functional groups, such as the N terminus; (ii) converting the carboxyl groups to the active ester of N-hydroxysuccinimide; and (iii) incorporating a charge site. Protonation renders basic sites (nucleophiles) unreactive toward the N-hydroxysuccinimide ester reagents, resulting in sites with the greatest gas phase basicities being, in large part, unreactive. The N-terminal amines of most naturally occurring amino acids have lower gas phase basicities than the side chains of the basic amino acids (i.e., those of histidine, lysine, or arginine). Therefore, reagents may be directed to the N terminus of an existing "anchor" peptide to form an amide bond by protonating the anchor peptide's basic residues, while leaving the N-terminal amine unprotonated and therefore reactive. Reaction efficiencies of greater than 30% have been observed. We propose this method as a step toward the controlled synthesis of peptides in the gas phase.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2014</Year><Month>01</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Proc Natl Acad Sci U S A</MedlineTA><NlmUniqueID>7505876</NlmUniqueID><ISSNLinking>0027-8424</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2000;14(3):135-40</RefSource><PMID Version="1">10637418</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2013 Aug 21;15(31):13005-12</RefSource><PMID Version="1">23817675</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2003 Sep 5;301(5638):1351-4</RefSource><PMID Version="1">12920304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1994 Nov 4;266(5186):776-9</RefSource><PMID Version="1">7973629</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Dec;31(12):1345-50</RefSource><PMID Version="1">8990518</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1999 Jan;10(1):1-8</RefSource><PMID Version="1">9888180</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10068-73</RefSource><PMID Version="1">10468563</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Protoc. 2007;2(12):3247-56</RefSource><PMID Version="1">18079725</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Feb 28;10(8):1079-90</RefSource><PMID Version="1">18270607</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 May;22(5):912-21</RefSource><PMID Version="1">21472526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2011 Oct 12;133(40):15834-7</RefSource><PMID Version="1">21910477</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 2011 Dec 22;480(7378):471-9</RefSource><PMID Version="1">22193101</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Feb;23(2):282-9</RefSource><PMID Version="1">22081458</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Commun (Camb). 2013 Feb 1;49(10):947-65</RefSource><PMID Version="1">23257901</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2013 Jan 11;339(6116):189-93</RefSource><PMID Version="1">23307739</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2013 Jul;24(7):1045-52</RefSource><PMID Version="1">23702708</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2000;14(18):1707-16</RefSource><PMID Version="1">10962495</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">PMC3910651</OtherID><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">ion chemistry</Keyword><Keyword MajorTopicYN="N">peptide ligation</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2014</Year><Month>1</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>1</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>1</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>5</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">1317914111</ArticleId><ArticleId IdType="doi">10.1073/pnas.1317914111</ArticleId><ArticleId IdType="pubmed">24474750</ArticleId><ArticleId IdType="pmc">PMC3910651</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">24465154</PMID><DateCreated><Year>2014</Year><Month>1</Month><Day>27</Day></DateCreated><DateRevised><Year>2014</Year><Month>12</Month><Day>2</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>354-356</Volume><PubDate><Year>2013</Year><Month>Nov</Month><Day>15</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Gas Phase Dissociation Behavior of Acyl-Arginine Peptides.</ArticleTitle><Pagination><MedlinePgn>181-187</MedlinePgn></Pagination><Abstract><AbstractText>The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N-hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H2O and NH3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084.</Affiliation></AffiliationInfo></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">CID</Keyword><Keyword MajorTopicYN="N">Ion/ion</Keyword><Keyword MajorTopicYN="N">acyl-arginine</Keyword><Keyword MajorTopicYN="N">dissociation behavior</Keyword><Keyword MajorTopicYN="N">gas phase covalent modification</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2014</Year><Month>1</Month><Day>28</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2014</Year><Month>1</Month><Day>28</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>1</Month><Day>28</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2013.05.022</ArticleId><ArticleId IdType="pubmed">24465154</ArticleId><ArticleId IdType="pmc">PMC3899352</ArticleId><ArticleId IdType="mid">NIHMS487880</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">24273437</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>25</Day></DateCreated><DateRevised><Year>2014</Year><Month>12</Month><Day>2</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>354-355</Volume><PubDate><Year>2013</Year><Month>Nov</Month><Day>15</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Strategies for the Gas Phase Modification of Cationized Arginine via Ion/ion Reactions.</ArticleTitle><Pagination><MedlinePgn/></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijms.2013.05.026</ELocationID><Abstract><AbstractText>The gas phase acetylation of cationized arginine residues is demonstrated here using ion/ion reactions with sulfosuccinimidyl acetate (sulfo-NHS acetate) anions. Previous reports have demonstrated the gas phase modification of uncharged primary amine (the N-terminus and ε-amino side chain of lysine) and uncharged guanidine (the arginine side chain) functionalities via sulfo-NHS ester chemistry. Herein, charge-saturated arginine-containing peptides that contain sodium ions as the charge carriers, such as [ac-ARAAARA+2Na](2+), are shown to exhibit strong reactivity towards sulfo-NHS acetate whereas the protonated peptide analogues exhibit no such reactivity. This difference in reactivity is attributed to the lower sodium ion (as compared to proton) affinity of the arginine, which results in increased nucleophilicity of the cationized arginine guanidinium functionality. This increased nucleophilicity improves the arginine residue's reactivity towards sulfo-NHS esters and enhances the gas phase covalent modification pathway. No such dramatic increase in reactivity towards sulfo-NHS acetate has been observed upon sodium cationization of lysine amino acid residues, indicating that this behavior appears to be unique to arginine. The sodium cationization process is demonstrated in the condensed phase by simply spiking sodium chloride into the peptide sample solution and in the gas phase by a peptide-sodium cation exchange process with a sulfo-NHS acetate sodium-bound dimer cluster reagent. This methodology demonstrates several ways by which arginine can be covalently modified in the gas phase even when it is charged. Collisional activation of an acetylated arginine product can result in deguanidination of the residue, generating an ornithine. This gas phase ornithination exhibits similar site-specific fragmentation behavior to that observed with peptides ornithinated in solution and may represent a useful approach for inducing selective peptide cleavages.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry Purdue University West Lafayette, IN 47907-2084.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials></Author><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>11</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>11</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2013.05.026</ArticleId><ArticleId IdType="pubmed">24273437</ArticleId><ArticleId IdType="pmc">PMC3835304</ArticleId><ArticleId IdType="mid">NIHMS487912</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">24078247</PMID><DateCreated><Year>2013</Year><Month>09</Month><Day>30</Day></DateCreated><DateCompleted><Year>2014</Year><Month>04</Month><Day>21</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1096-9888</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>9</Issue><PubDate><Year>2013</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Trapping mode dipolar DC collisional activation in the RF-only ion guide of a linear ion trap/time-of-flight instrument for gaseous bio-ion declustering.</ArticleTitle><Pagination><MedlinePgn>1059-65</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/jms.3255</ELocationID><Abstract><AbstractText>The application of dipolar direct current (DDC) to the radio frequency-only ion guide (Q0) of a hybrid quadrupole/time-of-flight mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collisional activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge (m/z) range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of noncovalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer CA. The key experimental variables in the DDC experiment are the DDC voltage (VDDC), VRF , and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper m/z limit for ion storage. The VDDC/VRF ratio affects ion temperatures and the upper m/z limit in opposing directions. That is, as the ratio increases, the ion temperature also increases, whereas the upper m/z storage limit decreases. However, for a given VDDC /VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to a higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions.</AbstractText><CopyrightInformation>Copyright © 2013 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Webb</LastName><ForeName>Ian K</ForeName><Initials>IK</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Yang</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>45372</GrantID><Agency>PHS HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012710">Serum Albumin, Bovine</NameOfSubstance></Chemical><Chemical><RegistryNumber>63231-63-0</RegistryNumber><NameOfSubstance UI="D012313">RNA</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.1.40</RegistryNumber><NameOfSubstance UI="D011770">Pyruvate Kinase</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1997 Jan-Feb;16(1):1-23</RefSource><PMID Version="1">9414489</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Jan 15;70(2):405-8</RefSource><PMID Version="1">9450366</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1999 Apr;10(4):300-8</RefSource><PMID Version="1">10197351</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Nov;15(11):1616-28</RefSource><PMID Version="1">15519229</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):835-49</RefSource><PMID Version="1">15907699</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Sep 6;128(35):11433-42</RefSource><PMID Version="1">16939266</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2007 Aug;107(8):3544-67</RefSource><PMID Version="1">17649985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Methods. 2008 Nov;5(11):927-33</RefSource><PMID Version="1">18974734</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2010 Mar-Apr;29(2):294-312</RefSource><PMID Version="1">19391099</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Sep;22(9):1486-92</RefSource><PMID Version="1">21953251</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J R Soc Interface. 2012 May 7;9(70):801-16</RefSource><PMID Version="1">22319100</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Methods. 2012 Nov;9(11):1084-6</RefSource><PMID Version="1">23064518</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Nov;11(11):1023-6</RefSource><PMID Version="1">11073266</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(8):596-601</RefSource><PMID Version="1">11312509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Mar 5;125(9):2817-26</RefSource><PMID Version="1">12603172</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2004 Sep-Oct;23(5):368-89</RefSource><PMID Version="1">15264235</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1985 Mar;57(3):675-9</RefSource><PMID Version="1">2581476</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1989 Jun;179(2):404-12</RefSource><PMID Version="1">2774189</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Sep 15;63(18):1971-8</RefSource><PMID Version="1">1661106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1990 Mar;4(3):81-7</RefSource><PMID Version="1">2134340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1988 Nov;2(11):249-56</RefSource><PMID Version="1">2577836</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1995;9(1):97-102</RefSource><PMID Version="1">7888709</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Jan 1;68(1):1-8</RefSource><PMID Version="1">8779426</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011770">Pyruvate Kinase</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012313">RNA</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012710">Serum Albumin, Bovine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS517562</OtherID><OtherID Source="NLM">PMC3799974</OtherID><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">RF heating</Keyword><Keyword MajorTopicYN="N">broadband</Keyword><Keyword MajorTopicYN="N">collisional activation</Keyword><Keyword MajorTopicYN="N">dipolar collisional activation</Keyword><Keyword MajorTopicYN="N">protein ion declustering</Keyword><Keyword MajorTopicYN="N">quadrupole array</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2013</Year><Month>6</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2013</Year><Month>7</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2013</Year><Month>7</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>10</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>10</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>4</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.3255</ArticleId><ArticleId IdType="pubmed">24078247</ArticleId><ArticleId IdType="pmc">PMC3799974</ArticleId><ArticleId IdType="mid">NIHMS517562</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">23901788</PMID><DateCreated><Year>2013</Year><Month>09</Month><Day>03</Day></DateCreated><DateCompleted><Year>2014</Year><Month>04</Month><Day>22</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>85</Volume><Issue>17</Issue><PubDate><Year>2013</Year><Month>Sep</Month><Day>3</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>8075-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac401935e</ELocationID><Abstract><AbstractText>In Fourier transform mass spectrometry, it is well-known that plotting the spectrum in absorption mode rather than magnitude mode has several advantages. However, magnitude spectra remain commonplace due to difficulties associated with determining the phase of each frequency at the onset of data acquisition, which is required for generating absorption spectra. The phasing problem for electrostatic traps is much simpler than for Fourier transform ion cyclotron resonance (FTICR) instruments, which greatly simplifies the generation of absorption spectra. Here, we present a simple method for generating absorption spectra from a Fourier transform electrostatic linear ion trap mass spectrometer. The method involves time shifting the data prior to Fourier transformation in order to synchronize the onset of data acquisition with the moment of ion acceleration into the electrostatic trap. Under these conditions, the initial phase of each frequency at the onset of data acquisition is zero. We demonstrate that absorption mode provides a 1.7-fold increase in resolution (full width at half maximum, fwhm) as well as reduced peak tailing. We also discuss methodology that may be applied to unsynchronized data in order to determine the time shift required to generate an absorption spectrum.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hilger</LastName><ForeName>Ryan T</ForeName><Initials>RT</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wyss</LastName><ForeName>Phillip J</ForeName><Initials>PJ</Initials></Author><Author ValidYN="Y"><LastName>Santini</LastName><ForeName>Robert E</ForeName><Initials>RE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>08</Month><Day>15</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>8</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>8</Month><Day>2</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>8</Month><Day>2</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>8</Month><Day>2</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac401935e</ArticleId><ArticleId IdType="pubmed">23901788</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23832942</PMID><DateCreated><Year>2013</Year><Month>07</Month><Day>08</Day></DateCreated><DateCompleted><Year>2014</Year><Month>01</Month><Day>21</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1096-9888</ISSN><JournalIssue CitedMedium="Internet"><Volume>48</Volume><Issue>7</Issue><PubDate><Year>2013</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>The ornithine effect in peptide cation dissociation.</ArticleTitle><Pagination><MedlinePgn>856-61</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/jms.3233</ELocationID><Abstract><AbstractText>Facile cleavage C-terminal to ornithine residues in gas phase peptides has been observed and termed the ornithine effect. Peptides containing internal or C-terminal ornithine residues, which are formed from deguanidination of arginine in solution, were fragmented to produce either a y-ion or water loss, respectively, and the complementary b-ion. The fragmentation patterns of several peptides containing arginine were compared to those of the ornithine analogues. Conversion of arginine to ornithine results in a decrease of the gas phase proton affinity of the residue, thereby increasing the mobility of the ionizing proton. This alteration allows the nucleophilic amine to facilitate a neighboring group reaction to induce a cleavage of the adjacent amide bond. The selective cleavage at the ornithine residue is proposed to result from the highly favorable generation of a six-membered lactam ring. The ornithine effect was compared with the well-known proline and aspartic acid effects in peptide fragmentation using angiotensin II, DRVYIHPF and the ornithine analogue, DOVYIHPF. Under conditions favorable to either the aspartic acid (i.e. singly protonated peptide) or proline effect (i.e. doubly protonated peptide), the ornithine effect was consistently observed to be the more favorable fragmentation pathway. The highly selective nature of the ornithine effect opens up the possibility for conversion of arginine to ornithine residues to induce selective cleavages in polypeptide ions. Such an approach may complement strategies that seek to generate non-selective cleavages of the related peptides.</AbstractText><CopyrightInformation>Copyright © 2013 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007769">Lactams</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical><Chemical><RegistryNumber>11128-99-7</RegistryNumber><NameOfSubstance UI="D000804">Angiotensin II</NameOfSubstance></Chemical><Chemical><RegistryNumber>E524N2IXA3</RegistryNumber><NameOfSubstance UI="D009952">Ornithine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000804">Angiotensin II</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007769">Lactams</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009952">Ornithine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">deguanidination</Keyword><Keyword MajorTopicYN="N">lactam formation</Keyword><Keyword MajorTopicYN="N">ornithine</Keyword><Keyword MajorTopicYN="N">selective cleavage</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2013</Year><Month>3</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2013</Year><Month>5</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2013</Year><Month>5</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>7</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>7</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>1</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.3233</ArticleId><ArticleId IdType="pubmed">23832942</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23702708</PMID><DateCreated><Year>2013</Year><Month>06</Month><Day>10</Day></DateCreated><DateCompleted><Year>2013</Year><Month>12</Month><Day>10</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>7</Issue><PubDate><Year>2013</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Reagent cluster anions for multiple gas-phase covalent modifications of peptide and protein cations.</ArticleTitle><Pagination><MedlinePgn>1045-52</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-013-0637-6</ELocationID><Abstract><AbstractText>Multiple gas phase ion/ion covalent modifications of peptide and protein ions are demonstrated using cluster-type reagent anions of N-hydroxysulfosuccinimide acetate (sulfo-NHS acetate) and 2-formyl-benzenesulfonic acid (FBMSA). These reagents are used to selectively modify unprotonated primary amine functionalities of peptides and proteins. Multiple reactive reagent molecules can be present in a single cluster ion, which allows for multiple covalent modifications to be achieved in a single ion/ion encounter and at the 'cost' of only a single analyte charge. Multiple derivatizations are demonstrated when the number of available reactive sites on the analyte cation exceeds the number of reagent molecules in the anionic cluster (e.g., data shown here for reactions between the polypeptide [K10 + 3H](3+) and the reagent cluster [5R(5Na) - Na](-)). This type of gas-phase ion chemistry is also applicable to whole protein ions. Here, ubiquitin was successfully modified using an FBMSA cluster anion which, upon collisional activation, produced fragment ions with various numbers of modifications. Data for the pentamer cluster are included as illustrative of the results obtained for the clusters comprised of two to six reagent molecules.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>05</Month><Day>24</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000085">Acetates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012545">Schiff Bases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013388">Succinimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>152305-87-8</RegistryNumber><NameOfSubstance UI="C088219">sulfosuccinimidyl acetate</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2003;9(1):1-21</RefSource><PMID Version="1">12748398</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2003 May 15;107(19):3648-54</RefSource><PMID Version="1">12830828</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Mar;39(3):322-8</RefSource><PMID Version="1">15039940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Sep 15;63(18):1971-8</RefSource><PMID Version="1">1661106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1990 Mar;4(3):81-7</RefSource><PMID Version="1">2134340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Biochem. 1992;61:977-1010</RefSource><PMID Version="1">1497328</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1998;12(19):1303-12</RefSource><PMID Version="1">9773521</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 1;78(13):4702-8</RefSource><PMID Version="1">16808485</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2008 Jun 20;283(25):17314-23</RefSource><PMID Version="1">18430727</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Feb;20(2):180-7</RefSource><PMID Version="1">18842425</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>EMBO J. 2010 Feb 17;29(4):717-26</RefSource><PMID Version="1">20094031</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2010 Mar-Apr;29(2):247-93</RefSource><PMID Version="1">19449334</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2636-42</RefSource><PMID Version="1">20210330</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Nov 15;82(22):9441-6</RefSource><PMID Version="1">20961088</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 May;22(5):912-21</RefSource><PMID Version="1">21472526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2011 May 1;83(9):3252-5</RefSource><PMID Version="1">21456599</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Feb;23(2):282-9</RefSource><PMID Version="1">22081458</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2012 Jul 18;134(28):11412-4</RefSource><PMID Version="1">22769013</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9417-21</RefSource><PMID Version="1">22903733</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2012 Dec 18;84(24):10679-85</RefSource><PMID Version="1">23078018</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Commun (Camb). 2013 Feb 1;49(10):947-65</RefSource><PMID Version="1">23257901</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2013 Jan;24(1):30-7</RefSource><PMID Version="1">23208744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2013 May;24(5):733-43</RefSource><PMID Version="1">23463545</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000085">Acetates</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012545">Schiff Bases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013388">Succinimides</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS484736</OtherID><OtherID Source="NLM">PMC3715118</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2013</Year><Month>2</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2013</Year><Month>4</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2013</Year><Month>3</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>5</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>5</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>5</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>12</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-013-0637-6</ArticleId><ArticleId IdType="pubmed">23702708</ArticleId><ArticleId IdType="pmc">PMC3715118</ArticleId><ArticleId IdType="mid">NIHMS484736</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">23593952</PMID><DateCreated><Year>2013</Year><Month>05</Month><Day>21</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>22</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>85</Volume><Issue>10</Issue><PubDate><Year>2013</Year><Month>May</Month><Day>21</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Nondestructive tandem mass spectrometry using a linear quadrupole ion trap coupled to a linear electrostatic ion trap.</ArticleTitle><Pagination><MedlinePgn>5226-32</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac4007182</ELocationID><Abstract><AbstractText>A novel hybrid tandem mass spectrometer is presented that combines a linear quadrupole ion trap (QLIT) with a linear electrostatic ion trap (ELIT), which is composed of opposing ion mirrors. The QLIT is used both as an accumulation device for the pulsed injection of ions into the ELIT and as a collision cell for ions released from the ELIT and back into the QLIT. Ions are subjected to mass analysis in the ELIT via Fourier transformation of the time-domain signal obtained from an image current measurement using a pick-up electrode in the field-free region of the ELIT. The nondestructive nature of ion detection and the relatively straightforward axial entrance and exit of ions into and from the ELIT allow for the execution of nondestructive tandem mass spectrometry experiments whereby both the initial mass spectrum and the product ion spectrum are obtained on the same initial ion population. The timed pulsing of a deflection electrode, in conjunction with the release of ions from the ELIT, allows for the selection of precursor ions for recapture by the QLIT. The transfer of ions back and forth between the QLIT and ELIT is illustrated with Cs ions, the selection of precursor ions is demonstrated with isotopes of tetraoctylammonium cations, and complete nondestructive tandem mass spectrometry experiments are demonstrated with a mixture of angiotensin II and bradykinin cations. With the current apparatus, the efficiency for the process of recapturing ions and then reinjecting them into the ELIT is 35%-40%. The instrument is capable of isolating an ion from a neighbor with a mass as close as 1 part in 500, with negligible loss of the desired species.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hilger</LastName><ForeName>Ryan T</ForeName><Initials>RT</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Santini</LastName><ForeName>Robert E</ForeName><Initials>RE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>04</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>4</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>4</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>4</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>4</Month><Day>19</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac4007182</ArticleId><ArticleId IdType="pubmed">23593952</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23568028</PMID><DateCreated><Year>2013</Year><Month>10</Month><Day>07</Day></DateCreated><DateCompleted><Year>2014</Year><Month>05</Month><Day>05</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>11</Issue><PubDate><Year>2013</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Cation recombination energy/coulomb repulsion effects in ETD/ECD as revealed by variation of charge per residue at fixed total charge.</ArticleTitle><Pagination><MedlinePgn>1676-89</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-013-0606-0</ELocationID><Abstract><AbstractText>Electron capture dissociation (ECD) and electron transfer dissociation (ETD) experiments in electrodynamic ion traps operated in the presence of a bath gas in the 1-10 mTorr range have been conducted on a common set of doubly protonated model peptides of the form X(AG)nX (X = lysine, arginine, or histidine, n = 1, 2, or 4). The partitioning of reaction products was measured using thermal electrons, anions of azobenzene, and anions of 1,3-dinitrobenzene as reagents. Variation of n alters the charge per residue of the peptide cation, which affects recombination energy. The ECD experiments showed that H-atom loss is greatest for the n = 1 peptides and decreases as n increases. Proton transfer in ETD, on the other hand, is expected to increase as charge per residue decreases (i.e., as n increases). These opposing tendencies were apparent in the data for the K(AG)nK peptides. H-atom loss appeared to be more prevalent in ECD than in ETD and is rationalized on the basis of either internal energy differences, differences in angular momentum transfer associated with the electron capture versus electron transfer processes, or a combination of the two. The histidine peptides showed the greatest extent of charge reduction without dissociation, the arginine peptides showed the greatest extent of side-chain cleavages, and the lysine peptides generally showed the greatest extent of partitioning into the c/z•-product ion channels. The fragmentation patterns for the complementary c- and z•-ions for ETD and ECD were found to be remarkably similar, particularly for the peptides with X = lysine.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Crizer</LastName><ForeName>David M</ForeName><Initials>DM</Initials></Author><Author ValidYN="Y"><LastName>Baba</LastName><ForeName>Takashi</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>04</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>4QD397987E</RegistryNumber><NameOfSubstance UI="D006639">Histidine</NameOfSubstance></Chemical><Chemical><RegistryNumber>94ZLA3W45F</RegistryNumber><NameOfSubstance UI="D001120">Arginine</NameOfSubstance></Chemical><Chemical><RegistryNumber>K3Z4F929H6</RegistryNumber><NameOfSubstance UI="D008239">Lysine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2006 Feb 2;110(4):1261-6</RefSource><PMID Version="1">16435786</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Mar 15;78(6):1995-2000</RefSource><PMID Version="1">16536438</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Jul 7;109(26):5801-13</RefSource><PMID Version="1">16833914</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Jan 13;109(1):250-8</RefSource><PMID Version="1">16839114</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Sep 27;128(38):12520-30</RefSource><PMID Version="1">16984203</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Dec;17(12):1704-11</RefSource><PMID Version="1">16963276</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2007 Oct 10;129(40):12232-43</RefSource><PMID Version="1">17880074</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2007 Nov;6(11):1942-51</RefSource><PMID Version="1">17673454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 15;79(22):8755-61</RefSource><PMID Version="1">17902701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2008 Jul 9;130(27):8818-33</RefSource><PMID Version="1">18597436</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3208-15</RefSource><PMID Version="1">19364119</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Jul;20(7):1349-54</RefSource><PMID Version="1">19410483</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Dec;20(12):2273-83</RefSource><PMID Version="1">19811930</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2010 Jan 28;114(3):1309-23</RefSource><PMID Version="1">19731901</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Aug 11;132(31):10728-40</RefSource><PMID Version="1">20681705</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Jan;22(1):3-12</RefSource><PMID Version="1">21472539</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Apr;22(4):731-51</RefSource><PMID Version="1">21472611</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Sep;22(9):1631-44</RefSource><PMID Version="1">21953266</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2012 Feb 7;84(3):1781-5</RefSource><PMID Version="1">22182179</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Mar;23(3):446-59</RefSource><PMID Version="1">22187160</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2008 Nov 5;130(44):14584-96</RefSource><PMID Version="1">18847261</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Nov;37(11):1141-4</RefSource><PMID Version="1">12447890</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 May 14;125(19):5954-63</RefSource><PMID Version="1">12733936</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Apr 15;76(8):2231-8</RefSource><PMID Version="1">15080732</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14011-6</RefSource><PMID Version="1">15381764</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Feb;16(2):208-24</RefSource><PMID Version="1">15694771</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 1;77(17):5662-9</RefSource><PMID Version="1">16131079</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001120">Arginine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006639">Histidine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008239">Lysine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS465583</OtherID><OtherID Source="NLM">PMC3795911</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2013</Year><Month>1</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2013</Year><Month>2</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2013</Year><Month>2</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>4</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>4</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>4</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>5</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-013-0606-0</ArticleId><ArticleId IdType="pubmed">23568028</ArticleId><ArticleId IdType="pmc">PMC3795911</ArticleId><ArticleId IdType="mid">NIHMS465583</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23534847</PMID><DateCreated><Year>2013</Year><Month>06</Month><Day>28</Day></DateCreated><DateCompleted><Year>2013</Year><Month>12</Month><Day>05</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>85</Volume><Issue>9</Issue><PubDate><Year>2013</Year><Month>May</Month><Day>7</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Top-down interrogation of chemically modified oligonucleotides by negative electron transfer and collision induced dissociation.</ArticleTitle><Pagination><MedlinePgn>4713-20</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac400448t</ELocationID><Abstract><AbstractText>Two sets of synthetic 21-23mer oligonucleotides with various types of 2'-position modifications have been studied with tandem mass spectrometry using ion trap collision-induced dissociation (IT-CID) and negative electron transfer (NET)-CID. A systematic study has been conducted to define the limitations of IT-CID in sequencing such 2'-chemically modified oligonucleotides. We found that IT-CID is sufficient in characterizing oligonucleotide sequences that do not contain DNA residues, where high sequence coverage can be achieved by performing IT-CID on multiple charge states. However, oligonucleotides containing DNA residues gave limited backbone fragmentation with IT-CID, largely due to dominant fragmentation at the DNA residue sites. To overcome this limitation, we employed the negative electron transfer to strip an electron from the multiply charged oligonucleotide anion. Then, the radical anion species formed in this reaction can fragment via an alternative radical-directed dissociation mechanism. Unlike IT-CID, NET-CID mainly generates a noncomplementary d/w ion series. Furthermore, we found that NET-CID did not show preferential dissociations at the DNA residue sites and thus generated higher sequence coverage for the studied oligonucleotide. Information from NET-CID of different charge states is not fully redundant such that the examination of multiple charge states can lead to more extensive sequence confirmation. This work demonstrates that the NET-CID is a valuable tool to provide high sequence coverage for chemically modified oligonucleotides, and such detailed characterization can serve as an important assay to control the quality of therapeutic oligonucleotides that are produced under the good manufacture practice (GMP) regulations.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Yang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Jiong</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Cancilla</LastName><ForeName>Mark T</ForeName><Initials>MT</Initials></Author><Author ValidYN="Y"><LastName>Meng</LastName><ForeName>Fanyu</ForeName><Initials>F</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>04</Month><Day>10</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000138">chemical synthesis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>4</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>3</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>3</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>12</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac400448t</ArticleId><ArticleId IdType="pubmed">23534847</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23469867</PMID><DateCreated><Year>2013</Year><Month>04</Month><Day>02</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>18</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>85</Volume><Issue>7</Issue><PubDate><Year>2013</Year><Month>Apr</Month><Day>2</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase transformation of phosphatidylcholine cations to structurally informative anions via ion/ion chemistry.</ArticleTitle><Pagination><MedlinePgn>3752-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac400190k</ELocationID><Abstract><AbstractText>Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/18:1)) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC(18:1/16:0)), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Blanksby</LastName><ForeName>Stephen J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>03</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010713">Phosphatidylcholines</NameOfSubstance></Chemical><Chemical><RegistryNumber>17118-56-8</RegistryNumber><NameOfSubstance UI="C034973">1-oleoyl-2-palmitoylphosphatidylcholine</NameOfSubstance></Chemical><Chemical><RegistryNumber>TE895536Y5</RegistryNumber><NameOfSubstance UI="C028694">1-palmitoyl-2-oleoylphosphatidylcholine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2339-44</RefSource><PMID Version="1">9122196</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 May;9(5):516-26</RefSource><PMID Version="1">9879366</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Oct;18(10):1783-8</RefSource><PMID Version="1">17719238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Sep 15;877(26):2722-35</RefSource><PMID Version="1">19250888</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Nov 1;81(21):8669-76</RefSource><PMID Version="1">19757794</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Jan;22(1):3-12</RefSource><PMID Version="1">21472539</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2011 May 1;83(9):3252-5</RefSource><PMID Version="1">21456599</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2012 Jun;47(6):669-75</RefSource><PMID Version="1">22707160</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2012 Jul 18;134(28):11412-4</RefSource><PMID Version="1">22769013</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Sep;23(9):1441-9</RefSource><PMID Version="1">22669763</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2012 Dec 18;84(24):10679-85</RefSource><PMID Version="1">23078018</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2013 Jan;24(1):30-7</RefSource><PMID Version="1">23208744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Sep;11(9):797-803</RefSource><PMID Version="1">10976887</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Oct;11(10):892-9</RefSource><PMID Version="1">11014451</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Nov;11(11):986-99</RefSource><PMID Version="1">11073262</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 2003 Mar 13;422(6928):198-207</RefSource><PMID Version="1">12634793</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Lipid Res. 2003 Nov;44(11):2181-92</RefSource><PMID Version="1">12923235</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochim Biophys Acta. 1974 Nov 18;369(2):222-33</RefSource><PMID Version="1">4371841</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Lipid Res. 1994 Jun;35(6):1102-14</RefSource><PMID Version="1">8077849</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10635-9</RefSource><PMID Version="1">7938005</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Nutr. 1994;14:269-96</RefSource><PMID Version="1">7946521</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cell Mol Neurobiol. 1998 Dec;18(6):599-608</RefSource><PMID Version="1">9876868</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010713">Phosphatidylcholines</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS455043</OtherID><OtherID Source="NLM">PMC3626269</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>3</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>3</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>3</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>11</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac400190k</ArticleId><ArticleId IdType="pubmed">23469867</ArticleId><ArticleId IdType="pmc">PMC3626269</ArticleId><ArticleId IdType="mid">NIHMS455043</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23463545</PMID><DateCreated><Year>2013</Year><Month>05</Month><Day>02</Day></DateCreated><DateCompleted><Year>2013</Year><Month>09</Month><Day>30</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>5</Issue><PubDate><Year>2013</Year><Month>May</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase intramolecular protein crosslinking via ion/ion reactions: ubiquitin and a homobifunctional sulfo-NHS ester.</ArticleTitle><Pagination><MedlinePgn>733-43</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-013-0590-4</ELocationID><Abstract><AbstractText>Gas-phase intra-molecular crosslinking of protein ubiquitin cations has been demonstrated via ion/ion reactions with anions of a homobifunctional N-hydroxysulfosuccinimide (sulfo-NHS) ester reagent. The ion/ion reaction between multiply-protonated ubiquitin and crosslinker monoanions produces a stable, charge-reduced complex. Covalent crosslinking is indicated by the consecutive loss of 2 molecules of sulfo-NHS under ion trap collisional activation conditions. Covalent modification is verified by the presence of covalently crosslinked sequence ions produced by ion-trap collision-induced dissociation of the ion generated from the losses of sulfo-NHS. Analysis of the crosslinked sequence fragments allows for the localization of crosslinked primary amines, enabling proximity mapping of the gas-phase 3-D structures. The presence of two unprotonated reactive sites within the distance constraint of the crosslinker is required for successful crosslinking. The ability to covalently crosslink is, therefore, sensitive to protein charge state. As the charge state increases, fewer reactive sites are available and protein structure is more likely to become extended because of intramolecular electrostatic repulsion. At high charge states, the reagent shows little evidence for covalent crosslinking but does show evidence for 'electrostatic crosslinking' in that the binding of the sulfonate groups to the protein is sufficiently strong that backbone cleavages are favored over reagent detachment under ion trap collisional activation conditions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Webb</LastName><ForeName>Ian K</ForeName><Initials>IK</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2013</Year><Month>03</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013388">Succinimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>82436-78-0</RegistryNumber><NameOfSubstance UI="C035761">N-hydroxysulfosuccinimide</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Jun;23(6):1011-4</RefSource><PMID Version="1">22476890</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem B. 2012 Mar 15;116(10):3344-52</RefSource><PMID Version="1">22315998</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 5;124(22):6407-20</RefSource><PMID Version="1">12033872</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):719-23</RefSource><PMID Version="1">12056571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Jul;37(7):663-75</RefSource><PMID Version="1">12124999</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 1;77(17):5726-34</RefSource><PMID Version="1">16131088</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem B. 2006 Apr 6;110(13):7017-21</RefSource><PMID Version="1">16571016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2006 Jul-Aug;25(4):663-82</RefSource><PMID Version="1">16477643</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 15;78(10):3304-15</RefSource><PMID Version="1">16689531</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Sep 6;128(35):11713-9</RefSource><PMID Version="1">16939296</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):109-12</RefSource><PMID Version="1">17023655</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Feb;18(2):322-31</RefSource><PMID Version="1">17084091</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Aug;18(8):1439-52</RefSource><PMID Version="1">17543535</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Oct 15;79(20):7883-92</RefSource><PMID Version="1">17845006</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 1;79(21):8199-206</RefSource><PMID Version="1">17914865</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Jul 1;80(13):5059-64</RefSource><PMID Version="1">18498182</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Jun 7;10(21):3077-82</RefSource><PMID Version="1">18688371</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 May-Jun;28(3):425-47</RefSource><PMID Version="1">19241462</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jul 15;74(14):3255-61</RefSource><PMID Version="1">12139026</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15863-8</RefSource><PMID Version="1">12444260</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2003;17(2):155-62</RefSource><PMID Version="1">12512095</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2003;9(6):623-31</RefSource><PMID Version="1">15100473</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2004 Mar-Apr;23(2):127-58</RefSource><PMID Version="1">14732935</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2003;17(17):2005-14</RefSource><PMID Version="1">12913864</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Oct;39(10):1091-112</RefSource><PMID Version="1">15481084</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1985 Mar;57(3):675-9</RefSource><PMID Version="1">2581476</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biomol NMR. 1993 May;3(3):285-96</RefSource><PMID Version="1">8395271</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Mar 15;67(6):1042-6</RefSource><PMID Version="1">7536399</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Apr;31(4):339-50</RefSource><PMID Version="1">8799282</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1997 Oct 21;36(42):13043-53</RefSource><PMID Version="1">9335566</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 1;71(19):4397-402</RefSource><PMID Version="1">10517152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2005;19(10):1283-8</RefSource><PMID Version="1">15838844</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Aug 15;77(16):5101-6</RefSource><PMID Version="1">16097745</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 2005 Aug 23;44(33):11286-94</RefSource><PMID Version="1">16101313</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2636-42</RefSource><PMID Version="1">20210330</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Jun 30;132(25):8602-9</RefSource><PMID Version="1">20524634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 May;22(5):912-21</RefSource><PMID Version="1">21472526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem B. 2011 Oct 27;115(42):12266-75</RefSource><PMID Version="1">21905704</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2012 Jul 18;134(28):11412-4</RefSource><PMID Version="1">22769013</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004912">Erythrocytes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D040901">Proteomics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013388">Succinimides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS452685</OtherID><OtherID Source="NLM">PMC3644013</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2012</Year><Month>8</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2013</Year><Month>1</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2012</Year><Month>12</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2013</Year><Month>3</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>3</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2013</Year><Month>3</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>10</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-013-0590-4</ArticleId><ArticleId IdType="pubmed">23463545</ArticleId><ArticleId IdType="pmc">PMC3644013</ArticleId><ArticleId IdType="mid">NIHMS452685</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">23264749</PMID><DateCreated><Year>2012</Year><Month>12</Month><Day>24</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>330-332</Volume><PubDate><Year>2012</Year><Month>Dec</Month><Day>15</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Electron Transfer Dissociation: Effects of Cation Charge State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated Polypeptides.</ArticleTitle><Pagination><MedlinePgn>174-181</MedlinePgn></Pagination><Abstract><AbstractText>The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, USA 47907-2084.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>12</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>12</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>12</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2012.07.013</ArticleId><ArticleId IdType="pubmed">23264749</ArticleId><ArticleId IdType="pmc">PMC3525064</ArticleId><ArticleId IdType="mid">NIHMS400065</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23257901</PMID><DateCreated><Year>2013</Year><Month>01</Month><Day>07</Day></DateCreated><DateCompleted><Year>2013</Year><Month>06</Month><Day>07</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1364-548X</ISSN><JournalIssue CitedMedium="Internet"><Volume>49</Volume><Issue>10</Issue><PubDate><Year>2013</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Chemical communications (Cambridge, England)</Title><ISOAbbreviation>Chem. Commun. (Camb.)</ISOAbbreviation></Journal><ArticleTitle>Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.</ArticleTitle><Pagination><MedlinePgn>947-65</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1039/c2cc36577d</ELocationID><Abstract><AbstractText>Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2012</Year><Month>12</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Chem Commun (Camb)</MedlineTA><NlmUniqueID>9610838</NlmUniqueID><ISSNLinking>1359-7345</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochim Biophys Acta. 2006 Dec;1764(12):1811-22</RefSource><PMID Version="1">17118725</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jan 15;79(2):477-85</RefSource><PMID Version="1">17222010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2193-8</RefSource><PMID Version="1">17287358</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(10):1567-73</RefSource><PMID Version="1">17436340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Mar 15;70(6):1198-202</RefSource><PMID Version="1">9530009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Feb;16(2):208-24</RefSource><PMID Version="1">15694771</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Aug 11;132(31):10728-40</RefSource><PMID Version="1">20681705</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Nov 15;82(22):9441-6</RefSource><PMID Version="1">20961088</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 May;22(5):912-21</RefSource><PMID Version="1">21472526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2011 May 1;83(9):3252-5</RefSource><PMID Version="1">21456599</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Feb;23(2):282-9</RefSource><PMID Version="1">22081458</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Apr;23(4):577-93</RefSource><PMID Version="1">21952753</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Sep;20(9):1718-22</RefSource><PMID Version="1">19535265</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Apr 22;131(15):5444-59</RefSource><PMID Version="1">19331417</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2009;48(45):8526-8</RefSource><PMID Version="1">19795429</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>ACS Chem Biol. 2010 Jan 15;5(1):105-19</RefSource><PMID Version="1">20047291</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Jan;21(1):127-31</RefSource><PMID Version="1">19854660</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>EMBO J. 2010 Feb 17;29(4):717-26</RefSource><PMID Version="1">20094031</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2873-8</RefSource><PMID Version="1">20210298</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2636-42</RefSource><PMID Version="1">20210330</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2010 May;9(5):754-63</RefSource><PMID Version="1">20124352</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Mar;11(3):244-56</RefSource><PMID Version="1">10697820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(6):401-5</RefSource><PMID Version="1">11291117</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Mar 15;73(6):1277-85</RefSource><PMID Version="1">11305663</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Apr 1;73(7):1455-60</RefSource><PMID Version="1">11321294</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 15;79(10):3525-34</RefSource><PMID Version="1">17441688</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2007 Oct 10;129(40):12232-43</RefSource><PMID Version="1">17880074</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2007 Nov;6(11):1942-51</RefSource><PMID Version="1">17673454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2008;22(3):271-8</RefSource><PMID Version="1">18181247</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):173-89</RefSource><PMID Version="1">18083527</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Mar 21;10(11):1512-22</RefSource><PMID Version="1">18327307</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 May 1;80(9):3492-7</RefSource><PMID Version="1">18396915</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2008 Jun 20;283(25):17314-23</RefSource><PMID Version="1">18430727</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2008 Aug;7(8):3127-36</RefSource><PMID Version="1">18613715</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2008 Sep;7(9):3643-8</RefSource><PMID Version="1">18646790</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Sep;19(9):1255-62</RefSource><PMID Version="1">18620867</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2009 Feb;23(3):409-18</RefSource><PMID Version="1">19125429</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Feb;20(2):180-7</RefSource><PMID Version="1">18842425</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):995-1000</RefSource><PMID Version="1">19144917</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Analyst. 2009 Apr;134(4):681-9</RefSource><PMID Version="1">19305916</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Jul;20(7):1349-54</RefSource><PMID Version="1">19410483</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2009 Sep;23(17):2647-55</RefSource><PMID Version="1">19630027</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1986 Jul;156(1):220-2</RefSource><PMID Version="1">3740412</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1990 Feb 1;184(2):244-8</RefSource><PMID Version="1">2158246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Sep 15;63(18):1971-8</RefSource><PMID Version="1">1661106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1991 Dec 25;266(36):24413-9</RefSource><PMID Version="1">1761543</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Mar;31(3):247-54</RefSource><PMID Version="1">8799276</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Aug;31(8):831-42</RefSource><PMID Version="1">8799309</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Feb 1;74(3):577-83</RefSource><PMID Version="1">11838679</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Sep 15;74(18):4653-61</RefSource><PMID Version="1">12349967</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2003;17(17):2005-14</RefSource><PMID Version="1">12913864</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Dec 1;75(23):6509-16</RefSource><PMID Version="1">14640721</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Mar;39(3):322-8</RefSource><PMID Version="1">15039940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Apr;15(4):607-15</RefSource><PMID Version="1">15047065</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Jun;39(6):630-8</RefSource><PMID Version="1">15236301</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Sep 1;76(17):5006-15</RefSource><PMID Version="1">15373435</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1967 May 25;242(10):2447-53</RefSource><PMID Version="1">6026234</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2012 Mar 20;84(6):2875-82</RefSource><PMID Version="1">22335612</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2012 Jun;47(6):669-75</RefSource><PMID Version="1">22707160</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2012 Jul 18;134(28):11412-4</RefSource><PMID Version="1">22769013</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Commun (Camb). 2010 Aug 14;46(30):5458-60</RefSource><PMID Version="1">20505878</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jul;16(7):1020-30</RefSource><PMID Version="1">15914021</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jan 1;78(1):310-6</RefSource><PMID Version="1">16383342</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Jan;17(1):15-9</RefSource><PMID Version="1">16338146</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2006 Jul-Aug;25(4):663-82</RefSource><PMID Version="1">16477643</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 1;78(13):4702-8</RefSource><PMID Version="1">16808485</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biotechnol Lett. 2006 Jul;28(14):1047-59</RefSource><PMID Version="1">16794768</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Apr 28;109(16):3608-16</RefSource><PMID Version="1">16568152</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS434974</OtherID><OtherID Source="NLM">PMC3557538</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>12</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="epublish"><Year>2013</Year><Month>1</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>12</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>12</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>6</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1039/c2cc36577d</ArticleId><ArticleId IdType="pubmed">23257901</ArticleId><ArticleId IdType="pmc">PMC3557538</ArticleId><ArticleId IdType="mid">NIHMS434974</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23239339</PMID><DateCreated><Year>2012</Year><Month>12</Month><Day>14</Day></DateCreated><DateCompleted><Year>2013</Year><Month>04</Month><Day>29</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1097-0231</ISSN><JournalIssue CitedMedium="Internet"><Volume>27</Volume><Issue>1</Issue><PubDate><Year>2013</Year><Month>Jan</Month><Day>15</Day></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer followed by collision-induced dissociation (NET-CID) for generating sequence information from backbone-modified oligonucleotide anions.</ArticleTitle><Pagination><MedlinePgn>249-57</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/rcm.6428</ELocationID><Abstract><AbstractText Label="RATIONALE" NlmCategory="BACKGROUND">Oligonucleotides with 2'-modifications and/or phosphorothioate (PS) backbones are prone to undergo limited backbone fragmentation upon ion trap collision-induced dissociation (CID). For better identification and characterization of chemically modified oligonucleotides, a more universal fragmentation method is desirable.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">Gas-phase dissociation of various 2'-position-modified oligonucleotides and mixed-backbone oligonucleotides (MBOs) has been studied by ion trap CID of the radical anion species formed via electron transfer ion/ion reactions.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">For 2'-modified mix-mer radical anions, complete sequence information was generated with non-complementary d/w-ion series, while a/z-ions were observed randomly with relatively low intensity. The 2'-position modification, which has been observed to affect CID patterns of oligonucleotide anions, did not exhibit any observable influence on the dissociation patterns of oligonucleotide radical anions. For MBOs comprised of DNA nucleotides, ion trap CID of even-electron species generated complementary a-B/w-type ions and multiple fragment types at the phosphorothioate (PS) linkages. For MBOs comprised of 2'-OMe-modified nucleotides, only PS bond cleavage was observed for ion trap CID of doubly deprotonated precursor ions. Negative electron transfer reaction with or without supplemental activation of MBOs gave rise to a/d/w-type fragments similar to those of the 2'-modified mix-mers. PS bonds were observed to be more fragile under the electron detachment process, and phosphodiester (PO) bond cleavages were noted upon further collisional activation.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">NET-CID proved to be an efficient method of generating full sequence information for 2'-modifications and/or mixed-backbone oligonucleotides.</AbstractText><CopyrightInformation>Copyright © 2012 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Yang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008958">Models, Molecular</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2012</Year><Month>8</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2012</Year><Month>9</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2012</Year><Month>9</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>4</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/rcm.6428</ArticleId><ArticleId IdType="pubmed">23239339</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23208744</PMID><DateCreated><Year>2013</Year><Month>01</Month><Day>24</Day></DateCreated><DateCompleted><Year>2013</Year><Month>07</Month><Day>01</Day></DateCompleted><DateRevised><Year>2014</Year><Month>12</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>24</Volume><Issue>1</Issue><PubDate><Year>2013</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase reactivity of carboxylic acid functional groups with carbodiimides.</ArticleTitle><Pagination><MedlinePgn>30-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-012-0506-8</ELocationID><Abstract><AbstractText>Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gilbert</LastName><ForeName>Joshua D</ForeName><Initials>JD</Initials></Author><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials></Author><Author ValidYN="Y"><LastName>Forrest</LastName><ForeName>William P</ForeName><Initials>WP</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R37 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2012</Year><Month>12</Month><Day>04</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002234">Carbodiimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002264">Carboxylic Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>9G34HU7RV0</RegistryNumber><NameOfSubstance UI="D004492">Edetic Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2002 Mar-Apr;21(2):87-107</RefSource><PMID Version="1">12373746</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2003;9(1):1-21</RefSource><PMID Version="1">12748398</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Jan-Feb;3(1):46-54</RefSource><PMID Version="1">14998162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Mar;39(3):322-8</RefSource><PMID Version="1">15039940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2004;18(9):960-72</RefSource><PMID Version="1">15116423</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1967 May 25;242(10):2447-53</RefSource><PMID Version="1">6026234</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1969 Jun;8(6):2312-28</RefSource><PMID Version="1">5799129</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1986 Jul;156(1):220-2</RefSource><PMID Version="1">3740412</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1990 Feb 1;184(2):244-8</RefSource><PMID Version="1">2158246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1991 Dec 25;266(36):24413-9</RefSource><PMID Version="1">1761543</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>EMBO J. 2010 Feb 17;29(4):717-26</RefSource><PMID Version="1">20094031</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2636-42</RefSource><PMID Version="1">20210330</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Nov 15;82(22):9441-6</RefSource><PMID Version="1">20961088</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 May;22(5):912-21</RefSource><PMID Version="1">21472526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Feb;23(2):282-9</RefSource><PMID Version="1">22081458</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2012 Jun;47(6):669-75</RefSource><PMID Version="1">22707160</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2012 Jul 18;134(28):11412-4</RefSource><PMID Version="1">22769013</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9417-21</RefSource><PMID Version="1">22903733</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 1;78(13):4702-8</RefSource><PMID Version="1">16808485</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Mar 21;10(11):1512-22</RefSource><PMID Version="1">18327307</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2008 Jun 20;283(25):17314-23</RefSource><PMID Version="1">18430727</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002234">Carbodiimides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002264">Carboxylic Acids</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004492">Edetic Acid</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS426287</OtherID><OtherID Source="NLM">PMC3554847</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2012</Year><Month>8</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2012</Year><Month>9</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2012</Year><Month>9</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>12</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>12</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>7</Month><Day>3</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-012-0506-8</ArticleId><ArticleId IdType="pubmed">23208744</ArticleId><ArticleId IdType="pmc">PMC3554847</ArticleId><ArticleId IdType="mid">NIHMS426287</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23147993</PMID><DateCreated><Year>2013</Year><Month>01</Month><Day>04</Day></DateCreated><DateCompleted><Year>2013</Year><Month>06</Month><Day>18</Day></DateCompleted><DateRevised><Year>2014</Year><Month>11</Month><Day>04</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1078-0432</ISSN><JournalIssue CitedMedium="Internet"><Volume>19</Volume><Issue>1</Issue><PubDate><Year>2013</Year><Month>Jan</Month><Day>1</Day></PubDate></JournalIssue><Title>Clinical cancer research : an official journal of the American Association for Cancer Research</Title><ISOAbbreviation>Clin. Cancer Res.</ISOAbbreviation></Journal><ArticleTitle>A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia.</ArticleTitle><Pagination><MedlinePgn>247-57</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1158/1078-0432.CCR-12-2753</ELocationID><Abstract><AbstractText Label="PURPOSE" NlmCategory="OBJECTIVE">Immunotherapy targeting aberrantly expressed leukemia-associated antigens has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy.</AbstractText><AbstractText Label="EXPERIMENTAL DESIGN" NlmCategory="METHODS">We used Immune Epitope Database and in vitro binding assays to identify immunogenic epitopes derived from CG. Flow cytometry, immunoblotting, and confocal microscopy were used to characterize the expression and processing of CG in AML patient samples, leukemia stem cells, and normal neutrophils. Cytotoxicity assays determined the susceptibility of AML to CG-specific cytotoxic T lymphocytes (CTL). Dextramer staining and cytokine flow cytometry were conducted to characterize the immune response to CG in patients.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">CG was highly expressed and ubiquitinated in AML blasts, and was localized outside granules in compartments that facilitate antigen presentation. We identified five HLA-A*0201 binding nonameric peptides (CG1-CG5) derived from CG, and showed immunogenicity of the highest HLA-A*0201 binding peptide, CG1. We showed killing of primary AML by CG1-CTL, but not normal bone marrow. Blocking HLA-A*0201 abrogated CG1-CTL-mediated cytotoxicity, further confirming HLA-A*0201-dependent killing. Finally, we showed functional CG1-CTLs in peripheral blood from AML patients following allogeneic stem cell transplantation.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">CG is aberrantly expressed and processed in AML and is a novel immunotherapeutic target that warrants further development.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Mao</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Stem Cell Transplantation and Cellular Therapy, Surgical Oncology, and Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sukhumalchandra</LastName><ForeName>Pariya</ForeName><Initials>P</Initials></Author><Author ValidYN="Y"><LastName>Enyenihi</LastName><ForeName>Atim A</ForeName><Initials>AA</Initials></Author><Author ValidYN="Y"><LastName>St John</LastName><ForeName>Lisa S</ForeName><Initials>LS</Initials></Author><Author ValidYN="Y"><LastName>Hunsucker</LastName><ForeName>Sally A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Mittendorf</LastName><ForeName>Elizabeth A</ForeName><Initials>EA</Initials></Author><Author ValidYN="Y"><LastName>Sergeeva</LastName><ForeName>Anna</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>Ruisaard</LastName><ForeName>Kathryn</ForeName><Initials>K</Initials></Author><Author ValidYN="Y"><LastName>Al-Atrache</LastName><ForeName>Zein</ForeName><Initials>Z</Initials></Author><Author ValidYN="Y"><LastName>Ropp</LastName><ForeName>Patricia A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Jakher</LastName><ForeName>Haroon</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>Rodriguez-Cruz</LastName><ForeName>Tania</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>Lizee</LastName><ForeName>Gregory</ForeName><Initials>G</Initials></Author><Author ValidYN="Y"><LastName>Clise-Dwyer</LastName><ForeName>Karen</ForeName><Initials>K</Initials></Author><Author ValidYN="Y"><LastName>Lu</LastName><ForeName>Sijie</ForeName><Initials>S</Initials></Author><Author ValidYN="Y"><LastName>Molldrem</LastName><ForeName>Jeffrey J</ForeName><Initials>JJ</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Armistead</LastName><ForeName>Paul M</ForeName><Initials>PM</Initials></Author><Author ValidYN="Y"><LastName>Alatrash</LastName><ForeName>Gheath</ForeName><Initials>G</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>CA100632</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>K08 HL113594</GrantID><Acronym>HL</Acronym><Agency>NHLBI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>KL2TR000084</GrantID><Acronym>TR</Acronym><Agency>NCATS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P30 CA016672</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P30CA16672</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>P50 CA100632</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R00 CA133244</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R00CA133244</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2012</Year><Month>11</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Clin Cancer Res</MedlineTA><NlmUniqueID>9502500</NlmUniqueID><ISSNLinking>1078-0432</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D018952">Antigens, CD34</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000939">Epitopes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C435939">HLA-A*02:01 antigen</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015789">HLA-A2 Antigen</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.2.2.5</RegistryNumber><NameOfSubstance UI="D051997">Antigens, CD38</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.21.20</RegistryNumber><NameOfSubstance UI="D056649">Cathepsin G</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Blood. 1996 Oct 1;88(7):2450-7</RefSource><PMID Version="1">8839835</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Oncogene. 2013 Jan 10;32(2):135-40</RefSource><PMID Version="1">22349821</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 1997 Oct 1;90(7):2529-34</RefSource><PMID Version="1">9326217</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12616-21</RefSource><PMID Version="1">9356498</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 1997 Dec 15;90(12):4938-46</RefSource><PMID Version="1">9389712</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 1998 Aug 15;92(4):1415-22</RefSource><PMID Version="1">9694731</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Cell Dev Biol. 1998;14:19-57</RefSource><PMID Version="1">9891777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Am J Pathol. 1999 Mar;154(3):745-54</RefSource><PMID Version="1">10079252</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cancer Res. 1999 Jun 1;59(11):2675-81</RefSource><PMID Version="1">10363991</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Clin Invest. 2002 Feb;109(3):363-71</RefSource><PMID Version="1">11827996</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Immunity. 2002 Dec;17(6):737-47</RefSource><PMID Version="1">12479820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Protein Sci. 2003 May;12(5):1007-17</RefSource><PMID Version="1">12717023</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochem Biophys Res Commun. 2003 May 23;305(1):28-36</RefSource><PMID Version="1">12732192</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Trends Immunol. 2003 Jun;24(6):335-42</RefSource><PMID Version="1">12810110</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Immunol. 2004 Jan 1;172(1):509-15</RefSource><PMID Version="1">14688361</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochim Biophys Acta. 2004 Jan 5;1676(1):104-11</RefSource><PMID Version="1">14732495</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cancer Res. 2004 Apr 1;64(7):2610-8</RefSource><PMID Version="1">15059918</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 1981 Jun;57(6):1068-73</RefSource><PMID Version="1">6939452</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>N Engl J Med. 1987 Aug 20;317(8):468-73</RefSource><PMID Version="1">3614291</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1988 Oct 15;263(29):14739-47</RefSource><PMID Version="1">2902087</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1989 Aug 15;264(23):13412-9</RefSource><PMID Version="1">2569462</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1990 Jan 25;265(3):1524-30</RefSource><PMID Version="1">2295643</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 1994 Feb 17;367(6464):645-8</RefSource><PMID Version="1">7509044</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Immunol. 1994 Mar;24(3):765-8</RefSource><PMID Version="1">8125143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cell. 1994 Sep 9;78(5):761-71</RefSource><PMID Version="1">8087844</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1995 Jan 13;267(5195):243-6</RefSource><PMID Version="1">7809629</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Clin Exp Immunol. 1996 Jul;105(1):120-4</RefSource><PMID Version="1">8697619</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Haematologica. 2005 Jan;90(1):38-44</RefSource><PMID Version="1">15642667</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Lancet. 2005 Feb 19-25;365(9460):657-62</RefSource><PMID Version="1">15721470</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Immunol. 2005;23:975-1028</RefSource><PMID Version="1">15771591</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Clin Cancer Res. 2005 Jun 15;11(12):4495-503</RefSource><PMID Version="1">15958635</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 2005 Aug 1;106(3):938-45</RefSource><PMID Version="1">15827130</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Gene. 2005 Aug 15;356:193-202</RefSource><PMID Version="1">16019164</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cancer Res. 2005 Sep 1;65(17):7926-33</RefSource><PMID Version="1">16140964</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2006 Sep 22;281(38):28122-30</RefSource><PMID Version="1">16698800</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Lancet. 2006 Nov 25;368(9550):1894-907</RefSource><PMID Version="1">17126723</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Haematologica. 2006 Dec;91(12):1653-61</RefSource><PMID Version="1">17145602</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Am J Pathol. 2007 Mar;170(3):930-40</RefSource><PMID Version="1">17322378</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Leukemia. 2007 Nov;21(11):2287-95</RefSource><PMID Version="1">17637811</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 2008 Jan 1;111(1):236-42</RefSource><PMID Version="1">17875804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 2008 Feb 1;111(3):1357-65</RefSource><PMID Version="1">17978170</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Clin Cancer Res. 2008 May 15;14(10):3060-9</RefSource><PMID Version="1">18483372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 2008 Jul 1;112(1):53-5</RefSource><PMID Version="1">18403620</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Int Immunol. 2008 Aug;20(8):1057-66</RefSource><PMID Version="1">18567615</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Blood. 2011 Apr 21;117(16):4262-72</RefSource><PMID Version="1">21296998</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>PLoS Biol. 2011 Sep;9(9):e1001151</RefSource><PMID Version="1">21931536</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>N Engl J Med. 2012 Mar 22;366(12):1079-89</RefSource><PMID Version="1">22417203</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 2012 Apr 15;423(2):218-23</RefSource><PMID Version="1">22369897</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Immunother. 2012 May;35(4):309-20</RefSource><PMID Version="1">22495388</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Cell Biol. 1999 Oct;1(6):362-8</RefSource><PMID Version="1">10559964</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Immunogenetics. 2000 Feb;51(2):99-107</RefSource><PMID Version="1">10663572</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Med. 2000 Sep;6(9):1018-23</RefSource><PMID Version="1">10973322</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Oncogene. 2013 Apr 11;32(15):1978-87</RefSource><PMID Version="1">22641217</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1996 Dec 13;271(50):32392-402</RefSource><PMID Version="1">8943304</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D018952">Antigens, CD34</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D051997">Antigens, CD38</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D056649">Cathepsin G</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045744">Cell Line, Tumor</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003602">Cytotoxicity, Immunologic</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000939">Epitopes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015789">HLA-A2 Antigen</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D018380">Hematopoietic Stem Cell Transplantation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006412">Hematopoietic Stem Cells</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007167">Immunotherapy</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015470">Leukemia, Myeloid, Acute</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName><QualifierName MajorTopicYN="N" UI="Q000628">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011485">Protein Binding</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021381">Protein Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013602">T-Lymphocytes, Cytotoxic</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014184">Transplantation, Homologous</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS420986</OtherID><OtherID Source="NLM">PMC3537920</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>12</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2013</Year><Month>6</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">1078-0432.CCR-12-2753</ArticleId><ArticleId IdType="doi">10.1158/1078-0432.CCR-12-2753</ArticleId><ArticleId IdType="pubmed">23147993</ArticleId><ArticleId IdType="pmc">PMC3537920</ArticleId><ArticleId IdType="mid">NIHMS420986</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">23078018</PMID><DateCreated><Year>2012</Year><Month>12</Month><Day>18</Day></DateCreated><DateCompleted><Year>2014</Year><Month>04</Month><Day>22</Day></DateCompleted><DateRevised><Year>2014</Year><Month>11</Month><Day>05</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>84</Volume><Issue>24</Issue><PubDate><Year>2012</Year><Month>Dec</Month><Day>18</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion/ion reactions of MALDI-derived peptide ions: increased sequence coverage via covalent and electrostatic modification upon charge inversion.</ArticleTitle><Pagination><MedlinePgn>10679-85</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac302374p</ELocationID><Abstract><AbstractText>Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-derived tryptic peptide ions have been subjected to ion/ion reactions with doubly deprotonated 4-formyl-1,3-benzenedisulfonic acid (FBDSA) in the gas-phase. The ion/ion reaction produces a negatively charged electrostatic complex composed of the peptide cation and reagent dianion, whereupon dehydration of the complex via collision-induced dissociation (CID) produces a Schiff base product anion. Collisional activation of modified lysine-terminated tryptic peptide anions is consistent with a covalent modification of unprotonated primary amines (i.e., N-terminus and ε-NH(2) of lysine). Modified arginine-terminated tryptic peptides have shown evidence of a covalent modification at the N-terminus and a noncovalent interaction with the arginine residue. The modified anions yield at least as much sequence information upon CID as the unmodified cations for the small tryptic peptides examined here and more sequence information for the large tryptic peptides. This study represents the first demonstration of gas-phase ion/ion reactions involving MALDI-derived ions. In this case, covalent and electrostatic modification charge inversion is shown to enhance MALDI tandem mass spectrometry of tryptic peptides.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2012</Year><Month>10</Month><Day>31</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2007 Aug;6(8):3062-9</RefSource><PMID Version="1">17608403</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Nov 1;81(21):8669-76</RefSource><PMID Version="1">19757794</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Jan;22(1):3-12</RefSource><PMID Version="1">21472539</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2012 Jun;47(6):669-75</RefSource><PMID Version="1">22707160</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2012 Jul 18;134(28):11412-4</RefSource><PMID Version="1">22769013</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):552-8</RefSource><PMID Version="1">10695141</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 15;72(4):652-7</RefSource><PMID Version="1">10701247</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 May 1;72(9):2132-41</RefSource><PMID Version="1">10815976</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5239-43</RefSource><PMID Version="1">11080870</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Dec 1;72(23):5804-13</RefSource><PMID Version="1">11128940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2000 Nov-Dec;19(6):398-420</RefSource><PMID Version="1">11199379</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(23):2227-39</RefSource><PMID Version="1">11746890</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 2003 Mar 13;422(6928):198-207</RefSource><PMID Version="1">12634793</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Apr 1;75(7):156A-165A</RefSource><PMID Version="1">12705581</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Mass Spectrom. 1984 Nov;11(11):601</RefSource><PMID Version="1">6525415</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):99-111</RefSource><PMID Version="1">3072035</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1993 Jan;7(1):20-6</RefSource><PMID Version="1">8428025</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1993 Oct;7(10):902-10</RefSource><PMID Version="1">8219321</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1994 Sep;8(9):737-42</RefSource><PMID Version="1">7949336</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Jul 1;68(13):2108-12</RefSource><PMID Version="1">9027226</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 May 15;68(10):1784-91</RefSource><PMID Version="1">8651484</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1997 Jan 15;69(2):137-44</RefSource><PMID Version="1">8997893</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1997 Oct 1;69(19):3995-4001</RefSource><PMID Version="1">9322436</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7131-6</RefSource><PMID Version="1">10377380</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Apr 28;109(16):3608-16</RefSource><PMID Version="1">16568152</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D055672">Static Electricity</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS416783</OtherID><OtherID Source="NLM">PMC3525744</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>10</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>10</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>10</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2014</Year><Month>4</Month><Day>23</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac302374p</ArticleId><ArticleId IdType="pubmed">23078018</ArticleId><ArticleId IdType="pmc">PMC3525744</ArticleId><ArticleId IdType="mid">NIHMS416783</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">22881346</PMID><DateCreated><Year>2012</Year><Month>09</Month><Day>04</Day></DateCreated><DateCompleted><Year>2013</Year><Month>01</Month><Day>11</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>84</Volume><Issue>17</Issue><PubDate><Year>2012</Year><Month>Sep</Month><Day>4</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Analysis of high mass-to-charge ions in a quadrupole ion trap mass spectrometer via an end-cap quadrupolar direct current downscan.</ArticleTitle><Pagination><MedlinePgn>7562-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac301741a</ELocationID><Abstract><AbstractText>A method for performing mass-selective instability analysis in a three-dimensional (3-D) quadrupole ion trap is described that involves scanning a direct current (dc) voltage applied to the end-cap electrodes while holding the radio frequency (rf) potential at a fixed value. Rather than eject at the ß(z) = 1 instability line by ramping the amplitude of the drive rf potential applied to the ring electrode, as with the original mass-selective instability scan, this approach effects ion ejection along the ß(z) = 0 instability line in a process identical in principle (though it varies in its method of implementation) to the previously termed "downscan" ( Todd , J. F. J. ; Penman , A. D. ; Smith , R. D. Int. J. Mass Spectrom. Ion Processes 1991 , 106 , 117 - 135 ). A linear scan of the dc amplitude results in a nonlinear mass scale, unlike the conventional resonance ejection scan with a linear scan of the rf amplitude, and the ejection of ions in the direction of high mass-to-charge (m/z) to low m/z. However, the downscan offers some advantages over the traditional rf scan for ions of high m/z values. These include a larger scannable mass range, as well as the opportunity for improved resolution at high mass. These characteristics are demonstrated with ions of m/z 10(4)-10(5).</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2012</Year><Month>08</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>8</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>8</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>8</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>8</Month><Day>14</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac301741a</ArticleId><ArticleId IdType="pubmed">22881346</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">22769013</PMID><DateCreated><Year>2012</Year><Month>07</Month><Day>18</Day></DateCreated><DateCompleted><Year>2012</Year><Month>10</Month><Day>29</Day></DateCompleted><DateRevised><Year>2014</Year><Month>10</Month><Day>15</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-5126</ISSN><JournalIssue CitedMedium="Internet"><Volume>134</Volume><Issue>28</Issue><PubDate><Year>2012</Year><Month>Jul</Month><Day>18</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase conjugation to arginine residues in polypeptide ions via N-hydroxysuccinimide ester-based reagent ions.</ArticleTitle><Pagination><MedlinePgn>11412-4</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ja304778j</ELocationID><Abstract><AbstractText>Gas-phase conjugation to unprotonated arginine side-chains via N-hydroxysuccinimide (NHS) esters is demonstrated through both charge reduction and charge inversion ion/ion reactions. The unprotonated guanidino group of arginine can serve as a strong nucleophile, resulting in the facile displacement of NHS from NHS esters with concomitant covalent modification of the arginine residue. This reactivity is analogous to that observed with unprotonated primary amines such as the N-terminus or ε-amino group of lysine. In solution, however, the arginine residues tend to be protonated at pH values low enough to prevent hydrolysis of NHS esters, which would render them relatively unreactive with NHS esters. This work demonstrates novel means for gas-phase conjugation to arginine side chains in polypeptide ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McGee</LastName><ForeName>William M</ForeName><Initials>WM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2012</Year><Month>07</Month><Day>06</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004952">Esters</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013388">Succinimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>94ZLA3W45F</RegistryNumber><NameOfSubstance UI="D001120">Arginine</NameOfSubstance></Chemical><Chemical><RegistryNumber>MJE3791M4T</RegistryNumber><NameOfSubstance UI="C001426">N-hydroxysuccinimide</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1982 Aug 17;21(17):3950-5</RefSource><PMID Version="1">7126526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2636-42</RefSource><PMID Version="1">20210330</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2005 Jan;105(1):67-114</RefSource><PMID Version="1">15720152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(23):3815-24</RefSource><PMID Version="1">17972273</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Mar 21;10(11):1512-22</RefSource><PMID Version="1">18327307</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2008 Jun 20;283(25):17314-23</RefSource><PMID Version="1">18430727</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>EMBO J. 2010 Feb 17;29(4):717-26</RefSource><PMID Version="1">20094031</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Nov 15;82(22):9441-6</RefSource><PMID Version="1">20961088</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2012 Feb;23(2):282-9</RefSource><PMID Version="1">22081458</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Peptides. 1997;18(10):1585-95</RefSource><PMID Version="1">9437720</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001120">Arginine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004952">Esters</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013388">Succinimides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS392368</OtherID><OtherID Source="NLM">PMC3404623</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>7</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>7</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>7</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>10</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ja304778j</ArticleId><ArticleId IdType="pubmed">22769013</ArticleId><ArticleId IdType="pmc">PMC3404623</ArticleId><ArticleId IdType="mid">NIHMS392368</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">22707160</PMID><DateCreated><Year>2012</Year><Month>06</Month><Day>18</Day></DateCreated><DateCompleted><Year>2012</Year><Month>09</Month><Day>04</Day></DateCompleted><DateRevised><Year>2014</Year><Month>10</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1096-9888</ISSN><JournalIssue CitedMedium="Internet"><Volume>47</Volume><Issue>6</Issue><PubDate><Year>2012</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Covalent and non-covalent binding in the ion/ion charge inversion of peptide cations with benzene-disulfonic acid anions.</ArticleTitle><Pagination><MedlinePgn>669-75</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/jms.2968</ELocationID><Abstract><AbstractText>Protonated angiotensin II and protonated leucine enkephalin-based peptides, which included YGGFL, YGGFLF, YGGFLH, YGGFLK and YGGFLR, were subjected to ion/ion reactions with the doubly deprotonated reagents 4-formyl-1,3-benzenedisulfonic acid (FBDSA) and 1,3-benzenedisulfonic acid (BDSA). The major product of the ion/ion reaction is a negatively charged complex of the peptide and reagent. Following dehydration of [M + FBDSA-H](-) via collisional-induced dissociation (CID), angiotensin II (DRVYIHPF) showed evidence for two product populations, one in which a covalent modification has taken place and one in which an electrostatic modification has occurred (i.e. no covalent bond formation). A series of studies with model systems confirmed that strong non-covalent binding of the FBDSA reagent can occur with subsequent ion trap CID resulting in dehydration unrelated to the adduct. Ion trap CID of the dehydration product can result in cleavage of amide bonds in competition with loss of the FBDSA adduct. This scenario is most likely for electrostatically bound complexes in which the peptide contains both an arginine residue and one or more carboxyl groups. Otherwise, loss of the reagent species from the complex, either as an anion or as a neutral species, is the dominant process for electrostatically bound complexes. The results reported here shed new light on the nature of non-covalent interactions in gas phase complexes of peptide ions that can be used in the rationale design of reagent ions for specific ion/ion reaction applications.</AbstractText><CopyrightInformation>Copyright © 2012 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Luongo</LastName><ForeName>Carl A</ForeName><Initials>CA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001557">Benzenesulfonates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012545">Schiff Bases</NameOfSubstance></Chemical><Chemical><RegistryNumber>059QF0KO0R</RegistryNumber><NameOfSubstance UI="D014867">Water</NameOfSubstance></Chemical><Chemical><RegistryNumber>11128-99-7</RegistryNumber><NameOfSubstance UI="D000804">Angiotensin II</NameOfSubstance></Chemical><Chemical><RegistryNumber>58822-25-6</RegistryNumber><NameOfSubstance UI="D004743">Enkephalin, Leucine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Dec 1;72(23):5804-13</RefSource><PMID Version="1">11128940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2011 May 1;83(9):3252-5</RefSource><PMID Version="1">21456599</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Apr 1;75(7):156A-165A</RefSource><PMID Version="1">12705581</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Mass Spectrom. 1984 Nov;11(11):601</RefSource><PMID Version="1">6525415</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2005 Jan;105(1):67-114</RefSource><PMID Version="1">15720152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2005 Sep;40(9):1173-86</RefSource><PMID Version="1">16041740</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Nov-Dec;4(6):2360-3</RefSource><PMID Version="1">16335986</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Jan;5(1):122-6</RefSource><PMID Version="1">16396502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Feb;20(2):176-9</RefSource><PMID Version="1">18835725</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Feb;20(2):180-7</RefSource><PMID Version="1">18842425</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 Sep-Oct;28(5):785-815</RefSource><PMID Version="1">19016300</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Mar 1;81(5):1893-900</RefSource><PMID Version="1">19199379</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Anal Chem (Palo Alto Calif). 2010;3:365-85</RefSource><PMID Version="1">20636047</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2011 Feb 28;25(4):476-82</RefSource><PMID Version="1">21259355</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Jan;22(1):3-12</RefSource><PMID Version="1">21472539</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 2003 Mar 13;422(6928):198-207</RefSource><PMID Version="1">12634793</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000804">Angiotensin II</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001557">Benzenesulfonates</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004743">Enkephalin, Leucine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012545">Schiff Bases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014867">Water</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS403113</OtherID><OtherID Source="NLM">PMC3435877</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>6</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>6</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>9</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.2968</ArticleId><ArticleId IdType="pubmed">22707160</ArticleId><ArticleId IdType="pmc">PMC3435877</ArticleId><ArticleId IdType="mid">NIHMS403113</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">22431464</PMID><DateCreated><Year>2012</Year><Month>03</Month><Day>20</Day></DateCreated><DateCompleted><Year>2012</Year><Month>07</Month><Day>03</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1096-9888</ISSN><JournalIssue CitedMedium="Internet"><Volume>47</Volume><Issue>3</Issue><PubDate><Year>2012</Year><Month>Mar</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Collision-induced dissociation of oligonucleotide anions fully modified at the 2'-position of the ribose: 2'-F/-H and 2'-F/-H/-OMe mix-mers.</ArticleTitle><Pagination><MedlinePgn>364-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/jms.2044</ELocationID><Abstract><AbstractText>Gas-phase dissociation of various 2'-position modified oligonucleotide anions has been studied as a function of precursor ion charge state using ion trap and low energy beam-type collision-induced dissociation (CID). For a completely 2'-O-methyl modified 6-mer, all possible dissociation channels along the phosphodiester linkage, generating complementary (a-B)/w-, b/x-, c/y-, d/z-ion series, were observed with no single dominant type of dissociation pathway. Full sequence information was generated from each charge state via ion trap CID. More sequential fragmentation was noted under beam-type CID conditions. Comparison with model DNA, in which all 2'-OH groups are converted to 2'-H, and RNA anions suggests that the 2'-OMe substitution stabilizes the phosphodiester linkage with respect to fragmentation relative to both DNA and RNA oligomers. For modified mix-mer anions, comprised of DNA nucleotides and 2'-F substituted nucleotides or a mixture of DNA nucleotides and 2'-O-methyl (2'-OMe) and 2'-F substituted nucleotides, 3'-side backbone cleavage was found to be inhibited by the 2'-OMe or 2'-F modification on the nucleotides under ion trap CID conditions. Thus, the sequence information was limited to the a-Base/w-fragments from the cleavage of the 3' C-O bond of the 2'-H (DNA) nucleotides. Under beam-type CID conditions, limited additional cleavage adjacent to 2'-OMe substituted nucleotides was noted but 2'-F modified residues remained resistant to cleavage.</AbstractText><CopyrightInformation>Copyright © 2012 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gao</LastName><ForeName>Yang</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>63231-63-0</RegistryNumber><NameOfSubstance UI="D012313">RNA</NameOfSubstance></Chemical><Chemical><RegistryNumber>681HV46001</RegistryNumber><NameOfSubstance UI="D012266">Ribose</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012313">RNA</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012266">Ribose</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>3</Month><Day>21</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>3</Month><Day>21</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>7</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.2044</ArticleId><ArticleId IdType="pubmed">22431464</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">22408389</PMID><DateCreated><Year>2012</Year><Month>3</Month><Day>12</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>312</Volume><PubDate><Year>2012</Year><Month>Feb</Month><Day>15</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Dissociation Behavior of Tryptic and Intramolecular Disulfide-linked Peptide Ions Modified in the Gas Phase via Ion/Ion Reactions.</ArticleTitle><Pagination><MedlinePgn>195-200</MedlinePgn></Pagination><Abstract><AbstractText>Protonated tryptic peptides, somatostatin-14, and oxytocin have been subjected to reactions with doubly deprotonated 4-formyl-1,3-benzenedisulfonic acid (FBDSA) in the gas phase. The major product is a negatively-charged complex comprised of the peptide and the reagent. Upon dehydration of the complex, all peptides show evidence for Schiff base formation involving a primary amine of the peptide. Some peptides also show evidence for the formation of a relatively strong electrostatic interaction without Schiff base formation (i.e., a mixture of isomeric precursor ions is generated upon dehydration of the complex). Ion trap collision-induced dissociation of the dehydration products from all peptides examined gave distinct product ion spectra relative to the deprotonated and protonated forms of the peptides. The distinct behavior of the modified ions is attributed to the highly stable charge carrying sulfonate group, which tends to inhibit intramolecular proton transfer in negatively charged species. Modified anions of the peptides with an intramolecular disulfide linkage show evidence for cleavage of both the disulfide linkage and an amide bond in the loop defined by the disulfide bond. Modification of protonated peptides via charge inversion with FBDSA is a useful means for generating novel and distinct ion-types that can provide complementary structural information upon subsequent activation to that obtained from dissociation of protonated or deprotonated forms of the peptide.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry M</ForeName><Initials>KM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-18</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>3</Month><Day>13</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>3</Month><Day>13</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>3</Month><Day>13</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2011.07.002</ArticleId><ArticleId IdType="pubmed">22408389</ArticleId><ArticleId IdType="pmc">PMC3297198</ArticleId><ArticleId IdType="mid">NIHMS316927</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">22302588</PMID><DateCreated><Year>2012</Year><Month>04</Month><Day>20</Day></DateCreated><DateCompleted><Year>2012</Year><Month>06</Month><Day>28</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>4</Issue><PubDate><Year>2012</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Dipolar DC collisional activation in a “stretched” 3-D ion trap: the effect of higher order fields on rf-heating.</ArticleTitle><Pagination><MedlinePgn>736-44</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-011-0303-9</ELocationID><Abstract><AbstractText>Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to ‘rf-heating’ and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2011</Year><Month>10</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2011</Year><Month>11</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2011</Year><Month>11</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2012</Year><Month>2</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2012</Year><Month>2</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2012</Year><Month>2</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>2</Month><Day>4</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-011-0303-9</ArticleId><ArticleId IdType="pubmed">22302588</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">22125416</PMID><DateCreated><Year>2011</Year><Month>11</Month><Day>29</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>308</Volume><Issue>1</Issue><PubDate><Year>2011</Year><Month>Nov</Month><Day>1</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Cleavage of Multiple Disulfide Bonds in Insulin via Gold Cationization and Collision-induced Dissociation.</ArticleTitle><Pagination><MedlinePgn>133-136</MedlinePgn></Pagination><Abstract><AbstractText>Intact bovine insulin, with its two chains linked via two disulfide linkages, has been used as a model system to study the incorporation of one or more gold cations as means for facilitating the cleavage of multiple disulfide bonds in a tandem mass spectrometry experiment. Gas-phase ion/ion reactions involving Au(I)Cl(2) (-) or Au(III)Cl(4) (-) were used to incorporate either one or two gold cations into multiply-protonated insulin cations, followed by ion trap collision-induced dissociation (CID) of the products. The incorporation of a single gold cation followed by CID showed little evidence for disulfide bond cleavage. Rather, the CID spectra were similar to those acquired for the same charge state with only excess protons present. However, the incorporation of two gold cations, regardless of oxidation state, resulted in efficient cleavage of the disulfide bonds connecting the two chains of insulin. Furthermore, ion trap CID of the insulin complexes containing two gold cations showed more sequence information compared to the complexes containing only one gold cation or no gold cations. The partitioning of the gold cations between the two chains upon CID proved to be largely asymmetric, as both gold cations tended to stay together. There appeared to be a slight preference for both gold cations to partition into the B-chain. However, the relatively low contribution from single chain ions with only one gold ion suggests a degree of cooperativity in the overall mechanism for separation of the two chains.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, USA 47907-2084.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>11</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>11</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>11</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2011.08.013</ArticleId><ArticleId IdType="pubmed">22125416</ArticleId><ArticleId IdType="pmc">PMC3223978</ArticleId><ArticleId IdType="mid">NIHMS319633</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">22081458</PMID><DateCreated><Year>2012</Year><Month>01</Month><Day>24</Day></DateCreated><DateCompleted><Year>2012</Year><Month>03</Month><Day>28</Day></DateCompleted><DateRevised><Year>2014</Year><Month>10</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>2</Issue><PubDate><Year>2012</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Solution versus gas-phase modification of peptide cations with NHS-ester reagents.</ArticleTitle><Pagination><MedlinePgn>282-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-011-0291-9</ELocationID><Abstract><AbstractText>A comparison between solution and gas phase modification of primary amine sites in model peptide cations with N-hydroxysuccinimide (NHS) ester reagents is presented. In all peptides, the site of modification in solution was directed to the N-terminus by conducting reactions at pH=5, whereas for the same peptides, a lysine residue was preferentially modified in the gas phase. The difference in pKa values of the N-terminus and ε-amino group of the lysine allows for a degree of control over sites of protonation of the peptides in aqueous solution. With removal of the dielectric and multiple charging of the peptide ions in the gas phase, the accommodation of excess charge can affect the preferred sites of reaction. Interaction of the lone pair of the primary nitrogen with a proton reduces its nucleophilicity and, as a result, its reactivity towards NHS-esters. While no evidence for reaction of the N-terminus with sulfo-NHS-acetate was noted in the model peptide cations, a charge inversion experiment using bis[sulfosuccinimidyl] suberate, a cross-linking reagent with two sulfo-NHS-ester functionalities, showed modification of the N-terminus. Hence, an unprotonated N-terminus can serve as a nucleophile to displace NHS, which suggests that its lack of reactivity with the peptide cations is likely due to the participation of the N-terminus in solvating excess charge.</AbstractText><CopyrightInformation>© American Society for Mass Spectrometry, 2011</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Barefoot</LastName><ForeName>Nathan Z</ForeName><Initials>NZ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-18</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>11</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003432">Cross-Linking Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C465543">N-hydroxysulfosuccimide</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013388">Succinimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>82436-77-9</RegistryNumber><NameOfSubstance UI="C035760">bis(sulfosuccinimidyl)suberate</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Mar;39(3):322-8</RefSource><PMID Version="1">15039940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1991 Dec 25;266(36):24413-9</RefSource><PMID Version="1">1761543</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Immunol. 1999 Apr 1;162(7):4030-6</RefSource><PMID Version="1">10201925</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Bioconjug Chem. 2006 Jan-Feb;17(1):179-88</RefSource><PMID Version="1">16417267</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 1;78(13):4702-8</RefSource><PMID Version="1">16808485</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Mar 21;10(11):1512-22</RefSource><PMID Version="1">18327307</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Nov 15;80(22):8501-8</RefSource><PMID Version="1">18947190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1433-41</RefSource><PMID Version="1">19199571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Jun;21(6):890-8</RefSource><PMID Version="1">20080046</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 May;22(5):912-21</RefSource><PMID Version="1">21472526</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003432">Cross-Linking Reagents</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013388">Succinimides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS343059</OtherID><OtherID Source="NLM">PMC3265610</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2011</Year><Month>9</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2011</Year><Month>10</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2011</Year><Month>10</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>11</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>11</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>11</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>3</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-011-0291-9</ArticleId><ArticleId IdType="pubmed">22081458</ArticleId><ArticleId IdType="pmc">PMC3265610</ArticleId><ArticleId IdType="mid">NIHMS343059</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">22050083</PMID><DateCreated><Year>2012</Year><Month>01</Month><Day>16</Day></DateCreated><DateCompleted><Year>2012</Year><Month>05</Month><Day>01</Day></DateCompleted><DateRevised><Year>2014</Year><Month>10</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>84</Volume><Issue>1</Issue><PubDate><Year>2012</Year><Month>Jan</Month><Day>3</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>98-105</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac201704a</ELocationID><Abstract><AbstractText>Uridine-disphosphate glucuronosyl transferase (UGT) enzymes catalyze the formation of glucuronide conjugates of phase II metabolism. Methods for absolute quantification of UGT1A1 and UGT1A6 were previously established utilizing stable isotope peptide internal standards with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The current method expands upon this by quantifying eight UGT1A isoforms by nanobore high-performance liquid chromatography (HPLC) coupled with a linear ion trap time-of-flight mass spectrometer platform. Recombinant enzyme digests of each of the isoforms were used to determine assay linearity and detection limits. Enzyme expression level in human liver, kidney, and intestinal microsomal protein was determined by extrapolation from spiked stable isotope standards. Intraday and interday variability was &lt;25% for each of the enzyme isoforms. Enzyme expression varied from 3 to 96 pmol/mg protein in liver and intestinal microsomal protein digests. Expression levels of UGT1A7, 1A8, and 1A10 were below detection limits (&lt;1 pmol/mg protein) in human liver microsome (HLMs). In kidney microsomes the expression of UGT1A3 was below detection limits, but levels of UGT1A4, 1A7, 1A9, and 1A10 protein were higher relative to that of liver, suggesting that renal glucuronidation could be a significant factor in renal elimination of glucuronide conjugates. This novel method allows quantification of all nine UGT1A isoforms, many previously not amenable to measurement with traditional methods such as immunologically based assays. Quantitative measurement of proteins involved in drug disposition, such as the UGTs, significantly improves the ability to evaluate and interpret in vitro and in vivo studies in drug development.</AbstractText><CopyrightInformation>© 2011 American Chemical Society</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Harbourt</LastName><ForeName>David E</ForeName><Initials>DE</Initials><AffiliationInfo><Affiliation>Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fallon</LastName><ForeName>John K</ForeName><Initials>JK</Initials></Author><Author ValidYN="Y"><LastName>Ito</LastName><ForeName>Shinya</ForeName><Initials>S</Initials></Author><Author ValidYN="Y"><LastName>Baba</LastName><ForeName>Takashi</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>Ritter</LastName><ForeName>Joseph K</ForeName><Initials>JK</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Smith</LastName><ForeName>Philip C</ForeName><Initials>PC</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>S10 RR024595-01</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>T32-ES007126</GrantID><Acronym>ES</Acronym><Agency>NIEHS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>12</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.4.1.-</RegistryNumber><NameOfSubstance UI="C418331">UGT1A1 enzyme</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.4.1.17</RegistryNumber><NameOfSubstance UI="D014453">Glucuronosyltransferase</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Pharmacol Toxicol. 2000;40:581-616</RefSource><PMID Version="1">10836148</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17235-40</RefSource><PMID Version="1">19805096</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Pharm Biomed Anal. 2000 Oct;23(5):897-907</RefSource><PMID Version="1">11022914</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Pharmacol. 2001 Mar;59(3):405-14</RefSource><PMID Version="1">11179432</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2002 Sep-Oct;1(5):459-65</RefSource><PMID Version="1">12645918</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Pharmacol Exp Ther. 2003 Oct;307(1):117-28</RefSource><PMID Version="1">12944498</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2004 Apr;4(4):1175-86</RefSource><PMID Version="1">15048997</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 May-Jun;3(3):644-52</RefSource><PMID Version="1">15253448</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Toxicol Appl Pharmacol. 2004 Sep 15;199(3):354-63</RefSource><PMID Version="1">15364550</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Oct;3(10):998-1008</RefSource><PMID Version="1">15284338</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Prog Nucleic Acid Res Mol Biol. 1995;51:305-38</RefSource><PMID Version="1">7659777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Clin Chem. 1996 Oct;42(10):1676-82</RefSource><PMID Version="1">8855153</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Oct;31(10):1185-7</RefSource><PMID Version="1">8916427</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Pharmacol. 1997 Aug;52(2):212-20</RefSource><PMID Version="1">9271343</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Gastroenterology. 1999 Jan;116(1):149-60</RefSource><PMID Version="1">9869613</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Chromatogr A. 2004 Oct 8;1051(1-2):19-23</RefSource><PMID Version="1">15532551</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Dispos. 2005 Jan;33(1):139-46</RefSource><PMID Version="1">15470161</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Jan-Feb;4(1):101-8</RefSource><PMID Version="1">15707364</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Pharmacol Exp Ther. 2005 Jun;313(3):1331-9</RefSource><PMID Version="1">15761114</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Aug 1;77(15):4947-54</RefSource><PMID Version="1">16053308</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Methods. 2005 Aug;2(8):587-9</RefSource><PMID Version="1">16094383</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Jan 2;830(1):105-13</RefSource><PMID Version="1">16290160</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2006 Mar;6(6):1934-47</RefSource><PMID Version="1">16479536</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2006 Apr;5(4):573-88</RefSource><PMID Version="1">16332733</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Dispos. 2006 May;34(5):880-6</RefSource><PMID Version="1">16467132</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Apr 14;312(5771):212-7</RefSource><PMID Version="1">16614208</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Exp Bot. 2006;57(7):1501-8</RefSource><PMID Version="1">16574745</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2006;20(23):3557-65</RefSource><PMID Version="1">17091533</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(2):212-8</RefSource><PMID Version="1">17171781</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(5):691-8</RefSource><PMID Version="1">17279605</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Dispos. 2007 Mar;35(3):371-80</RefSource><PMID Version="1">17151191</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Clin Pharmacol Ther. 2007 Mar;81(3):392-400</RefSource><PMID Version="1">17339869</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Pharmacokinet. 2007 Jun;22(3):152-61</RefSource><PMID Version="1">17603215</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Bioanal Chem. 2007 Oct;389(4):1017-31</RefSource><PMID Version="1">17668192</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 2008 May 15;376(2):252-7</RefSource><PMID Version="1">18342611</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2008 Jul;43(7):908-15</RefSource><PMID Version="1">18563864</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Dispos. 2008 Aug;36(8):1461-4</RefSource><PMID Version="1">18480185</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Pharm Res. 2008 Jun;25(6):1469-83</RefSource><PMID Version="1">18219561</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2008 Oct;8(20):4186-96</RefSource><PMID Version="1">18792928</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Dispos. 2009 Jan;37(1):32-40</RefSource><PMID Version="1">18838504</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Hum Mutat. 2009 Apr;30(4):677-87</RefSource><PMID Version="1">19204906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Lett. 2008 Aug;2(3):210-22</RefSource><PMID Version="1">19356096</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Drug Metab Dispos. 2009 Aug;37(8):1759-68</RefSource><PMID Version="1">19439486</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Hum Mutat. 2000 Oct;16(4):297-306</RefSource><PMID Version="1">11013440</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002138">Calibration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002851">Chromatography, High Pressure Liquid</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014453">Glucuronosyltransferase</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007422">Intestines</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000201">enzymology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007527">Isoenzymes</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007668">Kidney</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000201">enzymology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008099">Liver</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000201">enzymology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS338944</OtherID><OtherID Source="NLM">PMC3259189</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>12</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>11</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>11</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>5</Month><Day>2</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac201704a</ArticleId><ArticleId IdType="pubmed">22050083</ArticleId><ArticleId IdType="pmc">PMC3259189</ArticleId><ArticleId IdType="mid">NIHMS338944</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">22016004</PMID><DateCreated><Year>2011</Year><Month>12</Month><Day>21</Day></DateCreated><DateCompleted><Year>2012</Year><Month>03</Month><Day>01</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>1</Issue><PubDate><Year>2012</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Vapor treatment of electrospray droplets: evidence for the folding of initially denatured proteins on the sub-millisecond time-scale.</ArticleTitle><Pagination><MedlinePgn>88-101</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-011-0258-x</ELocationID><Abstract><AbstractText>The exposure of electrospray droplets generated from either highly acidic or highly basic solutions to basic or acidic vapors, respectively, admitted into the counter-current drying gas, has been shown to lead to significant changes in the observed charge state distributions of proteins. In both cases, distributions of charge states changed from relatively high charge states, indicative of largely denatured proteins, to lower charge state distributions that are more consistent with native protein conformations. Ubiquitin, cytochrome c, myoglobin, and carbonic anhydrase were used as model systems. In some cases, bimodal distributions were observed that are not noted under any solution pH conditions. The extent to which changes in charge state distributions occur depends upon the initial solution pH and the pK(a) or pK(b) of the acidic or basic reagent, respectively. The evolution of charged droplets in the sampling region of the mass spectrometer inlet aperture, where the vapor exposure takes place, occurs within roughly 1 ms. The observed changes in the spectra, therefore, are a function of the magnitude of the pH change as well as the rates at which the proteins can respond to this change. The exposure of electrospray droplets in this fashion may provide means for accessing transient folding states for further characterization by mass spectrometry.</AbstractText><CopyrightInformation>© American Society for Mass Spectrometry, 2011</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>DeMuth</LastName><ForeName>J Corinne</ForeName><Initials>JC</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>10</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010880">Piperidines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>67I85E138Y</RegistryNumber><NameOfSubstance UI="C032727">piperidine</NameOfSubstance></Chemical><Chemical><RegistryNumber>Q40Q9N063P</RegistryNumber><NameOfSubstance UI="D019342">Acetic Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019342">Acetic Acid</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010880">Piperidines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011487">Protein Conformation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011489">Protein Denaturation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D058849">Protein Refolding</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2011</Year><Month>8</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2011</Year><Month>9</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2011</Year><Month>9</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>10</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>10</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>10</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2012</Year><Month>3</Month><Day>2</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-011-0258-x</ArticleId><ArticleId IdType="pubmed">22016004</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21953251</PMID><DateCreated><Year>2011</Year><Month>09</Month><Day>28</Day></DateCreated><DateCompleted><Year>2011</Year><Month>12</Month><Day>15</Day></DateCompleted><DateRevised><Year>2014</Year><Month>10</Month><Day>22</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><Issue>9</Issue><PubDate><Year>2011</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Adaptation of a 3-D quadrupole ion trap for dipolar DC collisional activation.</ArticleTitle><Pagination><MedlinePgn>1486-92</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-011-0183-z</ELocationID><Abstract><AbstractText>Means to allow for the application of a dipolar DC pulse to the end-cap electrodes of a three-dimensional (3-D) quadrupole ion trap for as short as a millisecond to as long as hundreds of milliseconds are described. The implementation of dipolar DC does not compromise the ability to apply AC waveforms to the end-cap electrodes at other times in the experiment. Dipolar DC provides a nonresonant means for ion acceleration by displacing ions from the center of the ion trap where they experience stronger rf electric fields, which increases the extent of micro-motion. The evolution of the product ion spectrum to higher generation products with time, as shown using protonated leucine enkephalin as a model protonated peptide, illustrates the broad-band nature of the activation. Dipolar DC activation is also shown to be effective as an ion heating approach in mimicking high amplitude short time excitation (HASTE)/pulsed Q dissociation (PQD) resonance excitation experiments that are intended to enhance the likelihood for observing low m/z products in ion trap tandem mass spectrometry.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Santini</LastName><ForeName>Robert E</ForeName><Initials>RE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>06</Month><Day>23</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>58822-25-6</RegistryNumber><NameOfSubstance UI="D004743">Enkephalin, Leucine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2003 Jul;14(7):785-9</RefSource><PMID Version="1">12837601</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Nov;15(11):1616-28</RefSource><PMID Version="1">15519229</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Feb;22(2):197-206</RefSource><PMID Version="1">21472579</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jul 15;79(14):5468-73</RefSource><PMID Version="1">17571856</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2011 Mar-Apr;30(2):298-320</RefSource><PMID Version="1">20669325</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Jan;22(1):3-12</RefSource><PMID Version="1">21472539</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004743">Enkephalin, Leucine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008958">Models, Molecular</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS308532</OtherID><OtherID Source="NLM">PMC3184854</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2011</Year><Month>5</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2011</Year><Month>5</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2011</Year><Month>5</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>6</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>9</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>9</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>12</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-011-0183-z</ArticleId><ArticleId IdType="pubmed">21953251</ArticleId><ArticleId IdType="pmc">PMC3184854</ArticleId><ArticleId IdType="mid">NIHMS308532</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">21927573</PMID><DateCreated><Year>2011</Year><Month>9</Month><Day>19</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>306</Volume><Issue>2-3</Issue><PubDate><Year>2011</Year><Month>Sep</Month><Day>15</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>DC Potentials Applied to an End-cap Electrode of a 3-D Ion Trap for Enhanced MS Functionality.</ArticleTitle><Pagination><MedlinePgn>114-122</MedlinePgn></Pagination><Abstract><AbstractText>The effects of the application of various DC magnitudes and polarities to an end-cap of a 3-D quadrupole ion trap throughout a mass spectrometry experiment were investigated. Application of a monopolar DC field was achieved by applying a DC potential to the exit end-cap electrode, while maintaining the entrance end-cap electrode at ground potential. Control over the monopolar DC magnitude and polarity during time periods associated with ion accumulation, mass analysis, ion isolation, ion/ion reaction, and ion activation can have various desirable effects. Included amongst these are increased ion capture efficiency, increased ion ejection efficiency during mass analysis, effective isolation of ions using lower AC resonance ejection amplitudes, improved temporal control of the overlap of oppositely charged ion populations, and the performance of "broad-band" collision induced dissociation (CID). These results suggest general means to improve the performance of the 3-D ion trap in a variety of mass spectrometry and tandem mass spectrometry experiments.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials><AffiliationInfo><Affiliation>Department of Chemistry Purdue University West Lafayette, IN 47907.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xu</LastName><ForeName>Wei</ForeName><Initials>W</Initials></Author><Author ValidYN="Y"><LastName>Ouyang</LastName><ForeName>Zheng</ForeName><Initials>Z</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>9</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>9</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>9</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2010.09.022</ArticleId><ArticleId IdType="pubmed">21927573</ArticleId><ArticleId IdType="pmc">PMC3172158</ArticleId><ArticleId IdType="mid">NIHMS241600</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">21879059</PMID><DateCreated><Year>2011</Year><Month>10</Month><Day>12</Day></DateCreated><DateCompleted><Year>2012</Year><Month>02</Month><Day>15</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1463-9084</ISSN><JournalIssue CitedMedium="Internet"><Volume>13</Volume><Issue>41</Issue><PubDate><Year>2011</Year><Month>Nov</Month><Day>7</Day></PubDate></JournalIssue><Title>Physical chemistry chemical physics : PCCP</Title><ISOAbbreviation>Phys Chem Chem Phys</ISOAbbreviation></Journal><ArticleTitle>The effect of reagent charge state on the charge inversion efficiency of singly charged polyatomic ions in the gas phase.</ArticleTitle><Pagination><MedlinePgn>18418-27</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1039/c1cp21581g</ELocationID><Abstract><AbstractText>A variety of combinations of oppositely charged ions have been reacted to examine the role of the charge state from a multiply protonated or multiply deprotonated reagent ion on the efficiency of conversion of a singly charged ion of opposite polarity to a singly charged ion of the same polarity as the reagent. Maximum efficiencies on the order of tens of percent were observed. A threshold for charge inversion was noted in all cases and, with one exception, a clear decrease in efficiency was also noted at high charge states. A model was developed to predict charge inversion efficiency based on charge states, cross-sections of the reactants, and relevant thermodynamic ion affinity values for the reactants and products. The model predicts a threshold for charge inversion, although the prediction does not match the observed threshold quantitatively. This discrepancy is likely due to a simplifying assumption that is not justified on a quantitative basis but which does reproduce the qualitative trend. The model does not predict the major decrease in efficiency at high charge states. However, calculations show that the kinetic energies of the charge inversion products can lead to significant scattering losses at high charge states of the ion-ion collision complex.</AbstractText><CopyrightInformation>This journal is © the Owner Societies 2011</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry M</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hilger</LastName><ForeName>Ryan T</ForeName><Initials>RT</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>08</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Phys Chem Chem Phys</MedlineTA><NlmUniqueID>100888160</NlmUniqueID><ISSNLinking>1463-9076</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>8</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="epublish"><Year>2011</Year><Month>10</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>9</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>9</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>9</Month><Day>1</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1039/c1cp21581g</ArticleId><ArticleId IdType="pubmed">21879059</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">21818811</PMID><DateCreated><Year>2011</Year><Month>08</Month><Day>05</Day></DateCreated><DateCompleted><Year>2011</Year><Month>10</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1097-0231</ISSN><JournalIssue CitedMedium="Internet"><Volume>25</Volume><Issue>17</Issue><PubDate><Year>2011</Year><Month>Sep</Month><Day>15</Day></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>2500-10</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/rcm.5152</ELocationID><Abstract><AbstractText>Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD).</AbstractText><CopyrightInformation>Copyright © 2011 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Webb</LastName><ForeName>Ian K</ForeName><Initials>IK</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>8</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>8</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>8</Month><Day>6</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/rcm.5152</ArticleId><ArticleId IdType="pubmed">21818811</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">21472580</PMID><DateCreated><Year>2011</Year><Month>04</Month><Day>07</Day></DateCreated><DateCompleted><Year>2011</Year><Month>07</Month><Day>26</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><Issue>2</Issue><PubDate><Year>2011</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>A new approach to IRMPD using selective ion dissociation in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>207-13</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-010-0039-y</ELocationID><Abstract><AbstractText>Infrared multiphoton photodissociation (IRMPD) in a quadrupole ion trap is not selective for a parent ion. Product ions are decreased in abundance by continuous sequential dissociation and may be lost below the low mass cut-off. The IRMPD process is made selective by resonantly exciting trapped ions into an axially offset laser path. Product ions form and collisionally relax out of the laser path to accumulate in the center of the trap. The technique, termed selective broadband (SB) IRMPD, limits sequential dissociation to preserve first generation product ion abundance. The abundances of larger product ions are maximized by completely dissociating the parent ion, but continuous sequential dissociation does not form small product ions below the low mass cut-off associated with conventional IRMPD. Smaller product ions are further increased in abundance in another tandem mass spectrum by performing sequential stages of SB-IRMPD, adjusting the trapping rf amplitude to dissociate larger product ions at the same q(z) range. Thermal assistance is used to perform SB-IRMPD at higher bath gas pressures for increased sensitivity.</AbstractText><CopyrightInformation>© American Society for Mass Spectrometry, 2011</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Newsome</LastName><ForeName>G Asher</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>01</Month><Day>15</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2010</Year><Month>9</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2010</Year><Month>12</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2010</Year><Month>12</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>1</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-010-0039-y</ArticleId><ArticleId IdType="pubmed">21472580</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21472539</PMID><DateCreated><Year>2011</Year><Month>04</Month><Day>07</Day></DateCreated><DateCompleted><Year>2011</Year><Month>07</Month><Day>25</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><Issue>1</Issue><PubDate><Year>2011</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion/neutral, ion/electron, ion/photon, and ion/ion interactions in tandem mass spectrometry: do we need them all? Are they enough?</ArticleTitle><Pagination><MedlinePgn>3-12</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-010-0004-9</ELocationID><Abstract><AbstractText>A range of strategies and tools have been developed to facilitate the determination of primary structures of analyte molecules of interest via tandem mass spectrometry (MS/MS). The two main factors that determine the primary structural information present in an MS/MS spectrum are the type of ion generated from the analyte molecule and the dissociation method. The ion type subjected to dissociation is determined by the ionization method/conditions and ion transformation processes that might take place after initial gas-phase ion formation. Furthermore, the range of analyte-related ion types can be expanded via derivatization reactions prior to mass spectrometry. Dissociation methods include those that simply alter the population of internal states of the mass-selected ion (i.e., activation methods like collision-induced dissociation) as well as processes that rely on the transformation of the ion type prior to dissociation (e.g., electron capture dissociation). A variety of ion interactions have been studied for the purpose of ion dissociation and ion transformation, including ion/neutral, ion/photon, ion/electron, and ion/ion interactions. A wide range of phenomena have been observed, many of which have been explored/developed as means for structural analysis. The techniques arising from these phenomena are discussed within the context of the elements of structural determination in tandem mass spectrometry: ion-type definition and dissociation. Unique aspects of the various ion interactions are emphasized along with any barriers to widespread implementation.</AbstractText><CopyrightInformation>© American Society for Mass Spectrometry, 2011</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA. mcluckey@purdue.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>01</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1347-56</RefSource><PMID Version="1">19140748</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Mar;20(3):377-84</RefSource><PMID Version="1">19027323</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 May-Jun;28(3):425-47</RefSource><PMID Version="1">19241462</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 May-Jun;28(3):390-424</RefSource><PMID Version="1">19294735</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 Sep-Oct;28(5):785-815</RefSource><PMID Version="1">19016300</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2009 Sep;23(17):2647-55</RefSource><PMID Version="1">19630027</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2009 Aug;44(8):1211-23</RefSource><PMID Version="1">19466707</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2009;48(39):7130-7</RefSource><PMID Version="1">19610000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Nov 1;81(21):8669-76</RefSource><PMID Version="1">19757794</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Oct 15;72(20):4778-84</RefSource><PMID Version="1">11055690</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Feb 14;123(6):1184-92</RefSource><PMID Version="1">11456672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2004 Jul 14;126(27):8585-9</RefSource><PMID Version="1">15238018</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2004 Sep 13;43(36):4791-4</RefSource><PMID Version="1">15366089</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Oct;39(10):1091-112</RefSource><PMID Version="1">15481084</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Apr;31(4):339-50</RefSource><PMID Version="1">8799282</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Aug;31(8):831-42</RefSource><PMID Version="1">8799309</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Mar-Apr;24(2):135-67</RefSource><PMID Version="1">15389858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2005;19(15):2163-71</RefSource><PMID Version="1">15988733</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3055-61</RefSource><PMID Version="1">16642993</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Sep 15;78(18):6564-72</RefSource><PMID Version="1">16970335</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):190-208</RefSource><PMID Version="1">18191578</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015394">Molecular Structure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D017785">Photons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS343062</OtherID><OtherID Source="NLM">PMC3240857</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2010</Year><Month>7</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2010</Year><Month>9</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2010</Year><Month>9</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>1</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>7</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-010-0004-9</ArticleId><ArticleId IdType="pubmed">21472539</ArticleId><ArticleId IdType="pmc">PMC3240857</ArticleId><ArticleId IdType="mid">NIHMS343062</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21472526</PMID><DateCreated><Year>2011</Year><Month>04</Month><Day>07</Day></DateCreated><DateCompleted><Year>2011</Year><Month>07</Month><Day>26</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>22</Volume><Issue>5</Issue><PubDate><Year>2011</Year><Month>May</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Intra- and inter-molecular cross-linking of peptide ions in the gas phase: reagents and conditions.</ArticleTitle><Pagination><MedlinePgn>912-21</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s13361-011-0103-2</ELocationID><Abstract><AbstractText>Intra-molecular and inter-molecular cross-linking of protonated polypeptide ions in the gas phase via ion/ion reactions have been demonstrated using N-hydroxysulfosuccinimide (sulfo-NHS)- based reagent anions. The initial step in the ion/ion reaction involves the formation of a long-lived complex between the peptide and reagent, which is a prerequisite for the covalent bioconjugation chemistry. The sulfonate groups on the NHS rings of the homo-bifunctional cross-linking reagents have high affinity for the protonated sites in the peptide and, therefore, facilitate the long-lived complex formation. In addition to the formation of a long-lived chemical complex, intra-molecular cross-linking also requires two unprotonated primary amine sites within a molecule where the covalent modification takes place. Alternatively, inter-molecular cross-linking demands the availability of one neutral primary amine site in each of the two peptides that are being cross-linked. Nucleophilic displacement of two sulfo-NHS groups by the amine functionalities in the peptide is a signature of the covalent cross-linking chemistry in the gas phase. Upon removal of the two sulfo-NHS groups, two amide bonds are formed between an unprotonated, primary amine group of a lysine side chain in the peptide and the carboxyl group in the reagent.</AbstractText><CopyrightInformation>© American Society for Mass Spectrometry, 2011</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 47907-2084, West Lafayette, IN, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>03</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003432">Cross-Linking Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013388">Succinimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>81069-02-5</RegistryNumber><NameOfSubstance UI="C035759">3,3'-dithiobis(sulfosuccinimidyl propionate)</NameOfSubstance></Chemical><Chemical><RegistryNumber>82436-77-9</RegistryNumber><NameOfSubstance UI="C035760">bis(sulfosuccinimidyl)suberate</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2005;11(5):525-34</RefSource><PMID Version="1">16322659</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2006 Jul-Aug;25(4):663-82</RefSource><PMID Version="1">16477643</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4175-83</RefSource><PMID Version="1">16771548</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2006 Jul;41(7):939-49</RefSource><PMID Version="1">16810639</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2007 Jul;7(14):2371-4</RefSource><PMID Version="1">17623297</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2008 Jun 20;283(25):17314-23</RefSource><PMID Version="1">18430727</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Nov 15;80(22):8501-8</RefSource><PMID Version="1">18947190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1433-41</RefSource><PMID Version="1">19199571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>EMBO J. 2010 Feb 17;29(4):717-26</RefSource><PMID Version="1">20094031</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Apr 1;82(7):2636-42</RefSource><PMID Version="1">20210330</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Jun;21(6):890-8</RefSource><PMID Version="1">20080046</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Dec 29;132(51):18248-57</RefSource><PMID Version="1">21128662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2011 Jan;22(1):3-12</RefSource><PMID Version="1">21472539</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 Apr;12(4):399-409</RefSource><PMID Version="1">11322186</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003432">Cross-Linking Reagents</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013388">Succinimides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS343056</OtherID><OtherID Source="NLM">PMC3241442</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2011</Year><Month>1</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2011</Year><Month>2</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2011</Year><Month>2</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>3</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>4</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>7</Month><Day>27</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/s13361-011-0103-2</ArticleId><ArticleId IdType="pubmed">21472526</ArticleId><ArticleId IdType="pmc">PMC3241442</ArticleId><ArticleId IdType="mid">NIHMS343056</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21456599</PMID><DateCreated><Year>2011</Year><Month>04</Month><Day>29</Day></DateCreated><DateCompleted><Year>2011</Year><Month>08</Month><Day>24</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>83</Volume><Issue>9</Issue><PubDate><Year>2011</Year><Month>May</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Chemical noise reduction via mass spectrometry and ion/ion charge inversion: amino acids.</ArticleTitle><Pagination><MedlinePgn>3252-5</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac200439k</ELocationID><Abstract><AbstractText>Charge inversion ion/ion reactions can provide a significant reduction in chemical noise associated with mass spectra derived from complex mixtures for species composed of both acidic and basic sites, provided the ions derived from the matrix largely undergo neutralization. Amino acids constitute an important class of amphoteric compounds that undergo relatively efficient charge inversion. Precipitated plasma constitutes a relatively complex biological matrix that yields detectable signals at essentially every mass-to-charge value over a wide range. This chemical noise can be dramatically reduced using multiply charged reagent ions that can invert the charge of species amenable to the transfer of multiple charges upon a single interaction and by detecting product ions of opposite polarity. The principle is illustrated here with amino acids present in precipitated plasma subjected to ionization in the positive mode, reaction with anions derived from negative nanoelectrospray ionization of poly (amido amine) dendrimer generation 3.5, and mass analysis in the negative ion mode.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry M</ForeName><Initials>KM</Initials></Author><Author ValidYN="Y"><LastName>LeBlanc</LastName><ForeName>Yves C</ForeName><Initials>YC</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016422">Letter</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2011</Year><Month>04</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C104700">PAMAM Starburst</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2011 Feb 28;25(4):476-82</RefSource><PMID Version="1">21259355</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Electrophoresis. 2001 Nov;22(19):4129-38</RefSource><PMID Version="1">11824633</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anticancer Res. 1995 Mar-Apr;15(2):507-10</RefSource><PMID Version="1">7763031</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 1;79(21):8067-75</RefSource><PMID Version="1">17918906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Nov 1;81(21):8669-76</RefSource><PMID Version="1">19757794</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cancer Res. 2010 Nov 1;70(21):8309-18</RefSource><PMID Version="1">20959483</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000596">Amino Acids</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS287121</OtherID><OtherID Source="NLM">PMC3084898</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2011</Year><Month>4</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>4</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>4</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>8</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac200439k</ArticleId><ArticleId IdType="pubmed">21456599</ArticleId><ArticleId IdType="pmc">PMC3084898</ArticleId><ArticleId IdType="mid">NIHMS287121</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21259355</PMID><DateCreated><Year>2011</Year><Month>01</Month><Day>24</Day></DateCreated><DateCompleted><Year>2011</Year><Month>05</Month><Day>02</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1097-0231</ISSN><JournalIssue CitedMedium="Internet"><Volume>25</Volume><Issue>4</Issue><PubDate><Year>2011</Year><Month>Feb</Month><Day>28</Day></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Charge inversion via concurrent cation and anion transfer: application to corticosteroids.</ArticleTitle><Pagination><MedlinePgn>476-82</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/rcm.4880</ELocationID><Abstract><AbstractText>A novel charge inversion process that involves the removal of an excess cation from an analyte ion and the transfer of an anion to the neutral analyte in a single ion/ion encounter is described. Polyamidoamine (PAMAM) half-generation dendrimer anions that contain small anions, such as the chloride ion, were used as charge inversion reagents. Several competing processes can occur that include removal of the cation to neutralize the analyte, the removal of the excess cation and an additional proton to yield the deprotonated molecule, or removal of the excess cation and transfer of a small anion to the analyte. For the latter process to dominate, several requirements for both the reagent anion and the analyte cation must be met. The reagent anion must form multiply charged anions and must be able to incorporate one or more small anions for transfer. The analyte must have no strongly acidic sites as well as a relatively high affinity for small anion attachment. The PAMAM dendrimer anions must meet the conditions for the reagent anions and the cations of the corticosteroids meet the conditions for the analyte. The estrogenic steroid estrone, on the other hand, does not meet the requirements and, as a result, is largely neutralized when reacted with the reagent anions. This reaction, therefore, is highly selective and might serve as a useful reaction for the screening of appropriate analytes.</AbstractText><CopyrightInformation>Copyright © 2011 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry M</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>LeBlanc</LastName><ForeName>Yves</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009566">Nitrates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C104700">PAMAM Starburst</NameOfSubstance></Chemical><Chemical><RegistryNumber>2DI9HA706A</RegistryNumber><NameOfSubstance UI="D004970">Estrone</NameOfSubstance></Chemical><Chemical><RegistryNumber>789U1901C5</RegistryNumber><NameOfSubstance UI="D003300">Copper</NameOfSubstance></Chemical><Chemical><RegistryNumber>7S5I7G3JQL</RegistryNumber><NameOfSubstance UI="D003907">Dexamethasone</NameOfSubstance></Chemical><Chemical><RegistryNumber>9TC879S2ZV</RegistryNumber><NameOfSubstance UI="C516433">copper(II) nitrate</NameOfSubstance></Chemical><Chemical><RegistryNumber>KGZ1SLC28Z</RegistryNumber><NameOfSubstance UI="D001507">Beclomethasone</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001507">Beclomethasone</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003300">Copper</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003907">Dexamethasone</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004970">Estrone</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009566">Nitrates</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>1</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2011</Year><Month>1</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>5</Month><Day>3</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/rcm.4880</ArticleId><ArticleId IdType="pubmed">21259355</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21141935</PMID><DateCreated><Year>2010</Year><Month>12</Month><Day>29</Day></DateCreated><DateCompleted><Year>2011</Year><Month>03</Month><Day>24</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>83</Volume><Issue>1</Issue><PubDate><Year>2011</Year><Month>Jan</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Negative electrospray droplet exposure to gaseous bases for the manipulation of protein charge state distributions.</ArticleTitle><Pagination><MedlinePgn>431-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac1027319</ELocationID><Abstract><AbstractText>The exposure of electrospray droplets to vapors of reagents of various base strengths affects protein negative charge state distributions independent of initial solution conditions. Volatile bases are introduced into the counter-current nitrogen drying gas of an electrospray interface to interact with charged droplets as they undergo desolvation/disintegration, shifting charge state distributions of proteins to higher, more negative, charge states. Alterations of charge state distributions can implicate protein folding/unfolding phenomena. Species bound by relatively weak interactions can be preserved, at least to some extent, allowing for the observation of high charge states of protein-ligand complexes, such as high negative charge states of holomyoglobin. The binding of carbonic anhydrase with its Zn(2+) cofactor is apparently preserved when the holo-form of the protein is exposed to basic vapors (i.e., the Zn(2+) ion remains associated with the protein), but this prevents the appearance of charge states higher than -17. Charge state distributions of proteins containing disulfide bonds shift slightly with the leak-in of basic vapors, but when these disulfide bonds are reduced with dithiothreitol in solution, charge states higher than the number of acidic sites (Asp, Glu, and C-terminus) are observed. Since there is no observed change in the distributions of buffered proteins exposed to these reagent vapors, the charge state changes are attributed largely to a pH affect. High pK(a) and highly volatile reagents have been found to be the most effective in terms of observing the maximum negative charge state of the biomolecule of interest.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2010</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003067">Coenzymes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004220">Disulfides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012997">Solvents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Apr;11(4):312-9</RefSource><PMID Version="1">10757167</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Oct;21(10):1762-74</RefSource><PMID Version="1">20673639</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 2001 Mar 6;40(9):2653-61</RefSource><PMID Version="1">11258876</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Apr 1;73(7):1455-60</RefSource><PMID Version="1">11321294</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Feb;37(2):191-6</RefSource><PMID Version="1">11857763</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2002 Jan-Feb;21(1):37-71</RefSource><PMID Version="1">12210613</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Feb 26;125(8):2319-27</RefSource><PMID Version="1">12590562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Sep 1;75(17):4525-33</RefSource><PMID Version="1">14632060</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 15;76(4):1165-74</RefSource><PMID Version="1">14961751</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Acta Crystallogr D Biol Crystallogr. 2004 Apr;60(Pt 4):792-5</RefSource><PMID Version="1">15039588</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 1967 Mar 29;89(7):1543-7</RefSource><PMID Version="1">6039292</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>FEBS Lett. 1984 Jan 2;165(1):88-92</RefSource><PMID Version="1">6420185</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>FEBS Lett. 1990 Mar 12;262(1):20-4</RefSource><PMID Version="1">2318308</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1990 Apr 1;62(7):693-8</RefSource><PMID Version="1">2327585</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1990 Jun 20;213(4):885-97</RefSource><PMID Version="1">2359126</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1990 Jul 20;214(2):585-95</RefSource><PMID Version="1">2166170</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):286-9</RefSource><PMID Version="1">1309610</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1992 Jan 1;64(1):81-8</RefSource><PMID Version="1">1310574</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1991 Mar;5(3):101-5</RefSource><PMID Version="1">1666527</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Aug;31(8):831-42</RefSource><PMID Version="1">8799309</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1997 Jan-Feb;16(1):1-23</RefSource><PMID Version="1">9414489</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1998;12(8):435-42</RefSource><PMID Version="1">9586231</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Dec;9(12):1248-54</RefSource><PMID Version="1">9835071</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Aug 15;77(16):5370-9</RefSource><PMID Version="1">16097782</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):109-12</RefSource><PMID Version="1">17023655</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Sep;18(9):1582-90</RefSource><PMID Version="1">17627841</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2007;13(4):273-9</RefSource><PMID Version="1">17942977</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 1;79(21):8342-9</RefSource><PMID Version="1">17900145</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Apr;19(4):455-66</RefSource><PMID Version="1">18276154</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Apr;20(4):593-6</RefSource><PMID Version="1">19101165</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Sep;20(9):1617-25</RefSource><PMID Version="1">19481956</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Jan;21(1):127-31</RefSource><PMID Version="1">19854660</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Sep 1;82(17):7422-9</RefSource><PMID Version="1">20712348</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Nov;11(11):976-85</RefSource><PMID Version="1">11073261</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003067">Coenzymes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004220">Disulfides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012997">Solvents</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D055672">Static Electricity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014835">Volatilization</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS257801</OtherID><OtherID Source="NLM">PMC3012141</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2010</Year><Month>12</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>3</Month><Day>25</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac1027319</ArticleId><ArticleId IdType="pubmed">21141935</ArticleId><ArticleId IdType="pmc">PMC3012141</ArticleId><ArticleId IdType="mid">NIHMS257801</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">21128662</PMID><DateCreated><Year>2010</Year><Month>12</Month><Day>23</Day></DateCreated><DateCompleted><Year>2011</Year><Month>04</Month><Day>29</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-5126</ISSN><JournalIssue CitedMedium="Internet"><Volume>132</Volume><Issue>51</Issue><PubDate><Year>2010</Year><Month>Dec</Month><Day>29</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Covalent modification of gaseous peptide ions with N-hydroxysuccinimide ester reagent ions.</ArticleTitle><Pagination><MedlinePgn>18248-57</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ja107286p</ELocationID><Abstract><AbstractText>Covalent modification of primary amine groups in multiply protonated or deprotonated polypeptides in the gas phase via ion/ion reactions is demonstrated using N-hydroxysuccinimide (NHS) esters as the modifying reagents. During the ion/ion reaction, the peptide analyte ions and the NHS or sulfo-NHS based reagent form a long-lived complex, which is a prerequisite for the covalent modification chemistry to occur. Ion activation of the peptide-reagent complex results in a neutral NHS or sulfo-NHS molecule loss, which is a characteristic signature of covalent modification. As the NHS or sulfo-NHS group leaves, an amide bond is formed between a free, unprotonated, primary amine group of a lysine side chain in the peptide and the carboxyl group in the reagent. Subsequent activation of the NHS or sulfo-NHS loss product ions results in sequence informative fragment ions containing the modification. The N-terminus primary amine group does not make a significant contribution to the modification process; this behavior has also been observed in solution phase reactions. The ability to covalently modify primary amine groups in the gas phase with N-hydroxysuccinimide reagents opens up the possibility of attaching a wide range of chemical groups to gaseous peptides and proteins and also for selectively modifying other analytes containing free primary amine groups.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2010</Year><Month>12</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013388">Succinimides</NameOfSubstance></Chemical><Chemical><RegistryNumber>3SCV180C9W</RegistryNumber><NameOfSubstance UI="D001622">Betaine</NameOfSubstance></Chemical><Chemical><RegistryNumber>407-64-7</RegistryNumber><NameOfSubstance UI="C002889">gamma-butyrobetaine</NameOfSubstance></Chemical><Chemical><RegistryNumber>541-15-1</RegistryNumber><NameOfSubstance UI="D002331">Carnitine</NameOfSubstance></Chemical><Chemical><RegistryNumber>MJE3791M4T</RegistryNumber><NameOfSubstance UI="C001426">N-hydroxysuccinimide</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 1;78(13):4702-8</RefSource><PMID Version="1">16808485</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(23):3815-24</RefSource><PMID Version="1">17972273</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2008 Jan 9;130(1):351-8</RefSource><PMID Version="1">18078340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2008 Mar;43(3):360-70</RefSource><PMID Version="1">17968972</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Phys Chem Chem Phys. 2008 Mar 21;10(11):1512-22</RefSource><PMID Version="1">18327307</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Nov 15;80(22):8501-8</RefSource><PMID Version="1">18947190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1433-41</RefSource><PMID Version="1">19199571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 Sep-Oct;28(5):785-815</RefSource><PMID Version="1">19016300</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Jun;21(6):890-8</RefSource><PMID Version="1">20080046</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2010;16(3):429-36</RefSource><PMID Version="1">20530827</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2010 Jun 30;132(25):8602-9</RefSource><PMID Version="1">20524634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Mar 1;82(5):1594-7</RefSource><PMID Version="1">20121142</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Curr Opin Biotechnol. 2002 Aug;13(4):315-20</RefSource><PMID Version="1">12323352</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Jan-Feb;3(1):46-54</RefSource><PMID Version="1">14998162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Mar;39(3):322-8</RefSource><PMID Version="1">15039940</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1991 Dec 25;266(36):24413-9</RefSource><PMID Version="1">1761543</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Mar 5;817(1):89-96</RefSource><PMID Version="1">15680792</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2005 Feb;40(2):238-49</RefSource><PMID Version="1">15706629</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochem Biophys Res Commun. 2007 Jun 8;357(3):620-6</RefSource><PMID Version="1">17449014</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001622">Betaine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000031">analogs &amp; derivatives</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002331">Carnitine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013388">Succinimides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS256738</OtherID><OtherID Source="NLM">PMC3010255</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2010</Year><Month>12</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>12</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>12</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>4</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ja107286p</ArticleId><ArticleId IdType="pubmed">21128662</ArticleId><ArticleId IdType="pmc">PMC3010255</ArticleId><ArticleId IdType="mid">NIHMS256738</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20848674</PMID><DateCreated><Year>2010</Year><Month>10</Month><Day>14</Day></DateCreated><DateCompleted><Year>2011</Year><Month>02</Month><Day>01</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1615-9861</ISSN><JournalIssue CitedMedium="Internet"><Volume>10</Volume><Issue>20</Issue><PubDate><Year>2010</Year><Month>Oct</Month></PubDate></JournalIssue><Title>Proteomics</Title><ISOAbbreviation>Proteomics</ISOAbbreviation></Journal><ArticleTitle>Top-down protein characterization facilitated by ion/ion reactions on a quadrupole/time of flight platform.</ArticleTitle><Pagination><MedlinePgn>3577-88</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/pmic.201000187</ELocationID><Abstract><AbstractText>In comparison to bottom-up proteomics approaches, whereby peptides derived from proteolytic digestion are analyzed, top-down approaches, involving direct analysis of intact proteins, provide higher specificity for protein identification and are better-suited for the characterization of sequence variants. However, top-down protein characterization usually requires more sophisticated instrumentation and methodologies to deal with the more complex tandem mass spectra derived from dissociation of high mass multiply charged intact proteins. Gas-phase ion/ion reactions are universally applicable and have proved to be useful in mixture analysis and top-down biomolecule characterization. The coupling of the ion/ion proton transfer reaction in the context of MS/MS has been demonstrated to expand informing power in top-down protein characterization, particularly with platforms that employ electrodynamic ion trap and TOF mass analysis. In addition, probing protein primary structure using ion/ion electron transfer dissociation usually provides extensive structurally informative fragmentation and also allows for the localization of labile PTMs. Here, the performance of the widely used quadrupole/TOF platform, equipped with ion/ion reaction functionality, for top-down protein characterization is summarized, and various methodologies employing ion/ion reactions are reviewed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Proteomics</MedlineTA><NlmUniqueID>101092707</NlmUniqueID><ISSNLinking>1615-9853</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10313-7</RefSource><PMID Version="1">10984529</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Nov 1;81(21):8669-76</RefSource><PMID Version="1">19757794</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Curr Opin Biotechnol. 2002 Feb;13(1):57-64</RefSource><PMID Version="1">11849959</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1774-9</RefSource><PMID Version="1">11842225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Jul;37(7):663-75</RefSource><PMID Version="1">12124999</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Sep 15;74(18):4653-61</RefSource><PMID Version="1">12349967</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2003 Sep-Oct;2(5):495-505</RefSource><PMID Version="1">14582646</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Apr;15(4):607-15</RefSource><PMID Version="1">15047065</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jun 1;76(11):197A-203A</RefSource><PMID Version="1">15190879</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Oct;15(10):1478-86</RefSource><PMID Version="1">15465361</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1985 Mar;57(3):675-9</RefSource><PMID Version="1">2581476</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1990 Apr 13;248(4952):201-4</RefSource><PMID Version="1">2326633</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2006 May;5(5):949-58</RefSource><PMID Version="1">16478717</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):65-6</RefSource><PMID Version="1">17023639</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):109-12</RefSource><PMID Version="1">17023655</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Feb 1;79(3):1073-81</RefSource><PMID Version="1">17263338</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14330-5</RefSource><PMID Version="1">17720804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 1;79(21):8199-206</RefSource><PMID Version="1">17914865</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>FEBS J. 2007 Dec;274(24):6256-68</RefSource><PMID Version="1">18021240</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2008 Jan;43(1):23-34</RefSource><PMID Version="1">17613176</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Feb 15;80(4):1111-7</RefSource><PMID Version="1">18198896</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Mar 1;80(5):1459-67</RefSource><PMID Version="1">18229893</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 May 1;80(9):3492-7</RefSource><PMID Version="1">18396915</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2009 Feb;23(3):409-18</RefSource><PMID Version="1">19125429</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1433-41</RefSource><PMID Version="1">19199571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Mar 15;81(6):2159-67</RefSource><PMID Version="1">19281259</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Analyst. 2009 Apr;134(4):681-9</RefSource><PMID Version="1">19305916</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3208-15</RefSource><PMID Version="1">19364119</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jan 30;124(4):672-8</RefSource><PMID Version="1">11804498</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D040901">Proteomics</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS261690</OtherID><OtherID Source="NLM">PMC3018239</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>9</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>9</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>2</Month><Day>2</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/pmic.201000187</ArticleId><ArticleId IdType="pubmed">20848674</ArticleId><ArticleId IdType="pmc">PMC3018239</ArticleId><ArticleId IdType="mid">NIHMS261690</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20822166</PMID><DateCreated><Year>2010</Year><Month>09</Month><Day>30</Day></DateCreated><DateCompleted><Year>2011</Year><Month>01</Month><Day>20</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>82</Volume><Issue>19</Issue><PubDate><Year>2010</Year><Month>Oct</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>7952-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac1014244</ELocationID><Abstract><AbstractText>Although oxidation of biogenic volatile organic compounds (BVOCs) plays an important role in tropospheric ozone and secondary organic aerosol production, significant uncertainties remain in our understanding of the impacts of BVOCs on ozone, aerosols, and climate. To quantify BVOCs, the proton-transfer reaction linear ion trap (PTR-LIT) mass spectrometer was previously developed. The PTR-LIT represents an improvement over more traditional techniques (including the proton-transfer reaction mass spectrometer), providing the capability to directly quantify and differentiate isomeric compounds by MS/MS analysis, with better time resolution and minimal sample handling, compared to gas chromatography techniques. Herein, we present results from the first field deployment of the PTR-LIT. During the Program for Research on Oxidants: Photochemistry, Emissions and Transport (PROPHET) summer 2008 study in northern Michigan, the PTR-LIT successfully quantified isoprene, total monoterpenes, and isomeric isoprene oxidation products methyl vinyl ketone and methacrolein at sub-parts per billion (nmol/mol) levels in a complex forest atmosphere. The utility of the fast time response of the PTR-LIT was shown by the measurement of rapid changes in isoprene, methyl vinyl ketone, and methacrolein, concurrent with changing ozone mole fractions. Overall, the PTR-LIT was shown to be a viable field instrument with the necessary sensitivity, selectivity, and time response to provide detailed measurements of BVOC mole fractions in complex atmospheric samples, at trace levels.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mielke</LastName><ForeName>Levi H</ForeName><Initials>LH</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pratt</LastName><ForeName>Kerri A</ForeName><Initials>KA</Initials></Author><Author ValidYN="Y"><LastName>Shepson</LastName><ForeName>Paul B</ForeName><Initials>PB</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Wisthaler</LastName><ForeName>Armin</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>Hansel</LastName><ForeName>Armin</ForeName><Initials>A</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000393">Air Pollutants</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002070">Butadienes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002074">Butanones</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D039821">Monoterpenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010420">Pentanes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0A62964IBU</RegistryNumber><NameOfSubstance UI="C005059">isoprene</NameOfSubstance></Chemical><Chemical><RegistryNumber>66H7ZZK23N</RegistryNumber><NameOfSubstance UI="D010126">Ozone</NameOfSubstance></Chemical><Chemical><RegistryNumber>78-85-3</RegistryNumber><NameOfSubstance UI="C039175">methacrylaldehyde</NameOfSubstance></Chemical><Chemical><RegistryNumber>7864XYD3JJ</RegistryNumber><NameOfSubstance UI="D000171">Acrolein</NameOfSubstance></Chemical><Chemical><RegistryNumber>AR7642I1MP</RegistryNumber><NameOfSubstance UI="C057920">3-buten-2-one</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000171">Acrolein</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000031">analogs &amp; derivatives</QualifierName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000393">Air Pollutants</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001272">Atmosphere</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002070">Butadienes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002074">Butanones</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045782">Hemiterpenes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D039821">Monoterpenes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010126">Ozone</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010420">Pentanes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055549">Volatile Organic Compounds</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>9</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>9</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>1</Month><Day>21</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac1014244</ArticleId><ArticleId IdType="pubmed">20822166</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20712348</PMID><DateCreated><Year>2010</Year><Month>08</Month><Day>31</Day></DateCreated><DateCompleted><Year>2011</Year><Month>01</Month><Day>04</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>82</Volume><Issue>17</Issue><PubDate><Year>2010</Year><Month>Sep</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electrospray droplet exposure to gaseous acids for the manipulation of protein charge state distributions.</ArticleTitle><Pagination><MedlinePgn>7422-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac101578q</ELocationID><Abstract><AbstractText>The exposure of electrospray droplets to acid vapors can significantly affect protein charge state distributions (CSDs) derived from unbuffered solutions. Such experiments have been conducted by leaking acidic vapors into the counter-current nitrogen drying gas of an electrospray interface. On the basis of changes in protein CSDs, protein folding and unfolding phenomena are implicated in these studies. Additionally, noncovalently bound complexes are preserved, and transient intermediates are observed, such as high charge state ions of holomyoglobin. CSDs of proteins containing disulfide bonds shift slightly, if at all, with acid vapor leak-in, but when these disulfide bonds are reduced in solution, charge states higher than the number of basic sites (Lys, Arg, His, and N-terminus) are observed. Since there is no observed change in the CSD of buffered proteins exposed to acidic vapors, this novel multiple charging phenomenon is attributed to a pH effect. Thus, this acid vapor leak-in approach can be used to reverse "wrong-way-round" nanoelectrospray conditions by altering solution pH in the charged droplets relative to the pH in bulk solution. In general, the exposure of electrospray droplets to acidic vapors provides means for altering protein CSDs independent of bulk unbuffered solution pH.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Prentice</LastName><ForeName>Boone M</ForeName><Initials>BM</Initials></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012997">Solvents</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-43-6</RegistryNumber><NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1990 Jan;87(2):573-7</RefSource><PMID Version="1">2153957</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochem J. 1976 Nov;159(2):371-6</RefSource><PMID Version="1">11782</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1990 Jun 20;213(4):885-97</RefSource><PMID Version="1">2359126</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1990 Jul 20;214(2):585-95</RefSource><PMID Version="1">2166170</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1991 Feb 5;30(5):1227-37</RefSource><PMID Version="1">1991102</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1991 Mar;5(3):101-5</RefSource><PMID Version="1">1666527</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1992 Mar;6(3):159-65</RefSource><PMID Version="1">1372835</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1993 Nov 9;32(44):11878-85</RefSource><PMID Version="1">8218260</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1994 Oct 4;33(39):11767-75</RefSource><PMID Version="1">7918393</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2898-904</RefSource><PMID Version="1">7978296</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Adv Protein Chem. 1995;47:83-229</RefSource><PMID Version="1">8561052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3143-8</RefSource><PMID Version="1">8610183</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1996 May 14;35(19):6058-63</RefSource><PMID Version="1">8634247</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1997 May 6;36(18):5554-9</RefSource><PMID Version="1">9154939</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1997 May 27;36(21):6448-54</RefSource><PMID Version="1">9174361</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1997 Oct 7;36(40):12296-302</RefSource><PMID Version="1">9315869</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1997 Oct 1;252(1):127-35</RefSource><PMID Version="1">9324950</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1997 Oct 21;36(42):13043-53</RefSource><PMID Version="1">9335566</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1997 Jan-Feb;16(1):1-23</RefSource><PMID Version="1">9414489</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1998;12(5):239-45</RefSource><PMID Version="1">9519476</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1998;12(8):435-42</RefSource><PMID Version="1">9586231</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Dec;9(12):1248-54</RefSource><PMID Version="1">9835071</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 1;71(19):4154-9</RefSource><PMID Version="1">10517140</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1965 May;240:1997-2002</RefSource><PMID Version="1">14301784</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):606-12</RefSource><PMID Version="1">15822941</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2005 Apr;40(4):503-10</RefSource><PMID Version="1">15712370</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 2005 Aug 23;44(33):11286-94</RefSource><PMID Version="1">16101313</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Commun (Camb). 2006 May 21;(19):2042-4</RefSource><PMID Version="1">16767269</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2007;13(4):273-9</RefSource><PMID Version="1">17942977</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Apr;19(4):455-66</RefSource><PMID Version="1">18276154</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Sep;20(9):1617-25</RefSource><PMID Version="1">19481956</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2010 Jan;21(1):127-31</RefSource><PMID Version="1">19854660</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1987 Apr 5;194(3):531-44</RefSource><PMID Version="1">3041007</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Apr;11(4):312-9</RefSource><PMID Version="1">10757167</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Nov;11(11):976-85</RefSource><PMID Version="1">11073261</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 2000 Nov 28;39(47):14702-10</RefSource><PMID Version="1">11087427</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 Mar;12(3):317-28</RefSource><PMID Version="1">11281607</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Apr 1;73(7):1455-60</RefSource><PMID Version="1">11321294</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Oct 15;73(20):4763-73</RefSource><PMID Version="1">11681449</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 2002 Feb 12;41(6):1906-14</RefSource><PMID Version="1">11827537</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Protein Sci. 2002 Mar;11(3):453-8</RefSource><PMID Version="1">11847268</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Feb;37(2):191-6</RefSource><PMID Version="1">11857763</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jun 1;74(11):2465-9</RefSource><PMID Version="1">12069224</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2002 Jan-Feb;21(1):37-71</RefSource><PMID Version="1">12210613</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Feb 26;125(8):2319-27</RefSource><PMID Version="1">12590562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Mar 15;75(6):1325-30</RefSource><PMID Version="1">12659192</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Nov 5;125(44):13352-3</RefSource><PMID Version="1">14583019</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Aug 15;75(16):4139-47</RefSource><PMID Version="1">14632127</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 15;76(4):1165-74</RefSource><PMID Version="1">14961751</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Bioanal Chem. 2004 Feb;378(4):1112-23</RefSource><PMID Version="1">14663547</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1990 Apr 1;62(7):693-8</RefSource><PMID Version="1">2327585</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045304">Cytochromes c</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011487">Protein Conformation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017510">Protein Folding</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012997">Solvents</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS229161</OtherID><OtherID Source="NLM">PMC2940272</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>8</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>8</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2011</Year><Month>1</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac101578q</ArticleId><ArticleId IdType="pubmed">20712348</ArticleId><ArticleId IdType="pmc">PMC2940272</ArticleId><ArticleId IdType="mid">NIHMS229161</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20636047</PMID><DateCreated><Year>2010</Year><Month>07</Month><Day>19</Day></DateCreated><DateCompleted><Year>2010</Year><Month>10</Month><Day>28</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1936-1335</ISSN><JournalIssue CitedMedium="Internet"><Volume>3</Volume><PubDate><Year>2010</Year></PubDate></JournalIssue><Title>Annual review of analytical chemistry (Palo Alto, Calif.)</Title><ISOAbbreviation>Annu Rev Anal Chem (Palo Alto Calif)</ISOAbbreviation></Journal><ArticleTitle>Gas-phase chemistry of multiply charged bioions in analytical mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>365-85</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1146/annurev.anchem.111808.073725</ELocationID><Abstract><AbstractText>Ion chemistry has long played an important role in molecular mass spectrometry (MS), as it is central to the use of MS as a structural characterization tool. With the advent of ionization methods capable of producing gaseous ions from large biomolecules, the chemistry of gaseous bioions has become a highly active area of research. Gas-phase biomolecule-ion reactions are usually driven by interactions with neutral molecules, photons, electrons, ions, or surfaces. Ion dissociation or transformation into different ion types can be achieved. The types of reaction products observed depend on the characteristics of the ions, the transformation methods, and the time frame of observation. This review focuses on the gas-phase chemistries of ions derived from the electrospray ionization of peptides, proteins, and oligonucleotides, with particular emphasis on their utility in bioanalysis. Various ion-transformation strategies, which further facilitate structural interrogation by converting ions from one type to another, are also summarized.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Annu Rev Anal Chem (Palo Alto Calif)</MedlineTA><NlmUniqueID>101508602</NlmUniqueID><ISSNLinking>1936-1327</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 15;71(20):4431-6</RefSource><PMID Version="1">10546526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Mar;11(3):244-56</RefSource><PMID Version="1">10697820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Apr 15;72(8):1918-24</RefSource><PMID Version="1">10784162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 Jan;12(1):105-16</RefSource><PMID Version="1">11142354</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(1):8-14</RefSource><PMID Version="1">11135418</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 Feb;12(2):193-205</RefSource><PMID Version="1">11212004</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 May;12(5):580-9</RefSource><PMID Version="1">11349956</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3305-11</RefSource><PMID Version="1">11476230</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3312-22</RefSource><PMID Version="1">11476231</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jul 1;74(13):2923-9</RefSource><PMID Version="1">12141648</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Aug;13(8):936-45</RefSource><PMID Version="1">12216734</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Sep 15;74(18):4653-61</RefSource><PMID Version="1">12349967</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2002 Mar-Apr;21(2):87-107</RefSource><PMID Version="1">12373746</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2003 Jan;14(1):23-41</RefSource><PMID Version="1">12504331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2003 Aug;14(8):825-33</RefSource><PMID Version="1">12892907</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 May 15;75(10):2445-55</RefSource><PMID Version="1">12918989</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 2004 Mar 15;326(2):200-10</RefSource><PMID Version="1">15003561</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Apr;15(4):607-15</RefSource><PMID Version="1">15047065</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Jun;39(6):630-8</RefSource><PMID Version="1">15236301</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1985 Mar;57(3):675-9</RefSource><PMID Version="1">2581476</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1990 Apr 13;248(4952):201-4</RefSource><PMID Version="1">2326633</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Sep 15;63(18):1971-8</RefSource><PMID Version="1">1661106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1994 May;8(5):394-400</RefSource><PMID Version="1">8025335</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2801-8</RefSource><PMID Version="1">7978294</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Jul 15;67(14):2493-7</RefSource><PMID Version="1">8686879</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Jul 15;67(14):2498-509</RefSource><PMID Version="1">8686880</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8264-7</RefSource><PMID Version="1">8710858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1997 Mar 15;69(6):1119-26</RefSource><PMID Version="1">9075403</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(6):535-40</RefSource><PMID Version="1">9149429</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jul;9(7):683-91</RefSource><PMID Version="1">9879378</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Jun 1;71(11):2067-70</RefSource><PMID Version="1">10366888</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 1;71(19):4397-402</RefSource><PMID Version="1">10517152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods. 2005 Mar;35(3):211-22</RefSource><PMID Version="1">15722218</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chemistry. 2005 Mar 4;11(6):1803-12</RefSource><PMID Version="1">15672435</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1876-82</RefSource><PMID Version="1">15762599</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 May;16(5):763-71</RefSource><PMID Version="1">15862777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Aug;16(8):1262-8</RefSource><PMID Version="1">15978835</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 15;77(18):5777-84</RefSource><PMID Version="1">16159106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Sep 15;78(18):6564-72</RefSource><PMID Version="1">16970335</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Oct;17(10):1353-68</RefSource><PMID Version="1">16875834</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):109-12</RefSource><PMID Version="1">17023655</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(2):265-8</RefSource><PMID Version="1">17167813</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2007 Apr 18;129(15):4706-13</RefSource><PMID Version="1">17378565</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2007 Apr 25;129(16):4894-5</RefSource><PMID Version="1">17394314</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Biochem. 2007;76:167-93</RefSource><PMID Version="1">17328674</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Oct;18(10):1783-8</RefSource><PMID Version="1">17719238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):281-93</RefSource><PMID Version="1">18083525</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 May 1;80(9):3492-7</RefSource><PMID Version="1">18396915</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2008 Jul 11;321(5886):243-6</RefSource><PMID Version="1">18556516</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2008 Sep 24;130(38):12680-9</RefSource><PMID Version="1">18761457</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Nov 15;80(22):8501-8</RefSource><PMID Version="1">18947190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Dec;19(12):1832-40</RefSource><PMID Version="1">18799321</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1433-41</RefSource><PMID Version="1">19199571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3208-15</RefSource><PMID Version="1">19364119</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2010 Jan 1;82(1):11-5</RefSource><PMID Version="1">19904915</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS261735</OtherID><OtherID Source="NLM">PMC3017717</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>7</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>7</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>10</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1146/annurev.anchem.111808.073725</ArticleId><ArticleId IdType="pubmed">20636047</ArticleId><ArticleId IdType="pmc">PMC3017717</ArticleId><ArticleId IdType="mid">NIHMS261735</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20515155</PMID><DateCreated><Year>2010</Year><Month>06</Month><Day>02</Day></DateCreated><DateCompleted><Year>2010</Year><Month>09</Month><Day>30</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1089-7623</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>5</Issue><PubDate><Year>2010</Year><Month>May</Month></PubDate></JournalIssue><Title>The Review of scientific instruments</Title><ISOAbbreviation>Rev Sci Instrum</ISOAbbreviation></Journal><ArticleTitle>Formation of cold ion-neutral clusters using superfluid helium nanodroplets.</ArticleTitle><Pagination><MedlinePgn>054101</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1063/1.3386584</ELocationID><Abstract><AbstractText>A strategy for forming and detecting cold ion-neutral clusters using superfluid helium nanodroplets is described. Sodium cations generated via thermionic emission are directed toward a beam of helium droplets that can also pick up neutral molecules and form a cluster with the captured Na(+). The composition of the clusters is determined by mass spectrometric analysis following a desolvation step. It is shown that the polar molecules H(2)O and HCN are picked up and form ion-neutral clusters with sizes and relative abundances that are in good agreement with those predicted by the statistics used to describe neutral cluster formation in helium droplets. [Na(H(2)O)(n)](+) clusters containing six to 43 water molecules were observed, a size range of sodiated water clusters difficult to access in the gas phase. Clusters containing N(2) were in lower abundance than expected, suggesting that the desolvation process heats the clusters sufficiently to dissociate those containing nonpolar molecules.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Falconer</LastName><ForeName>Travis M</ForeName><Initials>TM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lewis</LastName><ForeName>William K</ForeName><Initials>WK</Initials></Author><Author ValidYN="Y"><LastName>Bemish</LastName><ForeName>Raymond J</ForeName><Initials>RJ</Initials></Author><Author ValidYN="Y"><LastName>Miller</LastName><ForeName>Roger E</ForeName><Initials>RE</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Rev Sci Instrum</MedlineTA><NlmUniqueID>0405571</NlmUniqueID><ISSNLinking>0034-6748</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012996">Solutions</NameOfSubstance></Chemical><Chemical><RegistryNumber>206GF3GB41</RegistryNumber><NameOfSubstance UI="D006371">Helium</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003080">Cold Temperature</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019544">Equipment Failure Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006371">Helium</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D044085">Microfluidics</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D049329">Nanostructures</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011312">Pressure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012996">Solutions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>6</Month><Day>3</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>6</Month><Day>3</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>10</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1063/1.3386584</ArticleId><ArticleId IdType="pubmed">20515155</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">20160958</PMID><DateCreated><Year>2011</Year><Month>1</Month><Day>5</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1387-3806</ISSN><JournalIssue CitedMedium="Print"><Volume>283</Volume><Issue>1-3</Issue><PubDate><Year>2009</Year><Month>Jun</Month><Day>1</Day></PubDate></JournalIssue><Title>International journal of mass spectrometry</Title><ISOAbbreviation>Int J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Charge State Dependent Fragmentation of Gaseous α-Synuclein Cations via Ion Trap and Beam-Type Collisional Activation.</ArticleTitle><Pagination><MedlinePgn>9-16</MedlinePgn></Pagination><Abstract><AbstractText>Ions derived from nano-electrospray ionization (nano-ESI) of α-synuclein, a 14.5 kDa, 140 amino acid residue protein that is a major component of the Lewy bodies associated with Parkinson's disease, have been subjected to ion trap and beam-type collisional activation. The former samples products from fragmentation at rates generally lower than 100 s(-1) whereas the latter samples products from fragmentation at rates generally greater than 10(3) s(-1). A wide range of protein charge states spanning from as high as [M+17H](17+) to as low as [M+4H](4+) have been formed either directly from nano-ESI or via ion/ion proton transfer reactions involving the initially formed protein cations and have been subjected to both forms of collision-induced dissociation (CID). The extent of sequence information (i.e., number of distinct amide bond cleavages) available from either CID method was found to be highly sensitive to protein precursor ion charge state. Furthermore, the relative contributions of the various competing dissociation channels were also dependent upon precursor ion charge state. The qualitative trends in the changes in extent of amide bond cleavages and identities of bonds cleaved with precursor ion charge state were similar for two forms of CID. However, for every charge state examined, roughly twice the primary sequence information resulted from beam-type CID relative to ion trap CID. For example, evidence for cleavage of 86% of the protein amide bonds was observed for the [M+9H](9+) precursor ion using beam-type CID whereas 41% of the bonds were cleaved for the same precursor ion using ion trap CID. The higher energies required to drive fragmentation reactions at rates necessary to observe products in the beam experiment access more of the structurally informative fragmentation channels, which has important implications for whole protein tandem mass spectrometry.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chanthamontri</LastName><ForeName>Chamnongsak</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-15</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Int J Mass Spectrom</MedlineTA><NlmUniqueID>101137096</NlmUniqueID><ISSNLinking>1387-3806</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>2</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>2</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>2</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijms.2008.12.007</ArticleId><ArticleId IdType="pubmed">20160958</ArticleId><ArticleId IdType="pmc">PMC2759116</ArticleId><ArticleId IdType="mid">NIHMS119868</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20121142</PMID><DateCreated><Year>2010</Year><Month>03</Month><Day>01</Day></DateCreated><DateCompleted><Year>2010</Year><Month>06</Month><Day>14</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>82</Volume><Issue>5</Issue><PubDate><Year>2010</Year><Month>Mar</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase bioconjugation of peptides via ion/ion charge inversion: Schiff base formation on the conversion of cations to anions.</ArticleTitle><Pagination><MedlinePgn>1594-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac902732v</ELocationID><Abstract><AbstractText>The selective covalent modification of singly protonated peptides in the gas-phase via ion/ion charge inversion reactions is demonstrated. Doubly deprotonated 4-formyl-1,3-benzene disulfonic acid serves as a reagent anion for forming a Schiff base via the reaction of a primary amine on the peptide and the aldehyde functionality of the reagent anion. The process is initiated by the formation of an ion/ion complex comprised of the two reactants. Ion trap collisional activation of the complex results in loss of water from the intermediate that gives rise to Schiff base formation. N-terminally acetylated peptides with no lysine residues do not undergo covalent bond formation upon reaction with the reagent anion. Rather, the adduct species simply loses the reagent either as a neutral species or as a deprotonated species. The ability to modify singly protonated peptide ions covalently and selectively opens up new possibilities for the analysis of peptides and, possibly, other analyte species with primary amine functionalities.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry M</ForeName><Initials>KM</Initials></Author><Author ValidYN="Y"><LastName>Stutzman</LastName><ForeName>John R</ForeName><Initials>JR</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-17</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016422">Letter</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012545">Schiff Bases</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Mar;11(3):244-56</RefSource><PMID Version="1">10697820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2001 Oct;36(10):1083-91</RefSource><PMID Version="1">11747101</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2009 Sep 16;131(36):12884-5</RefSource><PMID Version="1">19702304</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1998 Jan;33(1):1-19</RefSource><PMID Version="1">9449829</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(9):1015-24</RefSource><PMID Version="1">9204576</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012545">Schiff Bases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS175893</OtherID><OtherID Source="NLM">PMC2834292</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>2</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>2</Month><Day>4</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>6</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac902732v</ArticleId><ArticleId IdType="pubmed">20121142</ArticleId><ArticleId IdType="pmc">PMC2834292</ArticleId><ArticleId IdType="mid">NIHMS175893</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20080046</PMID><DateCreated><Year>2010</Year><Month>05</Month><Day>17</Day></DateCreated><DateCompleted><Year>2010</Year><Month>09</Month><Day>10</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>21</Volume><Issue>6</Issue><PubDate><Year>2010</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Top-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation.</ArticleTitle><Pagination><MedlinePgn>890-8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2009.12.007</ELocationID><Abstract><AbstractText>Transfer RNA is a class of highly modified and structured non-coding RNA molecules generally comprised of 74-95 nucleotides. In this study, tandem mass spectrometry of intact multiply charged tRNA anions of roughly 25 kDa in mass has been demonstrated using a quadrupole/time-of-flight tandem mass spectrometer adapted for ion/ion reaction studies. The sample proved to be a mixture of tRNA molecules. The mass of the most abundant component of the mixture was not consistent with that of the nominal identity of the tRNA from the supplier, viz., tRNA(Phe); rather, the mass was consistent with tRNA(Phe) bearing an incomplete 3'-terminus. Multiply-charged anions from the major components were isolated in the gas phase and subjected to ion trap collision-induced dissociation without subsequent ion/ion reactions. Abundant fragments from the 5'- and 3'-termini of the molecule could be used to identify the major component as tRNA(Phe)-3'adenosine (without 3'-phosphorylation). Roughly 15% of the primary sequence of the intact tRNA was unambiguously reflected in the product ion spectrum. The existence of a possible tRNA(Phe) variant and the intact tRNA(Phe) was also supported by ion trap CID data. The multiply-charged fragment ions derived from tRNA(Phe)-3'adenosine were further charge-reduced to mostly singly- and doubly-charged species via proton transfer ion/ion reactions with benzoquinoline cations. The resulting reduction in spectral overlap and charge state ambiguity simplified interpretation of the product ion spectrum and allowed for the identification of product ions from roughly 60% of the sequence.</AbstractText><CopyrightInformation>Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>12</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9014-25-9</RegistryNumber><NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009690">Nucleic Acid Conformation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012343">RNA, Transfer</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015003">Yeasts</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2009</Year><Month>11</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2009</Year><Month>12</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2009</Year><Month>12</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>12</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>1</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>1</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>9</Month><Day>11</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(09)01010-1</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2009.12.007</ArticleId><ArticleId IdType="pubmed">20080046</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20047300</PMID><DateCreated><Year>2010</Year><Month>01</Month><Day>29</Day></DateCreated><DateCompleted><Year>2010</Year><Month>05</Month><Day>18</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>82</Volume><Issue>3</Issue><PubDate><Year>2010</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Adjacent pulsed nanoelectrospray ionization emitters for the alternating generation of ions of opposite polarity.</ArticleTitle><Pagination><MedlinePgn>1147-50</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac902485e</ELocationID><Abstract><AbstractText>An approach that allows for adjacent closely spaced nanoelectrospray ionization (nESI) emitters to be pulsed alternately to generate ions of opposite polarity for transmission through a common interface is described. The potential difference between two or more nESI emitters in close proximity is minimized by applying the same polarity to both emitters at any given point in time but with the magnitude of only the active emitter's potential being sufficiently high to sustain a stable spray. The reduced difference in potential between emitters allows the distance between emitters to be decreased to within a few millimeters so that compromises imposed by the use of multiple emitters for the generation of ions from distinct solutions using a common atmosphere interface are minimized.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Bowers</LastName><ForeName>Jeremiah J</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zimmerman</LastName><ForeName>James R</ForeName><Initials>JR</Initials></Author><Author ValidYN="Y"><LastName>Oglesbee</LastName><ForeName>Robert A</ForeName><Initials>RA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D016427">Technical Report</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055664">Electrochemical Techniques</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D036103">Nanotechnology</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>1</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2010</Year><Month>1</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>5</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac902485e</ArticleId><ArticleId IdType="pubmed">20047300</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19854063</PMID><DateCreated><Year>2010</Year><Month>02</Month><Day>03</Day></DateCreated><DateCompleted><Year>2010</Year><Month>04</Month><Day>22</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>21</Volume><Issue>1</Issue><PubDate><Year>2010</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collision-induced dissociation of locked nucleic acids.</ArticleTitle><Pagination><MedlinePgn>144-53</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2009.09.020</ELocationID><Abstract><AbstractText>Gas-phase dissociation of model locked nucleic acid (LNA) oligonucleotides and functional LNA-DNA chimeras have been investigated as a function of precursor ion charge state using ion trap collision-induced dissociation (CID). For the model LNA 5 and 8 mer, containing all four LNA monomers in the sequence, cleavage of all backbone bonds, generating a/w-, b/x-, c/y-, and d/z-ions, was observed with no significant preference at lower charge states. Base loss ions, except loss of thymine, from the cleavage of N-glycosidic bonds were also present. In general, complete sequence coverage was achieved in all charge states. For the two LNA-DNA chimeras, however, dramatic differences in the relative contributions of the competing dissociation channels were observed among different precursor ion charge states. At lower charge states, sequence information limited to the a-Base/w-fragment ions from cleavage of the 3'C-O bond of DNA nucleotides, except thymidine (dT), was acquired from CID of both the LNA gapmer and mixmer ions. On the other hand, extensive fragmentation from various dissociation channels was observed from post-ion/ion ion trap CID of the higher charge state ions of both LNA-DNA chimeras. This report demonstrates that tandem mass spectrometry is effective in the sequence characterization of LNA oligonucleotides and LNA-DNA chimeric therapeutics.</AbstractText><CopyrightInformation>2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>09</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2009</Year><Month>8</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2009</Year><Month>9</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2009</Year><Month>9</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>9</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>10</Month><Day>27</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>10</Month><Day>27</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>4</Month><Day>23</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(09)00762-4</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2009.09.020</ArticleId><ArticleId IdType="pubmed">19854063</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">19838413</PMID><DateCreated><Year>2009</Year><Month>10</Month><Day>19</Day></DateCreated><DateCompleted><Year>2010</Year><Month>04</Month><Day>02</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1364-5528</ISSN><JournalIssue CitedMedium="Internet"><Volume>134</Volume><Issue>11</Issue><PubDate><Year>2009</Year><Month>Nov</Month></PubDate></JournalIssue><Title>The Analyst</Title><ISOAbbreviation>Analyst</ISOAbbreviation></Journal><ArticleTitle>Conversion of multiple analyte cation types to a single analyte anion type via ion/ion charge inversion.</ArticleTitle><Pagination><MedlinePgn>2262-6</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1039/b914304a</ELocationID><Abstract><AbstractText>Charge inversion ion/ion reactions can convert several cation types associated with a single analyte molecule to a single anion type for subsequent mass analysis. Specifically, analyte ions present with one of a variety of cationizing agents, such as an excess proton, excess sodium ion, or excess potassium ion, can all be converted to the deprotonated molecule, provided that a stable anion can be generated for the analyte. Multiply deprotonated species that are capable of exchanging a proton for a metal ion serve as the reagent anions for the reaction. This process is demonstrated here for warfarin and for a glutathione conjugate. Examples for several other glutathione conjugates are provided as supplementary material to demonstrate the generality of the reaction. In the case of glutathione conjugates, multiple metal ions can be associated with the singly-charged analyte due to the presence of two carboxylate groups. The charge inversion reaction involves the removal of the excess cationizing agent, as well as any metal ions associated with anionic groups to yield a singly deprotonated analyte molecule. The ability to convert multiple cation types to a single anion type is analytically desirable in cases in which the analyte signal is distributed among several cation types, as is common in the electrospray ionization of solutions with relatively high salt contents. For analyte species that undergo efficient charge inversion, such as glutathione conjugates, there is the additional potential advantage for significantly improved signal-to-noise ratios when species that give rise to 'chemical noise' in the positive ion spectrum do not undergo efficient charge inversion.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry M</ForeName><Initials>KM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>LeBlanc</LastName><ForeName>Yves</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>09</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Analyst</MedlineTA><NlmUniqueID>0372652</NlmUniqueID><ISSNLinking>0003-2654</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>9</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="epublish"><Year>2009</Year><Month>10</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>10</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>10</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>10</Month><Day>20</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1039/b914304a</ArticleId><ArticleId IdType="pubmed">19838413</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19757794</PMID><DateCreated><Year>2009</Year><Month>10</Month><Day>30</Day></DateCreated><DateCompleted><Year>2010</Year><Month>01</Month><Day>28</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>21</Issue><PubDate><Year>2009</Year><Month>Nov</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion/ion reactions: new chemistry for analytical MS.</ArticleTitle><Pagination><MedlinePgn>8669-76</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac9014935</ELocationID><Abstract><AbstractText>Gas-phase ion/ion reactions are emerging as flexible means for probing and manipulating analyte ions with particular utility in bioanalysis.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA. mcluckey@purdue.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-16</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006020">Glycopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Apr 28;109(16):3608-16</RefSource><PMID Version="1">16568152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 15;79(10):3525-34</RefSource><PMID Version="1">17441688</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2008;22(3):271-8</RefSource><PMID Version="1">18181247</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):281-93</RefSource><PMID Version="1">18083525</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):173-89</RefSource><PMID Version="1">18083527</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2008 Aug;7(8):3127-36</RefSource><PMID Version="1">18613715</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 Feb 15;81(4):1433-41</RefSource><PMID Version="1">19199571</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3208-15</RefSource><PMID Version="1">19364119</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Sep;20(9):1718-22</RefSource><PMID Version="1">19535265</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Mar;11(3):244-56</RefSource><PMID Version="1">10697820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 May 14;125(19):5954-63</RefSource><PMID Version="1">12733936</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jun 1;76(11):197A-203A</RefSource><PMID Version="1">15190879</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006020">Glycopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017136">Ion Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS146271</OtherID><OtherID Source="NLM">PMC2803771</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>9</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>9</Month><Day>18</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>1</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac9014935</ArticleId><ArticleId IdType="pubmed">19757794</ArticleId><ArticleId IdType="pmc">PMC2803771</ArticleId><ArticleId IdType="mid">NIHMS146271</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19702304</PMID><DateCreated><Year>2009</Year><Month>09</Month><Day>09</Day></DateCreated><DateCompleted><Year>2010</Year><Month>01</Month><Day>05</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-5126</ISSN><JournalIssue CitedMedium="Internet"><Volume>131</Volume><Issue>36</Issue><PubDate><Year>2009</Year><Month>Sep</Month><Day>16</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Selective covalent bond formation in polypeptide ions via gas-phase ion/ion reaction chemistry.</ArticleTitle><Pagination><MedlinePgn>12884-5</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ja904812d</ELocationID><Abstract><AbstractText>Primary amines present in protonated polypeptides can be covalently modified via gas-phase ion/ion reactions using bifunctional reagent ions. The use of reagent anions with a charge-bearing site that leads to strong interactions with the polypeptide, such as sulfonic acid, gives rise to the formation of a long-lived adduct. A distinct reactive functional group, an aldehyde in the present case, can then undergo reaction with the peptide. Collisional activation of the adduct ion formed from a reagent with an aldehyde group and a peptide ion with a primary amine gives rise to water loss in conjunction with imine (Schiff base) formation. The covalently bound modification is retained upon subsequent collisional activation. This work demonstrates the ability to selectively modify polypeptide ions in the gas phase within the context of a multistage mass spectrometry experiment.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-16</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000809">Angiotensins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D012545">Schiff Bases</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Mar;11(3):244-56</RefSource><PMID Version="1">10697820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 Sep-Oct;28(5):785-815</RefSource><PMID Version="1">19016300</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2004 Jun;4(6):1684-94</RefSource><PMID Version="1">15174137</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Oct 1;77(19):6300-9</RefSource><PMID Version="1">16194092</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 1;78(13):4702-8</RefSource><PMID Version="1">16808485</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2009 May 1;81(9):3645-53</RefSource><PMID Version="1">19326898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000809">Angiotensins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012545">Schiff Bases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS141491</OtherID><OtherID Source="NLM">PMC2759070</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>8</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>8</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>1</Month><Day>6</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ja904812d</ArticleId><ArticleId IdType="pubmed">19702304</ArticleId><ArticleId IdType="pmc">PMC2759070</ArticleId><ArticleId IdType="mid">NIHMS141491</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">19632132</PMID><DateCreated><Year>2009</Year><Month>09</Month><Day>22</Day></DateCreated><DateCompleted><Year>2009</Year><Month>12</Month><Day>01</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>20</Volume><Issue>10</Issue><PubDate><Year>2009</Year><Month>Oct</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>On the time scale of internal energy relaxation of AP-MALDI and nano-ESI ions in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1801-12</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2009.05.018</ELocationID><Abstract><AbstractText>Recently reported results (Konn et al. [14]) on the collisional cooling of atmospheric pressure matrix assisted laser desorption ionization (AP-MALDI) and nano-electrospray ionization (nano-ESI) generated ions in a quadrupole ion trap mass spectrometer (QITMS) are inconsistent with measured collisional cooling rates. The work reported here presents a re-examination of those previous results. Collision induced dissociation (CID) has been used to probe various properties of ions contained in a QITMS. It is shown experimentally that when trapping large numbers of ions, an effective dc trapping voltage is induced that varies with changes in the size of the ion cloud. A decrease in the resonant frequency for maximum CID efficiency is observed as the cool time between parent ion isolation and CID is increased. Ion trajectories in a QITMS are simulated to demonstrate how ion density changes over the course of parent ion isolation. The effect of space charge on ion motion is simulated, and Fourier transformations of ion axial motion plus simple calculations corroborate the experimentally observed transient frequency shifts. The relative stability of ions formed by AP-MALDI and nano-ESI is compared under low charge density conditions. These data show that the ions have reached equilibrium internal energy and, thus, that differences in dissociation onsets and "50% fragmentation efficiency points" between the ionization mechanisms are due to the formation of distinct ion conformations as previously shown in reference [28]. The conclusions of Konn et al. [14] are based on invalid experimental procedures as well as inappropriate comparisons of QITMS data to low-pressure FT-ICR data.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Remes</LastName><ForeName>Philip M</ForeName><Initials>PM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>06</Month><Day>21</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2009</Year><Month>3</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2009</Year><Month>5</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2009</Year><Month>5</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>6</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>7</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>7</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>7</Month><Day>28</Day><Hour>9</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(09)00430-9</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2009.05.018</ArticleId><ArticleId IdType="pubmed">19632132</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19630027</PMID><DateCreated><Year>2009</Year><Month>08</Month><Day>12</Day></DateCreated><DateCompleted><Year>2009</Year><Month>10</Month><Day>07</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1097-0231</ISSN><JournalIssue CitedMedium="Internet"><Volume>23</Volume><Issue>17</Issue><PubDate><Year>2009</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Dissociation of disulfide-intact somatostatin ions: the roles of ion type and dissociation method.</ArticleTitle><Pagination><MedlinePgn>2647-55</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/rcm.4172</ELocationID><Abstract><AbstractText>The dissociation chemistry of somatostatin-14 was examined using various tandem mass spectrometry techniques including low-energy beam-type and ion trap collision-induced dissociation (CID) of protonated and deprotonated forms of the peptide, CID of peptide-gold complexes, and electron transfer dissociation (ETD) of cations. Most of the sequence of somatostatin-14 is present within a loop defined by the disulfide linkage between Cys-3 and Cys-14. The generation of readily interpretable sequence-related ions from within the loop requires the cleavage of at least one of the bonds of the disulfide linkage and the cleavage of one polypeptide backbone bond. CID of the protonated forms of somatostatin did not appear to give rise to an appreciable degree of dissociation of the disulfide linkage. Sequential fragmentation via multiple alternative pathways tended to generate very complex spectra. CID of the anions proceeded through CH(2)-S cleavages extensively but relatively few structurally diagnostic ions were generated. The incorporation of Au(I) into the molecule via ion/ion reactions followed by CID gave rise to many structurally relevant dissociation products, particularly for the [M+Au+H](2+) species. The products were generated by a combination of S-S bond cleavage and amide bond cleavage. ETD of the [M+3H](3+) ion generated rich sequence information, as did CID of the electron transfer products that did not fragment directly upon electron transfer. The electron transfer results suggest that both the S-S bond and an N-C(alpha) bond can be cleaved following a single electron transfer reaction.</AbstractText><CopyrightInformation>Copyright (c) 2009 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mentinova</LastName><ForeName>Marija</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-16</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D023362">Evaluation Studies</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004220">Disulfides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006728">Hormones</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>51110-01-1</RegistryNumber><NameOfSubstance UI="D013004">Somatostatin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 May;12(5):497-504</RefSource><PMID Version="1">11349947</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(20):1965-73</RefSource><PMID Version="1">11596143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2002 Mar-Apr;21(2):87-107</RefSource><PMID Version="1">12373746</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2002 Nov-Dec;1(6):549-57</RefSource><PMID Version="1">12645623</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 23;125(29):8949-58</RefSource><PMID Version="1">12862492</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2004 Mar 17;126(10):3034-5</RefSource><PMID Version="1">15012117</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Apr;15(4):607-15</RefSource><PMID Version="1">15047065</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1973 Jan 5;179(4068):77-9</RefSource><PMID Version="1">4682131</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1991 Mar;5(3):101-5</RefSource><PMID Version="1">1666527</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Jan 1;70(1):136-43</RefSource><PMID Version="1">9435472</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1999;13(20):2040-8</RefSource><PMID Version="1">10510418</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Jan 1;77(1):172-7</RefSource><PMID Version="1">15623293</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1796-806</RefSource><PMID Version="1">15762588</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jul;16(7):1020-30</RefSource><PMID Version="1">15914021</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Apr;17(4):576-85</RefSource><PMID Version="1">16503151</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Apr 28;109(16):3608-16</RefSource><PMID Version="1">16568152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jul 15;78(14):4820-9</RefSource><PMID Version="1">16841900</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Sep;5(9):2087-92</RefSource><PMID Version="1">16944919</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2007 Apr;42(4):450-8</RefSource><PMID Version="1">17295413</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(16):2727-33</RefSource><PMID Version="1">17654640</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Bioanal Chem. 2007 Nov;389(5):1429-37</RefSource><PMID Version="1">17874085</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2008 Jan 30;130(4):1245-57</RefSource><PMID Version="1">18181621</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2009 Jan-Feb;28(1):20-34</RefSource><PMID Version="1">18989895</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2009 Jan;20(1):157-66</RefSource><PMID Version="1">18990587</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004220">Disulfides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006728">Hormones</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013004">Somatostatin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS261760</OtherID><OtherID Source="NLM">PMC3024147</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>7</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>7</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>10</Month><Day>8</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/rcm.4172</ArticleId><ArticleId IdType="pubmed">19630027</ArticleId><ArticleId IdType="pmc">PMC3024147</ArticleId><ArticleId IdType="mid">NIHMS261760</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19572558</PMID><DateCreated><Year>2010</Year><Month>03</Month><Day>26</Day></DateCreated><DateCompleted><Year>2010</Year><Month>07</Month><Day>06</Day></DateCompleted><DateRevised><Year>2014</Year><Month>08</Month><Day>28</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>15</Issue><PubDate><Year>2009</Year><Month>Aug</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Simultaneous collision induced dissociation of the charge reduced parent ion during electron capture dissociation.</ArticleTitle><Pagination><MedlinePgn>6156-64</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac900627n</ELocationID><Abstract><AbstractText>A method of performing collision induced dissociation (CID) on the charge-reduced parent ion as it is formed during electron capture dissociation (ECD), called ECD+CID, is described. In ECD+CID, the charge-reduced parent ion is selectively activated using resonant excitation and collisions with the helium bath gas inside a linear quadrupole ion trap ECD device (ECD(LIT)). It has been observed that ECD+CID can improve the sequence coverage for beta-endorphin over performing ECD alone (i.e., from 72 to 97%). Perhaps just as important, ECD+CID can be used to reduce the extent of multiple electron capture events observed when performing ECD in the ECD(LIT). Consequently, the abundance of mass-to-charge ratios corresponding to ECD product ions that contain neutralized protons is decreased, simplifying the interpretation of the product ion spectrum.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Bushey</LastName><ForeName>Jared M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Baba</LastName><ForeName>Takashi</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>5R21RR020207</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R21 RR020207-01A2</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>20449-79-0</RegistryNumber><NameOfSubstance UI="D008555">Melitten</NameOfSubstance></Chemical><Chemical><RegistryNumber>206GF3GB41</RegistryNumber><NameOfSubstance UI="D006371">Helium</NameOfSubstance></Chemical><Chemical><RegistryNumber>60617-12-1</RegistryNumber><NameOfSubstance UI="D001615">beta-Endorphin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Mar 15;78(6):1995-2000</RefSource><PMID Version="1">16536438</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Jun;17(6):757-71</RefSource><PMID Version="1">16616861</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biotechnol Lett. 2006 Jul;28(14):1047-59</RefSource><PMID Version="1">16794768</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Nov;17(11):1605-15</RefSource><PMID Version="1">16904337</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jan 15;79(2):477-85</RefSource><PMID Version="1">17222010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Apr 1;79(7):2901-10</RefSource><PMID Version="1">17328529</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Oct 15;79(20):7596-602</RefSource><PMID Version="1">17874851</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 15;79(22):8755-61</RefSource><PMID Version="1">17902701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2008;22(3):271-8</RefSource><PMID Version="1">18181247</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Feb 15;80(4):1111-7</RefSource><PMID Version="1">18198896</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Jun;19(6):762-71</RefSource><PMID Version="1">18359246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Jun;19(6):772-9</RefSource><PMID Version="1">18372190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Jun;19(6):780-9</RefSource><PMID Version="1">18400512</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Oct 15;72(20):4778-84</RefSource><PMID Version="1">11055690</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2003 Jan;14(1):23-41</RefSource><PMID Version="1">12504331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Apr 1;75(7):1599-603</RefSource><PMID Version="1">12705591</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 23;125(29):8949-58</RefSource><PMID Version="1">12862492</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2003;17(15):1759-68</RefSource><PMID Version="1">12872281</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Jul 1;75(13):3256-62</RefSource><PMID Version="1">12964777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Curr Opin Biotechnol. 2004 Feb;15(1):12-6</RefSource><PMID Version="1">15102460</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Jan-Feb;17(1):1-35</RefSource><PMID Version="1">9768511</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Mar-Apr;24(2):135-67</RefSource><PMID Version="1">15389858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Mar-Apr;24(2):201-22</RefSource><PMID Version="1">15389856</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochem Biophys Res Commun. 2005 Aug 19;334(1):1-8</RefSource><PMID Version="1">15950932</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2006 Mar;5(3):493-501</RefSource><PMID Version="1">16512663</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006371">Helium</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008555">Melitten</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001615">beta-Endorphin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS130162</OtherID><OtherID Source="NLM">PMC3141179</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>7</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>7</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>7</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac900627n</ArticleId><ArticleId IdType="pubmed">19572558</ArticleId><ArticleId IdType="pmc">PMC3141179</ArticleId><ArticleId IdType="mid">NIHMS130162</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19548663</PMID><DateCreated><Year>2009</Year><Month>07</Month><Day>15</Day></DateCreated><DateCompleted><Year>2009</Year><Month>10</Month><Day>06</Day></DateCompleted><DateRevised><Year>2014</Year><Month>08</Month><Day>28</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>14</Issue><PubDate><Year>2009</Year><Month>Jul</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Iterative accumulation multiplexing Fourier transform ion cyclotron resonance mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>5623-8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac9003024</ELocationID><Abstract><AbstractText>A multiplexed tandem mass spectrometry (MS/MS) technique known as iterative accumulation multiplexing (IAM) has been implemented on a hybrid quadrupole Fourier transform ion cyclotron resonance mass spectrometer (Q-FTICR-MS). The IAM experiment resulted in obtaining MS/MS spectra for six analytes in two MS/MS experiments while characteristic resolving power and mass measurement accuracies were maintained. Parent-product ion correlations were graphically represented in a "ratiogram" where each product ion is encoded with a ratio unique to the parent ion from which it was formed. This is the first example of multiplexed MS on a FTICR instrument where the ions are encoded externally to the ICR cell. By performing the encoding external to the ICR cell, one set of ions can be encoded while the previous set of ions is being analyzed in the cell, maximizing the use of the continuous ion current emanating from the electrospray ionization source.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Bushey</LastName><ForeName>Jared M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Danell</LastName><ForeName>Ryan M</ForeName><Initials>RM</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>1S10RR01988901</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>S10 RR019889-01</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Apr 15;72(8):1918-24</RefSource><PMID Version="1">10784162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 15;73(2):253-61</RefSource><PMID Version="1">11199974</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3312-22</RefSource><PMID Version="1">11476231</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 2001 Oct;19(10):952-7</RefSource><PMID Version="1">11581661</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2003 Jul;3(7):1279-86</RefSource><PMID Version="1">12872228</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Aug 1;80(15):5873-83</RefSource><PMID Version="1">18582088</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Jul 15;70(14):3033-41</RefSource><PMID Version="1">9684551</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1998;12(23):1957-61</RefSource><PMID Version="1">9842743</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Dec 15;76(24):7346-53</RefSource><PMID Version="1">15595878</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Mar 15;79(6):2451-62</RefSource><PMID Version="1">17305309</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1990 Apr 1;62(7):698-703</RefSource><PMID Version="1">2327586</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005583">Fourier Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS132567</OtherID><OtherID Source="NLM">PMC3141178</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>6</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>6</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>10</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac9003024</ArticleId><ArticleId IdType="pubmed">19548663</ArticleId><ArticleId IdType="pmc">PMC3141178</ArticleId><ArticleId IdType="mid">NIHMS132567</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19535265</PMID><DateCreated><Year>2009</Year><Month>09</Month><Day>07</Day></DateCreated><DateCompleted><Year>2009</Year><Month>11</Month><Day>23</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>20</Volume><Issue>9</Issue><PubDate><Year>2009</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Transition metal complex cations as reagents for gas-phase transformation of multiply deprotonated polypeptides.</ArticleTitle><Pagination><MedlinePgn>1718-22</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2009.05.008</ELocationID><Abstract><AbstractText>Triply deprotonated DGAILDGAILD was reacted in the gas-phase with doubly charged copper, cobalt, and iron metal complexes containing either two or three phenanthroline ligands. Reaction products result from two major pathways. The first pathway involves the transfer of an electron from the negatively charged peptide to the transition-metal complex. The other major pathway consists of the displacement of the phenanthroline ligands by the peptide resulting in the incorporation of the transition-metal into the peptide to form [M - 3H + X(II)](-) ions, where X is Cu, Co, or Fe, respectively. The extent to which each pathway contributes is dependent on the nature of transition-metal complex. In general, bis-phen complexes result in more electron-transfer than the tris-phen complexes, while the tris-phen complexes result in more metal insertion. The metal in the complex plays a large role as well, with the Cu containing complexes giving rise to more electron transfer than the corresponding complexes of Co and Fe. The results show that a single reagent solution can be used to achieve two distinct sets of products (i.e., electron-transfer products and metal insertion products). These results constitute the demonstration of novel means for the gas-phase transformation of peptide anions from one ion type to another via ion/ion reactions using reagents formed via electrospray ionization.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Crizer</LastName><ForeName>David M</ForeName><Initials>DM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>05</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D028561">Transition Elements</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D008956">Models, Chemical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D044367">Phase Transition</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D028561">Transition Elements</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2009</Year><Month>3</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2009</Year><Month>5</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2009</Year><Month>5</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>5</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>6</Month><Day>19</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>6</Month><Day>19</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>12</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(09)00379-1</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2009.05.008</ArticleId><ArticleId IdType="pubmed">19535265</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19410483</PMID><DateCreated><Year>2009</Year><Month>07</Month><Day>06</Day></DateCreated><DateCompleted><Year>2009</Year><Month>11</Month><Day>03</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>20</Volume><Issue>7</Issue><PubDate><Year>2009</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer dissociation of amide nitrogen methylated polypeptide cations.</ArticleTitle><Pagination><MedlinePgn>1349-54</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2009.03.023</ELocationID><Abstract><AbstractText>Unmodified and amide nitrogen methylated peptide cations were reacted with azobenzene radical anions to study the utility of electron transfer dissociation (ETD) in analyzing N-methylated peptides. We show that methylation of the amide nitrogen has no deleterious effects on the ETD process. As a result, location of alkylation on amide nitrogens should be straightforward. Such a modification might be expected to affect the ETD process if hydrogen bonding involving the amide hydrogen is important for the ETD mechanism. The partitioning of the ion/ion reaction products into all of the various reaction channels was determined and compared for modified and unmodified peptide cations. While subtle differences in the relative abundances of the various ETD channels were observed, there is no strong evidence that hydrogen bonding involving the amide nitrogen plays an important role in the ETD process.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Crizer</LastName><ForeName>David M</ForeName><Initials>DM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>04</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000577">Amides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001391">Azo Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>F0U1H6UG5C</RegistryNumber><NameOfSubstance UI="C009850">azobenzene</NameOfSubstance></Chemical><Chemical><RegistryNumber>N762921K75</RegistryNumber><NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000577">Amides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001391">Azo Compounds</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006860">Hydrogen Bonding</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008745">Methylation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008958">Models, Molecular</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009584">Nitrogen</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2009</Year><Month>1</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2009</Year><Month>3</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2009</Year><Month>3</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>4</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>5</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>5</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>11</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(09)00225-6</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2009.03.023</ArticleId><ArticleId IdType="pubmed">19410483</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">19320447</PMID><DateCreated><Year>2009</Year><Month>04</Month><Day>09</Day></DateCreated><DateCompleted><Year>2009</Year><Month>07</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-5215</ISSN><JournalIssue CitedMedium="Internet"><Volume>113</Volume><Issue>15</Issue><PubDate><Year>2009</Year><Month>Apr</Month><Day>16</Day></PubDate></JournalIssue><Title>The journal of physical chemistry. A</Title><ISOAbbreviation>J Phys Chem A</ISOAbbreviation></Journal><ArticleTitle>Mapping the distribution of ion positions as a function of quadrupole ion trap mass spectrometer operating parameters to optimize infrared multiphoton dissociation.</ArticleTitle><Pagination><MedlinePgn>3447-54</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/jp808955w</ELocationID><Abstract><AbstractText>Infrared multiphoton dissociation (IRMPD) combined with ion trajectory simulations has been used to obtain probability maps of ion position as a function of different operating parameters in a quadrupole ion trap mass spectrometer. The factors that contribute to the depth of the pseudopotential trapping well are analyzed, and their effects on the efficiency of IRMPD are demonstrated. Ion trajectory simulations are used to substantiate experimental results and demonstrate in greater detail the dynamic nature of the ion population's positional distribution. In particular, it is shown that the so-called "q(z) value" used during photodissociation can be of great consequence, as can the frequency of ac trapping voltage applied to the ring electrode. The results reveal that parameters which increase the pseudopotential well have the effect of decreasing the size of the ion cloud and maximizing overlap between the irradiating laser and the ions. Thus, while the common understanding of IRMPD dictates otherwise, IRMPD fragmentation efficiencies really depend on many ion trap operating parameters, much as collision-induced dissociation does.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Remes</LastName><ForeName>Philip M</ForeName><Initials>PM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Phys Chem A</MedlineTA><NlmUniqueID>9890903</NlmUniqueID><ISSNLinking>1089-5639</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>3</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>3</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>27</Day><Hour>9</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/jp808955w</ArticleId><ArticleId IdType="pubmed">19320447</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19305916</PMID><DateCreated><Year>2009</Year><Month>03</Month><Day>23</Day></DateCreated><DateCompleted><Year>2009</Year><Month>07</Month><Day>06</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1364-5528</ISSN><JournalIssue CitedMedium="Internet"><Volume>134</Volume><Issue>4</Issue><PubDate><Year>2009</Year><Month>Apr</Month></PubDate></JournalIssue><Title>The Analyst</Title><ISOAbbreviation>Analyst</ISOAbbreviation></Journal><ArticleTitle>Tailored-waveform collisional activation of peptide ion electron transfer survivor ions in cation transmission mode ion/ion reaction experiments.</ArticleTitle><Pagination><MedlinePgn>681-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1039/b821348h</ELocationID><Abstract><AbstractText>Broadband resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 V(p-p), which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>Erickson</LastName><ForeName>David E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-15</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>02</Month><Day>11</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Analyst</MedlineTA><NlmUniqueID>0372652</NlmUniqueID><ISSNLinking>0003-2654</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 15;71(20):4431-6</RefSource><PMID Version="1">10546526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 May 1;80(9):3492-7</RefSource><PMID Version="1">18396915</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Jul;37(7):663-75</RefSource><PMID Version="1">12124999</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(9):1015-24</RefSource><PMID Version="1">9204576</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 1;77(17):5662-9</RefSource><PMID Version="1">16131079</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 15;77(18):5800-13</RefSource><PMID Version="1">16159109</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jan 15;79(2):477-85</RefSource><PMID Version="1">17222010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(10):1567-73</RefSource><PMID Version="1">17436340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2007 Nov;6(11):4230-44</RefSource><PMID Version="1">17900180</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2007 Nov;6(11):1942-51</RefSource><PMID Version="1">17673454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Feb 15;80(4):1111-7</RefSource><PMID Version="1">18198896</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS169536</OtherID><OtherID Source="NLM">PMC2819056</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>2</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="epublish"><Year>2009</Year><Month>3</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>3</Month><Day>24</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>3</Month><Day>24</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>7</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1039/b821348h</ArticleId><ArticleId IdType="pubmed">19305916</ArticleId><ArticleId IdType="pmc">PMC2819056</ArticleId><ArticleId IdType="mid">NIHMS169536</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19281259</PMID><DateCreated><Year>2009</Year><Month>03</Month><Day>13</Day></DateCreated><DateCompleted><Year>2010</Year><Month>09</Month><Day>01</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>6</Issue><PubDate><Year>2009</Year><Month>Mar</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Simultaneous transmission mode collision-induced dissociation and ion/ion reactions for top-down protein identification/characterization using a quadrupole/time-of-flight tandem mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>2159-67</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac802316g</ELocationID><Abstract><AbstractText>Simultaneous transmission mode collision-induced dissociation (CID) and ion/ion proton transfer reactions have been implemented on a quadrupole/time-of-flight (TOF) tandem mass spectrometer. Reagent anions were trapped in a pressurized quadrupole collision cell by applying appropriate dc voltages while multiply protonated protein precursor ions were injected into the collision cell at energies sufficient to give rise to CID. Intact precursor ions as well as fragment ions underwent ion/ion proton transfer reactions during their passage through the collision cell and on to an orthogonal acceleration TOF mass analyzer. The resulting product ion spectrum was then submitted to deconvolution to yield a "zero-charge" spectrum, which was then matched against in silico produced spectra derived from a protein database. Dramatic improvements in the scores associated with correct matches were obtained relative to CID data without the benefit of ion/ion reactions for proteins as large as carbonic anhydrase (29 kDa). The parameters that most affect the extent of ion/ion proton transfer during transmission through the instrument include the number of anions stored in the collision cell, the amplitude of the radio frequency trapping voltage, the voltage of the LINAC potential associated with the collision cell, and the collision gas pressure. This work demonstrates that it is possible to effect whole protein tandem mass spectrometry with simultaneous CID, ion/ion reactions, and mass analysis for high duty cycle top-down protein characterization.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 4.2.1.1</RegistryNumber><NameOfSubstance UI="D002256">Carbonic Anhydrases</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Electrophoresis. 1999 Dec;20(18):3551-67</RefSource><PMID Version="1">10612281</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2008 Jan;43(1):23-34</RefSource><PMID Version="1">17613176</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jun 1;72(11):2482-9</RefSource><PMID Version="1">10857624</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 Jul;12(7):873-6</RefSource><PMID Version="1">11444611</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 2001 Oct;19(10):952-7</RefSource><PMID Version="1">11581661</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Aug 1;75(15):3792-8</RefSource><PMID Version="1">14572045</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Aug 15;75(16):4081-6</RefSource><PMID Version="1">14632120</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W340-5</RefSource><PMID Version="1">15215407</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011-5</RefSource><PMID Version="1">8506346</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biol Mass Spectrom. 1993 Jun;22(6):338-45</RefSource><PMID Version="1">8329463</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1993 Nov 1;214(2):397-408</RefSource><PMID Version="1">8109726</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2801-8</RefSource><PMID Version="1">7978294</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Mar 15;67(6):1042-6</RefSource><PMID Version="1">7536399</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Apr 15;67(8):1426-36</RefSource><PMID Version="1">7741214</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Mar 15;70(6):1198-202</RefSource><PMID Version="1">9530009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Jul 15;71(14):2871-82</RefSource><PMID Version="1">10424174</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2005 Apr;40(4):430-43</RefSource><PMID Version="1">15838939</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1876-87</RefSource><PMID Version="1">16198118</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Feb 15;78(4):1218-27</RefSource><PMID Version="1">16478115</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):109-12</RefSource><PMID Version="1">17023655</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Feb 1;79(3):1073-81</RefSource><PMID Version="1">17263338</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W701-6</RefSource><PMID Version="1">17586823</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Methods. 2007 Sep;4(9):709-12</RefSource><PMID Version="1">17721543</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Mar 1;72(5):899-907</RefSource><PMID Version="1">10739190</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002256">Carbonic Anhydrases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS95838</OtherID><OtherID Source="NLM">PMC2667222</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>9</Month><Day>2</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac802316g</ArticleId><ArticleId IdType="pubmed">19281259</ArticleId><ArticleId IdType="pmc">PMC2667222</ArticleId><ArticleId IdType="mid">NIHMS95838</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">19269191</PMID><DateCreated><Year>2009</Year><Month>05</Month><Day>18</Day></DateCreated><DateCompleted><Year>2009</Year><Month>09</Month><Day>03</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1879-1123</ISSN><JournalIssue CitedMedium="Internet"><Volume>20</Volume><Issue>6</Issue><PubDate><Year>2009</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Improving IRMPD in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1127-31</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2009.02.003</ELocationID><Abstract><AbstractText>A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 x 10(-3) Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5-10 ms at a bath gas pressure of 3.3 x 10(-4) Torr and in 3-25 ms at 1.0 x 10(-3) Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Newsome</LastName><ForeName>G Asher</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2009</Year><Month>02</Month><Day>10</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2009</Year><Month>1</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2009</Year><Month>2</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2009</Year><Month>2</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2009</Year><Month>2</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>3</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>3</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>10</Day><Hour>9</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(09)00061-0</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2009.02.003</ArticleId><ArticleId IdType="pubmed">19269191</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19241047</PMID><DateCreated><Year>2009</Year><Month>02</Month><Day>25</Day></DateCreated><DateCompleted><Year>2009</Year><Month>03</Month><Day>18</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1064-3745</ISSN><JournalIssue CitedMedium="Print"><Volume>492</Volume><PubDate><Year>2009</Year></PubDate></JournalIssue><Title>Methods in molecular biology (Clifton, N.J.)</Title><ISOAbbreviation>Methods Mol. Biol.</ISOAbbreviation></Journal><ArticleTitle>Peptide and protein ion/ion reactions in electrodynamic ion traps: tools and methods.</ArticleTitle><Pagination><MedlinePgn>395-412</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/978-1-59745-493-3_24</ELocationID><Abstract><AbstractText>Gas-phase reactions of oppositely charged ions can play important roles in the analysis of peptides and proteins. Electrospray ionization (ESI) can yield multiply charged versions of gaseous peptide and protein ions that can react with oppositely charged ions via several distinct mechanisms. Reagent ions that react via proton transfer can be used to facilitate protein mixture analysis and the mass assignment of product ions in a tandem mass spectrometry experiment. Proton transfer reactions can also be used to concentrate protein ion signals into one or two charge states and can be used to charge state purify a precursor ion population for subsequent dissociation. Electron transfer reactions have been shown to lead to fragmentation of gaseous protonated peptides and proteins. The extent of sequence information available from an electron transfer reaction is often greater than that obtained via conventional collision-induced dissociation. Electron transfer dissociation is particularly useful in probing the structures of polypeptides with labile posttranslational modifications. We summarize here the tools and general methods for conducting ion/ion reaction studies with emphasis on electrodynamic ion traps as the reaction vessels.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Methods Mol Biol</MedlineTA><NlmUniqueID>9214969</NlmUniqueID><ISSNLinking>1064-3745</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>2</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>2</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>19</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1007/978-1-59745-493-3_24</ArticleId><ArticleId IdType="pubmed">19241047</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19199571</PMID><DateCreated><Year>2009</Year><Month>02</Month><Day>13</Day></DateCreated><DateCompleted><Year>2009</Year><Month>04</Month><Day>06</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>81</Volume><Issue>4</Issue><PubDate><Year>2009</Year><Month>Feb</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Top-down protein identification/characterization of a priori unknown proteins via ion trap collision-induced dissociation and ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>1433-41</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac802204j</ELocationID><Abstract><AbstractText>The identification and characterization of a priori unknown proteins from an Escherichia coli (E. coli) soluble protein lysate using ion trap collision-induced dissociation of intact protein ions followed by ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer is illustrated. The procedure involved the submission of uninterpreted product ion spectra to a peak-picking program and then to ProSightPTM for searching against an E. coli database. Examples are provided for the identification and characterization of both modified and unmodified unknown proteins with masses up to approximately 28 kDa. The availability of protein intact mass along with sequence information makes possible the characterization of proteins with post-translational modifications, such as disulfide linkages, as well as protein isoforms whose sequences are absent from a database, provided that a related form of the gene product is present in the database. This work demonstrates that the quadrupole/time-of-flight platform, in conjunction with ion-ion proton transfer reactions, can be adapted to obtain primary structure information from entire protein ions, rather than simply N- or C-terminal information from low mass-to-charge products, for proteins as large as several tens of kilodaltons.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002457">Cell Extracts</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D045424">Complex Mixtures</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 2001 Oct;19(10):952-7</RefSource><PMID Version="1">11581661</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2008 Jan;43(1):23-34</RefSource><PMID Version="1">17613176</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Mar;37(3):270-82</RefSource><PMID Version="1">11921368</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Jul;37(7):663-75</RefSource><PMID Version="1">12124999</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Aug 15;75(16):4081-6</RefSource><PMID Version="1">14632120</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jun 1;76(11):197A-203A</RefSource><PMID Version="1">15190879</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W340-5</RefSource><PMID Version="1">15215407</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Sep-Oct;3(5):958-64</RefSource><PMID Version="1">15473683</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1990 Oct 5;215(3):403-10</RefSource><PMID Version="1">2231712</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biol Mass Spectrom. 1993 Jun;22(6):338-45</RefSource><PMID Version="1">8329463</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1993 Nov 1;214(2):397-408</RefSource><PMID Version="1">8109726</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Dec 15;66(24):4390-9</RefSource><PMID Version="1">7847635</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1998 Jan;33(1):1-19</RefSource><PMID Version="1">9449829</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Curr Opin Chem Biol. 1998 Oct;2(5):571-8</RefSource><PMID Version="1">9818181</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Feb 15;80(4):1111-7</RefSource><PMID Version="1">18198896</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):231-8</RefSource><PMID Version="1">17693096</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Mar 1;80(5):1459-67</RefSource><PMID Version="1">18229893</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Apr 15;80(8):2857-66</RefSource><PMID Version="1">18351787</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 May 1;80(9):3492-7</RefSource><PMID Version="1">18396915</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1999;13(20):2040-8</RefSource><PMID Version="1">10510418</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Mar-Apr;24(2):135-67</RefSource><PMID Version="1">15389858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Apr;16(4):482-90</RefSource><PMID Version="1">15792717</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2005 Apr;40(4):430-43</RefSource><PMID Version="1">15838939</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Feb 15;78(4):1218-27</RefSource><PMID Version="1">16478115</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 2006 Oct 6;314(5796):109-12</RefSource><PMID Version="1">17023655</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Feb 1;79(3):1073-81</RefSource><PMID Version="1">17263338</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2001 Oct;36(10):1083-91</RefSource><PMID Version="1">11747101</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002457">Cell Extracts</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045424">Complex Mixtures</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D030562">Databases, Protein</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004926">Escherichia coli</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000166">cytology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D029968">Escherichia coli Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011499">Protein Processing, Post-Translational</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS91567</OtherID><OtherID Source="NLM">PMC2667219</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>2</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>2</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>4</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac802204j</ArticleId><ArticleId IdType="pii">10.1021/ac802204j</ArticleId><ArticleId IdType="pubmed">19199571</ArticleId><ArticleId IdType="pmc">PMC2667219</ArticleId><ArticleId IdType="mid">NIHMS91567</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">19125429</PMID><DateCreated><Year>2009</Year><Month>01</Month><Day>13</Day></DateCreated><DateCompleted><Year>2009</Year><Month>03</Month><Day>06</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0951-4198</ISSN><JournalIssue CitedMedium="Print"><Volume>23</Volume><Issue>3</Issue><PubDate><Year>2009</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Transmission mode ion/ion reactions in the radiofrequency-only ion guide of hybrid tandem mass spectrometers.</ArticleTitle><Pagination><MedlinePgn>409-18</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1002/rcm.3894</ELocationID><Abstract><AbstractText>Transmission mode ion/ion reactions have been performed within the first quadrupole, the Q0 radiofrequency (RF)-only quadrupole, of two types of hybrid tandem mass spectrometers (viz., triple quadrupole/linear ion trap and QqTOF instruments). These transmission mode reactions involved the storage of either the reagent species and the transmission of the analyte species through the Q0 quadrupole for charge inversion reactions or the storage of the analyte ions and transmission of the reagent ions as in charge reduction experiments. A key advantage to the use of transmission mode ion/ion reactions is that they do not require any instrument hardware modifications to provide interactions of oppositely charged ions and can be implemented in any instrument that contains a quadrupole or linear ion trap. The focus of this work was to investigate the potential of using the RF-only quadrupole ion guide positioned prior to the first mass-resolving element in a tandem mass spectrometer for ion/ion reactions. Two types of exemplary experiments have been demonstrated. One involved a charge inversion reaction and the other involved a charge reduction reaction in conjunction with ion parking. Ion/ion reactions proved to be readily implemented in Q0 thereby adding significantly greater experimental flexibility in the use of ion/ion reaction experiments with hybrid tandem mass spectrometers.</AbstractText><CopyrightInformation>Copyright 2009 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Emory</LastName><ForeName>Joshua F</ForeName><Initials>JF</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hassell</LastName><ForeName>Kerry H</ForeName><Initials>KH</Initials></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-15</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C104700">PAMAM Starburst</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011073">Polyamines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jan 1;78(1):310-6</RefSource><PMID Version="1">16383342</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 15;79(10):3525-34</RefSource><PMID Version="1">17441688</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Nov 1;79(21):8199-206</RefSource><PMID Version="1">17914865</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2008;22(3):271-8</RefSource><PMID Version="1">18181247</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2008 Aug;7(8):3127-36</RefSource><PMID Version="1">18613715</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Mar 1;72(5):899-907</RefSource><PMID Version="1">10739190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Sep 1;76(17):5006-15</RefSource><PMID Version="1">15373435</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Mar 15;70(6):1198-202</RefSource><PMID Version="1">9530009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011073">Polyamines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS132423</OtherID><OtherID Source="NLM">PMC2744434</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2009</Year><Month>1</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>1</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/rcm.3894</ArticleId><ArticleId IdType="pubmed">19125429</ArticleId><ArticleId IdType="pmc">PMC2744434</ArticleId><ArticleId IdType="mid">NIHMS132423</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">21785563</PMID><DateCreated><Year>2011</Year><Month>7</Month><Day>25</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1073-9149</ISSN><JournalIssue CitedMedium="Print"><Volume>37</Volume><Issue>3</Issue><PubDate><Year>2009</Year></PubDate></JournalIssue><Title>Instrumentation science &amp; technology</Title><ISOAbbreviation>Instrum Sci Technol</ISOAbbreviation></Journal><ArticleTitle>Pulsed Nano-Electrospray Ionization: Characterization of Temporal Response and Implementation with a Flared Inlet Capillary.</ArticleTitle><Pagination><MedlinePgn>257-273</MedlinePgn></Pagination><Abstract><AbstractText>The temporal response of pulsed nano-electrospray ionization mass spectrometry (nano-ESI-MS) was studied and its influence on ion formation and detection was characterized. Rise and decay times for the mass resolved ion current were determined to be 20 ± 3 msec and 61 ± 5 msec, respectively, which led to a maximum pulse rate of 12 Hz. Pulsed nano-ESI operation was demonstrated from a multi-sprayer source controlled by a high voltage pulsing circuit constructed in-house. The desired source mode of operation (e.g. pulsing or continuous) can be realized solely by controlling the voltage applied to each sprayer.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Bushey</LastName><ForeName>Jared M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kaplan</LastName><ForeName>Desmond A</ForeName><Initials>DA</Initials></Author><Author ValidYN="Y"><LastName>Danell</LastName><ForeName>Ryan M</ForeName><Initials>RM</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>ENG</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01 GM049852-05A2</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><MedlineTA>Instrum Sci Technol</MedlineTA><NlmUniqueID>9434920</NlmUniqueID><ISSNLinking>1073-9149</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>7</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2009</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1080/10739140902831313</ArticleId><ArticleId IdType="pubmed">21785563</ArticleId><ArticleId IdType="pmc">PMC3141176</ArticleId><ArticleId IdType="mid">NIHMS110498</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18974010</PMID><DateCreated><Year>2008</Year><Month>12</Month><Day>08</Day></DateCreated><DateCompleted><Year>2009</Year><Month>03</Month><Day>03</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2008</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Why are a(3) ions rarely observed?</ArticleTitle><Pagination><MedlinePgn>1764-70</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2008.09.022</ELocationID><Abstract><AbstractText>It has been determined experimentally that a(3) ions are generally not observed in the tandem mass spectroscopic (MS/MS) spectra of b(3) ions. This is in contrast to other b(n) ions, which often have the corresponding a(n) ion as the base peak in their MS/MS spectra. Although this might suggest a different structure for b(3) ions compared to that of other b(n) ions, theoretical calculations indicate the conventional oxazolone structure to be the lowest energy structure for the b(3) ion of AAAAR, as it is for other b(n) ions of this peptide. However, it has been determined theoretically that the a(3) ion is lower in energy than other a(n) ions, relative to the corresponding b ions. Furthermore, the a(3) --&gt; b(2) transition structure (TS) is lower in energy than other a(n) --&gt; b(n-1) TSs of AAAAR, compared with the corresponding b ions. Consequently, it is suggested that the b(3) ion does fragment to the a(3) ion, but that the a(3) ion then immediately fragments (to b(2) and a(3)) because of the excess internal energy arising from its relatively low energy and the facile a(3) --&gt; b(2) reaction. That is why a(3) ions are not observed in the MS/MS spectra of b(3) ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Allen</LastName><ForeName>Julia M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Racine</LastName><ForeName>Alawee H</ForeName><Initials>AH</Initials></Author><Author ValidYN="Y"><LastName>Berman</LastName><ForeName>Ashley M</ForeName><Initials>AM</Initials></Author><Author ValidYN="Y"><LastName>Johnson</LastName><ForeName>Jeffrey S</ForeName><Initials>JS</Initials></Author><Author ValidYN="Y"><LastName>Bythell</LastName><ForeName>Benjamin J</ForeName><Initials>BJ</Initials></Author><Author ValidYN="Y"><LastName>Paizs</LastName><ForeName>Béla</ForeName><Initials>B</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>09</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>15646-46-5</RegistryNumber><NameOfSubstance UI="D010081">Oxazolone</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008958">Models, Molecular</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015394">Molecular Structure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010081">Oxazolone</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2008</Year><Month>7</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2008</Year><Month>9</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2008</Year><Month>9</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>9</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>11</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>11</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(08)00781-2</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2008.09.022</ArticleId><ArticleId IdType="pubmed">18974010</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18947190</PMID><DateCreated><Year>2008</Year><Month>11</Month><Day>17</Day></DateCreated><DateCompleted><Year>2009</Year><Month>02</Month><Day>02</Day></DateCompleted><DateRevised><Year>2012</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>80</Volume><Issue>22</Issue><PubDate><Year>2008</Year><Month>Nov</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Collision-induced dissociation of intact duplex and single-stranded siRNA anions.</ArticleTitle><Pagination><MedlinePgn>8501-8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac801331h</ELocationID><Abstract><AbstractText>A tandem mass spectrometry approach is demonstrated for complete sequencing of a model small interfering RNA (siRNA) based on ion trap collisional activation of intact single-stranded anions. Various charge states of the siRNA duplex and the individual strands were generated by nanoelectrospray (nano-ESI). The siRNA duplex anions were predominantly dissociated into the sense and antisense strands by collisional activation. The characteristic fragment ions (c/y- and a-B/w-ion series) from both strands were observed when higher activation amplitude was applied and when beam-type collisional activation was examined; however, the coexistence of fragment ions from both strands complicated spectral interpretation. The effect of precursor ion charge state on the dissociation of the individual sense and antisense strand siRNA anions was studied using ion trap collision-induced dissociation under various activation amplitudes. Through the activation of relatively low charge state precursor ions at relatively low excitation energy, selective backbone dissociation predominantly via the c/y channels was achieved. By applying relatively high excitation energy, the a-B/w channels also became prominent; however, the increase in spectral complexity made complete peak assignment difficult. In order to simplify the product ion spectra, proton-transfer reactions were applied, and complete sequencing of each strand was achieved. The application of tandem mass spectrometry to intact single-stranded anions demonstrated in this study can be adapted for the rapid identification of other noncoding RNAs in RNomics studies.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials></Author><Author ValidYN="Y"><LastName>Hodges</LastName><ForeName>Brittany D M</ForeName><Initials>BD</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>10</Month><Day>24</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011804">Quinolines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance></Chemical><Chemical><RegistryNumber>E66400VT9R</RegistryNumber><NameOfSubstance UI="C037219">quinoline</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011804">Quinolines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012323">RNA Processing, Post-Transcriptional</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D034741">RNA, Small Interfering</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>10</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>10</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>2</Month><Day>3</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>10</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac801331h</ArticleId><ArticleId IdType="pubmed">18947190</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18842425</PMID><DateCreated><Year>2009</Year><Month>01</Month><Day>23</Day></DateCreated><DateCompleted><Year>2009</Year><Month>03</Month><Day>19</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>20</Volume><Issue>2</Issue><PubDate><Year>2009</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>The role of amino acid composition in the charge inversion of deprotonated peptides via gas-phase ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>180-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2008.08.015</ELocationID><Abstract><AbstractText>Ion/ion charge inversion via multiple proton transfer reactions occurs via a long-lived intermediate. The intermediate can be observed if its lifetime is long relative to mechanisms for removal of excess energy (i.e., emission and collisional stabilization). The likelihood for formation of a stabilized intermediate is a function of characteristics of the reagent and analyte ions. This work is focused on the role acidic and basic sites of a deprotonated peptide play in the formation of a stabilized intermediate upon charge inversion with multiply protonated polypropyleniminediaminobutane dendrimers. A group of model peptides based on leucine enkephalin was used, which included YGGFL, YGGFLF, YGGFLK, YGGFLR and YGGFLH as well as methyl esterified and acetylated versions. Results showed that peptides containing basic amino acid residues charge inverted primarily by proton transfer from the DAB dendrimer to the peptide, whereas peptides without basic amino acids charge inverted primarily by complex formation with the DAB dendrimer. The modified versions of the peptides highlighted the importance of the presence of the C-terminus as well as the basicity of the peptide in the observation of a stabilized intermediate. These results provide new insights into the nature of the interactions that occur in the charge inversion of polypeptide anions via ion/ion reactions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Emory</LastName><ForeName>Joshua F</ForeName><Initials>JF</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>09</Month><Day>05</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000107">Acetylation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000596">Amino Acids</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004951">Esterification</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006860">Hydrogen Bonding</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2008</Year><Month>6</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2008</Year><Month>8</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2008</Year><Month>8</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>9</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>10</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>20</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>10</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(08)00736-8</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2008.08.015</ArticleId><ArticleId IdType="pubmed">18842425</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18841942</PMID><DateCreated><Year>2008</Year><Month>11</Month><Day>03</Day></DateCreated><DateCompleted><Year>2008</Year><Month>12</Month><Day>22</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>80</Volume><Issue>21</Issue><PubDate><Year>2008</Year><Month>Nov</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Development of a proton-transfer reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds.</ArticleTitle><Pagination><MedlinePgn>8171-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac801328d</ELocationID><Abstract><AbstractText>Currently, proton-transfer reaction mass spectrometry (PTR-MS) allows for quantitative determination of volatile organic compounds in real time at concentrations in the low ppt range, but cannot differentiate isomers or isobaric molecules, using the conventional quadrupole mass filter. Here we pursue the application of linear quadrupole ion trap (LIT) mass spectrometry in combination with proton-transfer reaction chemical ionization to provide the advantages of specificity from MS/MS. A commercial PTR-MS platform composed of a quadrupole mass filter with the addition of end cap electrodes enabled the mass filter to operate as a linear ion trap. The rf drive electronics were adapted to enable the application of dipolar excitation to opposing rods, for collision-induced dissociation (CID) of trapped ions. This adaptation enabled ion isolation, ion activation, and mass analysis. The utility of the PTR-LIT was demonstrated by distinguishing between the isomeric isoprene oxidation pair, methyl vinyl ketone (MVK) and methacrolein (MACR). The CID voltage was adjusted to maximize the m/ z 41 to 43 fragment ratio of MACR while still maintaining adequate sensitivity. Linear calibration curves for MVK and MACR fragments at m/ z 41 and 43 were obtained with limits of detection of approximately 100 ppt, which should enable ambient measurements. Finally, the PTR-LIT method was compared to an established GC/MS method by quantifying MVK and MACR production during a smog chamber isoprene-NO x irradiation experiment.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mielke</LastName><ForeName>Levi H</ForeName><Initials>LH</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 860 Oval Drive West, Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Erickson</LastName><ForeName>David E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Müller</LastName><ForeName>Markus</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Wisthaler</LastName><ForeName>Armin</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>Hansel</LastName><ForeName>Armin</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>Shepson</LastName><ForeName>Paul B</ForeName><Initials>PB</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>10</Month><Day>08</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009930">Organic Chemicals</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002849">Chromatography, Gas</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009930">Organic Chemicals</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014835">Volatilization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>10</Month><Day>08</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>10</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>12</Month><Day>23</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>10</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac801328d</ArticleId><ArticleId IdType="pubmed">18841942</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18799321</PMID><DateCreated><Year>2008</Year><Month>12</Month><Day>08</Day></DateCreated><DateCompleted><Year>2009</Year><Month>03</Month><Day>03</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>19</Volume><Issue>12</Issue><PubDate><Year>2008</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collision-induced dissociation of multiply deprotonated RNA: c/y-ions versus (a-B)/w-ions.</ArticleTitle><Pagination><MedlinePgn>1832-40</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2008.08.009</ELocationID><Abstract><AbstractText>The dissociation of model RNA anions has been studied as a function of anion charge state and excitation amplitude using ion trap collisional activation. Similar to DNA anions, the precursor ion charge state of an RNA anion plays an important role in directing the preferred dissociation channels. Generally, the complementary c/y-ions from 5' P-O bond cleavage dominate at low to intermediate charge states, while other backbone cleavages appear to a limited extent but increase in number and relative abundance at higher excitation energies. The competition between base loss, either as a neutral or as an anion, as well as the preference for the identity of the lost base are also observed to be charge-state dependent. To gain further insight into the partitioning of the dissociation products among the various possible channels, model dinucleotide anions have been subjected to a systematic study. In comparison to DNA, the 2'-OH group on RNA significantly facilitates the dissociation of the 5' P-O bond. However, the degree of excitation required for a 5' base loss and the subsequent 3' C-O bond cleavage are similar for the analogous RNA and DNA dinucleotides. Data collected for protonated dinucleotides, however, suggest that the 2'-OH group in RNA can stabilize the glycosidic bond of a protonated base. Therefore, base loss from low charge state oligonucleotide anions, in which protonation of one or more bases via intramolecular proton transfer can occur, may also be stabilized in RNA anions relative to corresponding DNA anions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kharlamova</LastName><ForeName>Anastasia</ForeName><Initials>A</Initials></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>08</Month><Day>19</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009843">Oligoribonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>63231-63-0</RegistryNumber><NameOfSubstance UI="D012313">RNA</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015394">Molecular Structure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009838">Oligodeoxyribonucleotides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009843">Oligoribonucleotides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012313">RNA</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2008</Year><Month>5</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2008</Year><Month>7</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2008</Year><Month>8</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>8</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>9</Month><Day>19</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2009</Year><Month>3</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>9</Month><Day>19</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(08)00694-6</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2008.08.009</ArticleId><ArticleId IdType="pubmed">18799321</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18646790</PMID><DateCreated><Year>2008</Year><Month>09</Month><Day>05</Day></DateCreated><DateCompleted><Year>2008</Year><Month>11</Month><Day>04</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>7</Volume><Issue>9</Issue><PubDate><Year>2008</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer dissociation of iTRAQ labeled peptide ions.</ArticleTitle><Pagination><MedlinePgn>3643-8</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/pr8001113</ELocationID><Abstract><AbstractText>Triply and doubly charged iTRAQ ( isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD and supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/ z 162 yielded the reporter ion at m/ z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pappin</LastName><ForeName>Darryl J</ForeName><Initials>DJ</Initials></Author><Author ValidYN="Y"><LastName>Ross</LastName><ForeName>Philip L</ForeName><Initials>PL</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>07</Month><Day>23</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.21.4</RegistryNumber><NameOfSubstance UI="D014357">Trypsin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2002 May;1(5):376-86</RefSource><PMID Version="1">12118079</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2008 Feb 15;80(4):1111-7</RefSource><PMID Version="1">18198896</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 1999 Oct;17(10):994-9</RefSource><PMID Version="1">10504701</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2004 Dec;3(12):1154-69</RefSource><PMID Version="1">15385600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2005 Jan;5(1):4-15</RefSource><PMID Version="1">15602776</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Aug 1;77(15):4947-54</RefSource><PMID Version="1">16053308</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 1;77(17):5662-9</RefSource><PMID Version="1">16131079</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Exp Bot. 2006;57(7):1501-8</RefSource><PMID Version="1">16574745</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Oct;17(10):1428-36</RefSource><PMID Version="1">16875835</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jan 15;79(2):477-85</RefSource><PMID Version="1">17222010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2007 Feb;7(3):340-50</RefSource><PMID Version="1">17177251</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2193-8</RefSource><PMID Version="1">17287358</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):432-44</RefSource><PMID Version="1">17112737</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(10):1567-73</RefSource><PMID Version="1">17436340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2007 Oct 10;129(40):12232-43</RefSource><PMID Version="1">17880074</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Dec;18(12):2146-61</RefSource><PMID Version="1">17951069</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010449">Peptide Mapping</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014357">Trypsin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS98859</OtherID><OtherID Source="NLM">PMC2668817</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>7</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>7</Month><Day>24</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>11</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>7</Month><Day>24</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr8001113</ArticleId><ArticleId IdType="pubmed">18646790</ArticleId><ArticleId IdType="pmc">PMC2668817</ArticleId><ArticleId IdType="mid">NIHMS98859</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18610984</PMID><DateCreated><Year>2008</Year><Month>08</Month><Day>11</Day></DateCreated><DateCompleted><Year>2008</Year><Month>10</Month><Day>22</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6904</ISSN><JournalIssue CitedMedium="Internet"><Volume>73</Volume><Issue>16</Issue><PubDate><Year>2008</Year><Month>Aug</Month><Day>15</Day></PubDate></JournalIssue><Title>The Journal of organic chemistry</Title><ISOAbbreviation>J. Org. Chem.</ISOAbbreviation></Journal><ArticleTitle>Solid-phase synthesis of alpha-glucosamine sulfoforms with fragmentation analysis by tandem mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>6059-72</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/jo800713m</ELocationID><Abstract><AbstractText>Sulfated epitopes of alpha-glucosamine (GlcN sulfoforms) were prepared by solid-phase synthesis as models of internal glucosamines within heparan sulfate. An orthogonally protected 2'-hydroxyethyl GlcN derivative was immobilized on a trityl resin support and subjected to regioselective deprotection and sulfonation conditions, which were optimized with the aid of on-resin infrared or Raman analysis. The sulfoforms were cleaved from the resin under mild Lewis acid conditions without affecting the O- or N-sulfate groups and purified by reversed-phase high-performance liquid chromatography (HPLC). The alpha-GlcN sulfoforms and their 4- O-benzyl ethers were examined by electrospray ionization tandem mass spectrometry (ESI-MS/MS), with product ion spectra produced by collision-induced dissociation (CID). ESI-MS/MS revealed significant differences in parent ion stabilities and fragmentation rates as a function of sulfate position. Ion fragmentation by CID resulted in characteristic mass losses with strong correlation to the positions of both free hydroxyl groups and sulfate ions. Most of these fragmentation patterns are consonant with elimination pathways, and suggest possible strategies for elucidating the structures of glucosamine-derived sulfoforms with identical m/ z ratios. In particular, fragmentation analysis can easily distinguish GlcN sulfoforms bearing the relatively rare 3- O-sulfate from isomers with the more common 6- O-sulfate.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Runhui</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chanthamontri</LastName><ForeName>Chamnongsak</ForeName><Initials>C</Initials></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>Hernández-Torres</LastName><ForeName>Jesús M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>Wood</LastName><ForeName>Karl V</ForeName><Initials>KV</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Wei</LastName><ForeName>Alexander</ForeName><Initials>A</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM06982</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM069862</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM069862-05</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>07</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Org Chem</MedlineTA><NlmUniqueID>2985193R</NlmUniqueID><ISSNLinking>0022-3263</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013463">Sulfuric Acid Esters</NameOfSubstance></Chemical><Chemical><RegistryNumber>9050-30-0</RegistryNumber><NameOfSubstance UI="D006497">Heparitin Sulfate</NameOfSubstance></Chemical><Chemical><RegistryNumber>N08U5BOQ1K</RegistryNumber><NameOfSubstance UI="D005944">Glucosamine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Carbohydr Res. 2004 Jan 22;339(2):349-59</RefSource><PMID Version="1">14698893</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Org Lett. 2003 Dec 25;5(26):4975-8</RefSource><PMID Version="1">14682743</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chemistry. 2004 Sep 6;10(17):4265-82</RefSource><PMID Version="1">15352109</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Cell Biol. 2004 Sep 27;166(7):1069-79</RefSource><PMID Version="1">15452147</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2000 Oct 20;275(42):32642-8</RefSource><PMID Version="1">10938267</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Med. 2001 Jan;7(1):123-8</RefSource><PMID Version="1">11135627</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Bioorg Med Chem. 2001 Feb;9(2):477-86</RefSource><PMID Version="1">11249139</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Org Chem. 2001 Jan 12;66(1):1-10</RefSource><PMID Version="1">11429884</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Virology. 1995 Feb 1;206(2):1108-16</RefSource><PMID Version="1">7856085</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>FASEB J. 1996 Aug;10(10):1137-46</RefSource><PMID Version="1">8751716</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 May;31(5):560-72</RefSource><PMID Version="1">8799292</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(9):1015-24</RefSource><PMID Version="1">9204576</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1997 Oct 3;272(40):24850-7</RefSource><PMID Version="1">9312084</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 1997;288:190-220</RefSource><PMID Version="1">9356996</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 1998 Jun 19;273(25):15487-93</RefSource><PMID Version="1">9624135</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Biol. 1999 Jan;6(1):R9-R22</RefSource><PMID Version="1">9889154</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Cell. 1999 Oct 1;99(1):13-22</RefSource><PMID Version="1">10520990</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Oct 15;286(5439):537-42</RefSource><PMID Version="1">10521350</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chemistry. 2005 Jan 21;11(3):928-38</RefSource><PMID Version="1">15593131</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Bioorg Med Chem. 2005 Mar 1;13(5):1783-9</RefSource><PMID Version="1">15698795</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Glycobiology. 2005 Aug;15(8):818-26</RefSource><PMID Version="1">15843596</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Org Lett. 2005 Oct 27;7(22):5095-8</RefSource><PMID Version="1">16235966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Feb 8;128(5):1605-10</RefSource><PMID Version="1">16448132</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Carbohydr Res. 2006 Apr 10;341(5):598-609</RefSource><PMID Version="1">16413001</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2006 May 19;45(21):3503-6</RefSource><PMID Version="1">16634100</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2006 Sep 25;45(38):6349-52</RefSource><PMID Version="1">16917795</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chemistry. 2006 Nov 24;12(34):8664-86</RefSource><PMID Version="1">17066397</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Feb;18(2):234-44</RefSource><PMID Version="1">17074503</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Org Lett. 2007 Feb 15;9(4):723-6</RefSource><PMID Version="1">17286380</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Mar 1;79(5):2015-22</RefSource><PMID Version="1">17253657</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Glycobiology. 2007 Sep;17(9):972-82</RefSource><PMID Version="1">17623722</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Org Chem. 2007 Oct 26;72(22):8216-21</RefSource><PMID Version="1">17918996</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2008 Feb;19(2):294-304</RefSource><PMID Version="1">18055211</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Org Chem. 2004 Oct 15;69(21):7206-11</RefSource><PMID Version="1">15471470</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10359-64</RefSource><PMID Version="1">10984531</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Glycobiology. 2001 Jun;11(6):505-13</RefSource><PMID Version="1">11445555</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Carbohydr Res. 2002 Apr 17;337(8):673-89</RefSource><PMID Version="1">11950464</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Biochem. 2002;71:435-71</RefSource><PMID Version="1">12045103</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Rev Cancer. 2002 Jul;2(7):521-8</RefSource><PMID Version="1">12094238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Rev Drug Discov. 2002 Feb;1(2):140-8</RefSource><PMID Version="1">12120095</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Carbohydr Res. 2002 Aug 16;337(14):1319-24</RefSource><PMID Version="1">12151213</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2002 Sep 6;277(36):33456-67</RefSource><PMID Version="1">12080045</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Angew Chem Int Ed Engl. 2002 Sep 16;41(18):3449-51</RefSource><PMID Version="1">12298060</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Glycobiology. 2000 Sep;10(9):849-56</RefSource><PMID Version="1">10988246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2002 Dec 20;277(51):49247-55</RefSource><PMID Version="1">12374790</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Oncogene. 2003 Jan 16;22(2):274-80</RefSource><PMID Version="1">12527896</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Med Chem. 2003 Jun 19;46(13):2551-64</RefSource><PMID Version="1">12801218</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2003 Jul 18;278(29):26780-7</RefSource><PMID Version="1">12740361</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 May 15;75(10):2445-55</RefSource><PMID Version="1">12918989</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Jul 1;75(13):2985-95</RefSource><PMID Version="1">12964742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Jul 1;75(13):3226-31</RefSource><PMID Version="1">12964773</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Org Chem. 2004 Jun 11;69(12):4081-93</RefSource><PMID Version="1">15176833</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005944">Glucosamine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000031">analogs &amp; derivatives</QualifierName><QualifierName MajorTopicYN="N" UI="Q000138">chemical synthesis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006497">Heparitin Sulfate</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013463">Sulfuric Acid Esters</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000138">chemical synthesis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS79179</OtherID><OtherID Source="NLM">PMC2613357</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>7</Month><Day>09</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>7</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>10</Month><Day>23</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>7</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/jo800713m</ArticleId><ArticleId IdType="pubmed">18610984</ArticleId><ArticleId IdType="pmc">PMC2613357</ArticleId><ArticleId IdType="mid">NIHMS79179</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18396915</PMID><DateCreated><Year>2008</Year><Month>04</Month><Day>30</Day></DateCreated><DateCompleted><Year>2008</Year><Month>05</Month><Day>20</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1520-6882</ISSN><JournalIssue CitedMedium="Internet"><Volume>80</Volume><Issue>9</Issue><PubDate><Year>2008</Year><Month>May</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Rapidly alternating transmission mode electron-transfer dissociation and collisional activation for the characterization of polypeptide ions.</ArticleTitle><Pagination><MedlinePgn>3492-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac7022734</ELocationID><Abstract><AbstractText>Cation transmission/electron-transfer reagent anion storage mode electron-transfer ion/ion reactions and beam-type collisional activation of the polypeptide ions are performed in rapid succession in the high-pressure collision cell (Q2) of a quadrupole/time-of-flight tandem mass spectrometer (QqTOF), where the electron-transfer reagent anions are accumulated. Duty cycles for both electron-transfer dissociation (ETD) and collision-induced dissociation (CID) experiments are improved relative to ion trapping approaches since there are no discrete ion storage and reaction steps for ETD experiments and no discrete ion storage step and frequency tuning for CID experiments. For this technique, moderately high resolution and mass accuracy are also obtained due to mass analysis via the TOF analyzer. This relatively simple approach has been demonstrated with a triply charged tryptic peptide, a triply charged tryptic phosphopeptide, and a triply charged tryptic N-linked glycopeptide. For the tryptic peptide, the sequence is identified with more certainty than would be available from a single method alone due to the complementary information provided by these two dissociation methods. Because of the complementary information derived from both ETD and CID dissociation methods, peptide sequence and post-translational modification (PTM) sites for the phosphopeptide are identified. This combined ETD and CID approach is particularly useful for characterizing glycopeptides because ETD generates information about both peptide sequence and locations of the glycosylation sites, whereas CID provides information about the glycan structure.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Min</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>04</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002364">Caseins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006020">Glycopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D037121">Plant Lectins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C045629">erythrina lectin</NameOfSubstance></Chemical><Chemical><RegistryNumber>402-71-1</RegistryNumber><NameOfSubstance UI="D014108">Tosylphenylalanyl Chloromethyl Ketone</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.21.4</RegistryNumber><NameOfSubstance UI="D014357">Trypsin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 15;71(20):4431-6</RefSource><PMID Version="1">10546526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mol Cell Proteomics. 2007 Nov;6(11):1942-51</RefSource><PMID Version="1">17673454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2001 Aug;36(8):849-65</RefSource><PMID Version="1">11523084</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2001 Feb;101(2):269-95</RefSource><PMID Version="1">11712248</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2003;17(4):291-300</RefSource><PMID Version="1">12569438</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(9):1015-24</RefSource><PMID Version="1">9204576</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eukaryot Cell. 2006 Mar;5(3):457-68</RefSource><PMID Version="1">16524901</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Apr;17(4):576-85</RefSource><PMID Version="1">16503151</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2006 Jul;41(7):931-8</RefSource><PMID Version="1">16770832</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Sep 13;128(36):11792-8</RefSource><PMID Version="1">16953618</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2006;20(19):2865-70</RefSource><PMID Version="1">16941727</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jan 15;79(2):477-85</RefSource><PMID Version="1">17222010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2007;21(5):661-6</RefSource><PMID Version="1">17279487</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2199-204</RefSource><PMID Version="1">17287340</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2007 Aug;7(15):2522-9</RefSource><PMID Version="1">17610206</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2007 Aug;6(8):3062-9</RefSource><PMID Version="1">17608403</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002364">Caseins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006020">Glycopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006736">Horses</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D037121">Plant Lectins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014108">Tosylphenylalanyl Chloromethyl Ketone</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014357">Trypsin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS98845</OtherID><OtherID Source="NLM">PMC2661565</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>4</Month><Day>09</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>4</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>5</Month><Day>21</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>4</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac7022734</ArticleId><ArticleId IdType="pubmed">18396915</ArticleId><ArticleId IdType="pmc">PMC2661565</ArticleId><ArticleId IdType="mid">NIHMS98845</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18363321</PMID><DateCreated><Year>2008</Year><Month>05</Month><Day>02</Day></DateCreated><DateCompleted><Year>2008</Year><Month>09</Month><Day>22</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>7</Volume><Issue>5</Issue><PubDate><Year>2008</Year><Month>May</Month></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer dissociation of peptides generated by microwave D-cleavage digestion of proteins.</ArticleTitle><Pagination><MedlinePgn>1867-72</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/pr700671z</ELocationID><Abstract><AbstractText>The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (&lt;6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hauser</LastName><ForeName>Nicolas J</ForeName><Initials>NJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Basile</LastName><ForeName>Franco</ForeName><Initials>F</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R15-RR020354-01A1</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D023362">Evaluation Studies</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>03</Month><Day>26</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2008 Mar;7(3):1012-26</RefSource><PMID Version="1">18198820</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 1983;91:324-32</RefSource><PMID Version="1">6304451</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1993 Nov 1;214(2):397-408</RefSource><PMID Version="1">8109726</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1998 Jan;33(1):1-19</RefSource><PMID Version="1">9449829</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1962 Jul;1:694-8</RefSource><PMID Version="1">13909510</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Apr;16(4):471-81</RefSource><PMID Version="1">15792716</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jan 1;78(1):181-8</RefSource><PMID Version="1">16383326</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Jan 15;79(2):477-85</RefSource><PMID Version="1">17222010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2007 Sep-Oct;26(5):657-71</RefSource><PMID Version="1">17474122</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2007 Nov;6(11):4230-44</RefSource><PMID Version="1">17900180</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 2003 Mar 13;422(6928):198-207</RefSource><PMID Version="1">12634793</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D008872">Microwaves</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS98867</OtherID><OtherID Source="NLM">PMC2707827</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>3</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>3</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>9</Month><Day>23</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>3</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr700671z</ArticleId><ArticleId IdType="pubmed">18363321</ArticleId><ArticleId IdType="pmc">PMC2707827</ArticleId><ArticleId IdType="mid">NIHMS98867</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18198896</PMID><DateCreated><Year>2008</Year><Month>02</Month><Day>14</Day></DateCreated><DateCompleted><Year>2008</Year><Month>05</Month><Day>07</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>80</Volume><Issue>4</Issue><PubDate><Year>2008</Year><Month>Feb</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Activation of intact electron-transfer products of polypeptides and proteins in cation transmission mode ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>1111-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac702188q</ELocationID><Abstract><AbstractText>Cationic peptide electron-transfer products that do not fragment spontaneously are exposed to ion trap collisional activation immediately upon formation while they pass through a high-pressure collision cell (Q2), where the electron-transfer reagent anions are stored. Radial ion acceleration, which is normal to the ion flow, is implemented by applying an auxiliary dipolar alternating current to a pair of opposing rods of the Q2 quadrupole array at a frequency in resonance with the surviving electron-transfer products. Collisional cooling of cations in the pressurized Q2 ensures efficient overlap of the positive and negative ions for ion/ion reactions and also gives rise to relatively long residence times (milliseconds) for ions in Q2, making it possible to fragment ions via radial excitation during their axial transmission. The radial activation for transmission mode electron-transfer ion/ion reactions has been demonstrated with a doubly protonated tryptic peptide, a triply protonated phosphopeptide, and [M + 7H]7+ ions of ubiquitin. In all cases, significant increases in fragment ion yields and structural information from electron-transfer dissociation (ETD) were observed, suggesting the utility of this method for improving transmission mode ETD performance for relatively low charge states of peptides and proteins.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47807-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2008</Year><Month>01</Month><Day>17</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010748">Phosphopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010748">Phosphopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2008</Year><Month>1</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>1</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>5</Month><Day>8</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>1</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac702188q</ArticleId><ArticleId IdType="pubmed">18198896</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18187337</PMID><DateCreated><Year>2008</Year><Month>02</Month><Day>22</Day></DateCreated><DateCompleted><Year>2008</Year><Month>05</Month><Day>16</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>19</Volume><Issue>2</Issue><PubDate><Year>2008</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Hybrid mass spectrometers for tandem mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>161-72</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jasms.2007.11.013</ELocationID><Abstract><AbstractText>Mass spectrometers that use different types of analyzers for the first and second stages of mass analysis in tandem mass spectrometry (MS/MS) experiments are often referred to as "hybrid" mass spectrometers. The general goal in the design of a hybrid instrument is to combine different performance characteristics offered by various types of analyzers into one mass spectrometer. These performance characteristics may include mass resolving power, the ion kinetic energy for collision-induced dissociation, and speed of analysis. This paper provides a review of the development of hybrid instruments over the last 30 years for analytical applications.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA. glish@unc.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Burinsky</LastName><ForeName>David J</ForeName><Initials>DJ</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>11</Month><Day>29</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>66-40-0</RegistryNumber><NameOfSubstance UI="D019789">Tetraethylammonium</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001363">Awards and Prizes</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019789">Tetraethylammonium</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>83</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2007</Year><Month>10</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2007</Year><Month>11</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2007</Year><Month>11</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>11</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>1</Month><Day>12</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>5</Month><Day>17</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2008</Year><Month>1</Month><Day>12</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(07)00998-1</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2007.11.013</ArticleId><ArticleId IdType="pubmed">18187337</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">20530827</PMID><DateCreated><Year>2010</Year><Month>06</Month><Day>09</Day></DateCreated><DateCompleted><Year>2010</Year><Month>08</Month><Day>13</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1469-0667</ISSN><JournalIssue CitedMedium="Print"><Volume>16</Volume><Issue>3</Issue><PubDate><Year>2010</Year></PubDate></JournalIssue><Title>European journal of mass spectrometry (Chichester, England)</Title><ISOAbbreviation>Eur J Mass Spectrom (Chichester, Eng)</ISOAbbreviation></Journal><ArticleTitle>The emerging role of ion/ion reactions in biological mass spectrometry: considerations for reagent ion selection.</ArticleTitle><Pagination><MedlinePgn>429-36</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1255/ejms.1031</ELocationID><Abstract><AbstractText>The advent of ionization methods that can produce multiply charged gaseous ions has enabled the development of gas-phase ion/ion reactions in analytical mass spectrometry. Ion/ion chemistry has proved to be a particularly effective means for converting ions from one type to another and allows for a decoupling of the ionization method from the nature of the ion subjected to tandem mass spectrometry. A growing array of applications has been developed based on a variety of reaction types, including electron transfer, proton transfer, charge inversion, metal transfer, etc. Most ion/ion reactions take place following the formation of a stable bound orbit between the reactants. As reactants approach closely enough for chemistry to occur, they can react by small charged particle transfer (i.e. electron transfer and proton transfer) at crossing points in the interaction potential. Alternatively, the reactants can collide to form a relatively long-lived complex. A wide range of chemical reactions can result from the long-lived complex, which include multiple charged particle transfers and covalent bond formation. For a given analyte ion, the major reaction pathway is determined by the characteristics of the reagent ion. An appreciation of the factors that underlie the partitioning of ion/ion reaction products is important in the design and selection of reagent ions to effect transformations of interest. Important considerations for reagent ion selection are discussed here within the context of a generalized scheme for ion/ion reaction dynamics.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA. mcluckey@purdue.edu</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Eur J Mass Spectrom (Chichester, Eng)</MedlineTA><NlmUniqueID>101124748</NlmUniqueID><ISSNLinking>1469-0667</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName><QualifierName MajorTopicYN="N" UI="Q000639">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2010</Year><Month>6</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2008</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2010</Year><Month>8</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1255/ejms.1031</ArticleId><ArticleId IdType="pubmed">20530827</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18083527</PMID><DateCreated><Year>2008</Year><Month>02</Month><Day>22</Day></DateCreated><DateCompleted><Year>2008</Year><Month>05</Month><Day>16</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>19</Volume><Issue>2</Issue><PubDate><Year>2008</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Evolution of instrumentation for the study of gas-phase ion/ion chemistry via mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>173-89</MedlinePgn></Pagination><Abstract><AbstractText>The scope of gas-phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies has been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas-phase ion/ion chemistry in which at least one of the reactants is multiply charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity and, most recently, arrangements that allow for ion formation from more than two ion sources. Gas-phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47909-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM-45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-13</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>11</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 15;79(10):3525-34</RefSource><PMID Version="1">17441688</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Mar 15;75(6):1514-23</RefSource><PMID Version="1">12659217</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Apr;15(4):607-15</RefSource><PMID Version="1">15047065</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Jun;39(6):630-8</RefSource><PMID Version="1">15236301</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Sep 1;76(17):5006-15</RefSource><PMID Version="1">15373435</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Sep 1;67(17):2878-82</RefSource><PMID Version="1">8779414</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Jan 15;68(2):257-62</RefSource><PMID Version="1">9027235</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1998 Jul;33(7):664-72</RefSource><PMID Version="1">9692249</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3411-4</RefSource><PMID Version="1">15889938</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Jun 1;77(11):3683-9</RefSource><PMID Version="1">15924405</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1876-87</RefSource><PMID Version="1">16198118</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jan 1;78(1):310-6</RefSource><PMID Version="1">16383342</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Apr 28;109(16):3608-16</RefSource><PMID Version="1">16568152</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Nov 1;78(21):7387-91</RefSource><PMID Version="1">17073403</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):369-76</RefSource><PMID Version="1">17101274</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 May;18(5):882-90</RefSource><PMID Version="1">17349802</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001363">Awards and Prizes</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008956">Models, Chemical</DescriptorName></MeshHeading></MeshHeadingList><NumberOfReferences>75</NumberOfReferences><OtherID Source="NLM">NIHMS42000</OtherID><OtherID Source="NLM">PMC2267904</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2007</Year><Month>1</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2007</Year><Month>9</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2007</Year><Month>10</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>12</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>5</Month><Day>17</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>12</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(07)00914-2</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2007.10.018</ArticleId><ArticleId IdType="pubmed">18083527</ArticleId><ArticleId IdType="pmc">PMC2267904</ArticleId><ArticleId IdType="mid">NIHMS42000</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">18083525</PMID><DateCreated><Year>2008</Year><Month>02</Month><Day>22</Day></DateCreated><DateCompleted><Year>2008</Year><Month>05</Month><Day>16</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>19</Volume><Issue>2</Issue><PubDate><Year>2008</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase ion/ion reactions of transition metal complex cations with multiply charged oligodeoxynucleotide anions.</ArticleTitle><Pagination><MedlinePgn>281-93</MedlinePgn></Pagination><Abstract><AbstractText>Multiply deprotonated hexadeoxyadenylate anions, (A6-nH)(n-), where n = 3-5, have been subjected to reaction with a range of divalent transition-metal complex cations in the gas phase. The cations studied included the bis- and tris-1,10-phenanthroline complexes of CuII, FeII, and CoII, as well as the tris-1,10-phenanthroline complex of RuII. In addition, the hexadeoxyadenylate anions were subjected to reaction with the singly charged FeIII and CoIIIN,N'-ethylenebis(salicylideneiminato) complexes. The major competing reaction channels are electron-transfer from the oligodeoxynucleotide anion to the cation, the formation of a complex between the anion and cation, and the incorporation of the transition-metal into the oligodeoxynucleotide. The latter process proceeds via the anion/cation complex and involves displacement of the ligand(s) in the transition-metal complex by the oligodeoxynucleotide. Competition between the various reaction channels is governed by the identity of the transition-metal cation, the coordination environment of the metal complex, and the oligodeoxynucleotide charge state. In the case of the divalent metal phenanthroline complexes, competition between electron-transfer and metal ion incorporation is particularly sensitive to the coordination number of the reagent metal complexes. Both electron-transfer and metal ion incorporation occur to significant extents with the bis-phenanthroline ions, whereas the tris-phenanthroline ions react predominantly by metal ion incorporation. To our knowledge this work reports the first observations of the gas-phase incorporation of multivalent transition-metal cations into oligodeoxynucleotide anions and represents a means for the selective incorporation of transition-metal counter-ions into gaseous oligodeoxynucleotides.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Barlow</LastName><ForeName>Christopher K</ForeName><Initials>CK</Initials><AffiliationInfo><Affiliation>School of Chemistry, University of Melbourne, Melbourne, Australia.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hodges</LastName><ForeName>Brittany D M</ForeName><Initials>BD</Initials></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>O'Hair</LastName><ForeName>Richard A J</ForeName><Initials>RA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>11</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005029">Ethylenediamines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008670">Metals</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>3G0H8C9362</RegistryNumber><NameOfSubstance UI="D003035">Cobalt</NameOfSubstance></Chemical><Chemical><RegistryNumber>789U1901C5</RegistryNumber><NameOfSubstance UI="D003300">Copper</NameOfSubstance></Chemical><Chemical><RegistryNumber>7UI0TKC3U5</RegistryNumber><NameOfSubstance UI="D012428">Ruthenium</NameOfSubstance></Chemical><Chemical><RegistryNumber>94-93-9</RegistryNumber><NameOfSubstance UI="C011452">disalicylaldehyde ethylenediamine</NameOfSubstance></Chemical><Chemical><RegistryNumber>E1UOL152H7</RegistryNumber><NameOfSubstance UI="D007501">Iron</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003035">Cobalt</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003300">Copper</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005029">Ethylenediamines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007501">Iron</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008670">Metals</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008956">Models, Chemical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009838">Oligodeoxyribonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012428">Ruthenium</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2007</Year><Month>10</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2007</Year><Month>10</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2007</Year><Month>10</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>12</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>5</Month><Day>17</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>12</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(07)00908-7</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2007.10.017</ArticleId><ArticleId IdType="pubmed">18083525</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17997514</PMID><DateCreated><Year>2008</Year><Month>01</Month><Day>04</Day></DateCreated><DateCompleted><Year>2008</Year><Month>02</Month><Day>26</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>7</Volume><Issue>1</Issue><PubDate><Year>2008</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>On the value of knowing a z* ion for what it is.</ArticleTitle><Pagination><MedlinePgn>130-7</MedlinePgn></Pagination><Abstract><AbstractText>Computer simulation of database searches of electron transfer dissociation (ETD) spectra using both "bottom up" and "top down" approaches was performed to evaluate the utility of knowing a priori which product ions contain the C-terminus (i.e., the z* ions). In this work, knowledge of the identities of the z* ions was used to exclude putative identifications that are based solely on the mass matching of undifferentiated product ions derived from an experiment with those derived from in silico fragmentation. The benefit from knowing which ions are z* ions was found to be heavily dependent on the quality of the ETD spectra, in terms of sequence coverage afforded by the product ions, the amount of noise in the spectra (i.e., extraneous peaks that do not directly reflect primary structure), and mass measurement accuracy. Under conditions in which the likelihood for misidentifications are high without a priori knowledge of ion types (e.g., b-, y-, c-, or z-ions), a knowledge of which product ions are z* ions allows discrimination against false-positive identifications. Relatively little benefit from knowing which ions are z* ions was noted when product spectra reflected relatively high sequence coverage and when a low fraction of the products ions were due to extraneous peaks (i.e., spectra with relatively little noise). In all cases, specificity is higher with higher mass measurement accuracy with the consequent reduction in benefit from knowledge of which ions are z* ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>11</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019295">Computational Biology</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D016208">Databases, Factual</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D016247">Information Storage and Retrieval</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName><QualifierName MajorTopicYN="N" UI="Q000592">standards</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>11</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>11</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>2</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>11</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr0703977</ArticleId><ArticleId IdType="pubmed">17997514</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17914865</PMID><DateCreated><Year>2007</Year><Month>10</Month><Day>31</Day></DateCreated><DateCompleted><Year>2007</Year><Month>12</Month><Day>21</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>79</Volume><Issue>21</Issue><PubDate><Year>2007</Year><Month>Nov</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Bidirectional ion transfer between quadrupole arrays: MSn ion/ion reaction experiments on a quadrupole/time-of-flight tandem mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>8199-206</MedlinePgn></Pagination><Abstract><AbstractText>Methods for bidirectional ion transmission between distinct quadrupole arrays were developed on a quadrupole/time-of-flight tandem mass spectrometer (QqTOF) containing three quadrupoles (ion guide Q0, mass filter Q1, and collision cell Q2) and a reflectron TOF analyzer, for the purpose of implementing multistage ion/ion reaction experiments. The transfer efficiency, defined as the percentage of ions detected after two transfer steps relative to the initial ion abundance, was found to be about 60% between Q2 and Q0 (with passage through the intermediate array (Q1)) and almost 100% between Q2 and Q1. Efficient ion transfer enabled new means for executing MSn experiments on an instrument of this type by operating Q1 in rf/dc mode for performing multiple steps of precursor/product ion isolation while passing ions through Q1 or trapping ions in Q1. In the latter case, the Q1 functioned as a linear ion trap. Either collision induced dissociation (CID) or ion/ion reactions can be conducted in between each stage of mass analysis. MS3 or MS4 experiments were developed to illustrate the charge increase of peptide ions via two steps of charge inversion ion/ion reactions, CID of electron-transfer dissociation (ETD) products and CID of a metal-peptide complex formed from ion/ion reactions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thomson</LastName><ForeName>Bruce A</ForeName><Initials>BA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>10</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>7440-57-5</RegistryNumber><NameOfSubstance UI="D006046">Gold</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006046">Gold</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>10</Month><Day>03</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>10</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>12</Month><Day>22</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>10</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac071448m</ArticleId><ArticleId IdType="pubmed">17914865</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17880074</PMID><DateCreated><Year>2007</Year><Month>10</Month><Day>03</Day></DateCreated><DateCompleted><Year>2007</Year><Month>11</Month><Day>20</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>129</Volume><Issue>40</Issue><PubDate><Year>2007</Year><Month>Oct</Month><Day>10</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations.</ArticleTitle><Pagination><MedlinePgn>12232-43</MedlinePgn></Pagination><Abstract><AbstractText>The effect of cation charge site on gas-phase ion/ion reactions between multiply protonated model peptides and singly charged anions has been examined. Insights are drawn from the quantitative examination of the product partitioning into competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer followed by dissociation (ETD) versus electron transfer without dissociation (ET, no D), and fragmentation of backbone bonds versus fragmentation of side chains. Peptide cations containing protonated lysine, arginine, and histidine showed similar degrees of electron transfer, which were much higher than the peptide having fixed-charge sites, that is, trimethyl ammonium groups. Among the four types of cation charge sites, protonated histidine showed the highest degree of ET, no D, while no apparent intact electron-transfer products were observed for peptides with protonated lysine or arginine. All cation types showed side chain losses with arginine yielding the greatest fraction and lysine the smallest. The above trends were observed for each electron-transfer reagent. However, proton transfer was consistently higher with 1,3-dinitrobeznene anions, as was the fraction of side-chain losses. The partitioning of products among the various electron-transfer channels provides evidence for several of the mechanisms that have been proposed to account for electron-transfer dissociation and electron-capture dissociation. The simplest picture to account for all of the observations recognizes that several mechanisms can contribute to the observed products. Furthermore, the identity of the anionic reagent and the positions of the charge sites can affect the relative contributions of the competing mechanisms.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials></Author><Author ValidYN="Y"><LastName>Erickson</LastName><ForeName>David E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>09</Month><Day>19</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000596">Amino Acids</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>9</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>9</Month><Day>21</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>12</Month><Day>6</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>9</Month><Day>21</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ja0736764</ArticleId><ArticleId IdType="pubmed">17880074</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17719238</PMID><DateCreated><Year>2007</Year><Month>09</Month><Day>24</Day></DateCreated><DateCompleted><Year>2007</Year><Month>11</Month><Day>26</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>18</Volume><Issue>10</Issue><PubDate><Year>2007</Year><Month>Oct</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer dissociation of doubly sodiated glycerophosphocholine lipids.</ArticleTitle><Pagination><MedlinePgn>1783-8</MedlinePgn></Pagination><Abstract><AbstractText>The ability to generate gaseous doubly charged cations of glycerophosphocholine (GPC) lipids via electrospray ionization has made possible the evaluation of electron-transfer dissociation (ETD) for their structural characterization. Doubly sodiated GPC cations have been reacted with azobenzene radical anions in a linear ion trap mass spectrometer. The ion/ion reactions proceed through sodium transfer, electron-transfer, and complex formation. Electron-transfer reactions are shown to give rise to cleavage at each ester linkage with the subsequent loss of a neutral quaternary nitrogen moiety. Electron-transfer without dissociation produces [M + 2Na](+.) radical cations, which undergo collision-induced dissociation (CID) to give products that arise from bond cleavage of each fatty acid chain. The CID of the complex ions yields products similar to those produced directly from the electron-transfer reactions of doubly sodiated GPC, although with different relative abundances. These findings indicate that the analysis of GPC lipids by ETD in conjunction with CID can provide some structural information, such as the number of carbons, degree of unsaturation for each fatty acid substituent, and the positions of the fatty acid substituents; some information about the location of the double bonds may be present in low intensity CID product ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>LeBlanc</LastName><ForeName>Yves</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>Covey</LastName><ForeName>Tom</ForeName><Initials>T</Initials></Author><Author ValidYN="Y"><LastName>Ptak</LastName><ForeName>A Celeste</ForeName><Initials>AC</Initials></Author><Author ValidYN="Y"><LastName>Brenna</LastName><ForeName>J Thomas</ForeName><Initials>JT</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 071534</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>GM 45,372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>07</Month><Day>26</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005994">Glycerophosphates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008055">Lipids</NameOfSubstance></Chemical><Chemical><RegistryNumber>107-73-3</RegistryNumber><NameOfSubstance UI="D010767">Phosphorylcholine</NameOfSubstance></Chemical><Chemical><RegistryNumber>9NEZ333N27</RegistryNumber><NameOfSubstance UI="D012964">Sodium</NameOfSubstance></Chemical><Chemical><RegistryNumber>PDC6A3C0OX</RegistryNumber><NameOfSubstance UI="D005990">Glycerol</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Prostaglandins Other Lipid Mediat. 2005 Sep;77(1-4):131-40</RefSource><PMID Version="1">16099398</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Dec;16(12):2052-6</RefSource><PMID Version="1">16253515</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 2005 Dec 1;438(7068):612-21</RefSource><PMID Version="1">16319881</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):479-92</RefSource><PMID Version="1">17141525</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2007 Mar;18(3):466-78</RefSource><PMID Version="1">17141526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Apr 15;79(8):3206-13</RefSource><PMID Version="1">17367115</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1774-9</RefSource><PMID Version="1">11842225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2001 Feb;101(2):479-526</RefSource><PMID Version="1">11712255</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jan 30;124(4):672-8</RefSource><PMID Version="1">11804498</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2003 Mar;14(3):253-61</RefSource><PMID Version="1">12648932</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Annu Rev Nutr. 1994;14:269-96</RefSource><PMID Version="1">7946521</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1996 Jul 1;238(2):117-28</RefSource><PMID Version="1">8660600</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 May;9(5):516-26</RefSource><PMID Version="1">9879366</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005990">Glycerol</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005994">Glycerophosphates</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008055">Lipids</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010767">Phosphorylcholine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012964">Sodium</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS31806</OtherID><OtherID Source="NLM">PMC2701267</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2007</Year><Month>5</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2007</Year><Month>7</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2007</Year><Month>7</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>7</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>8</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>12</Month><Day>6</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>8</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(07)00619-8</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2007.07.013</ArticleId><ArticleId IdType="pubmed">17719238</ArticleId><ArticleId IdType="pmc">PMC2701267</ArticleId><ArticleId IdType="mid">NIHMS31806</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17613176</PMID><DateCreated><Year>2008</Year><Month>01</Month><Day>23</Day></DateCreated><DateCompleted><Year>2008</Year><Month>03</Month><Day>20</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>43</Volume><Issue>1</Issue><PubDate><Year>2008</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Protein identification via ion-trap collision-induced dissociation and examination of low-mass product ions.</ArticleTitle><Pagination><MedlinePgn>23-34</MedlinePgn></Pagination><Abstract><AbstractText>A whole-protein tandem mass spectrometry approach for protein identification based on precursor ion charge state concentration via ion/ion reactions, ion-trap collisional activation, ion/ion proton-transfer reactions involving the product ions, and mass analysis over a narrow m/z range (up to m/z 2000) is described and evaluated. The experiments were carried out with a commercially available electrospray ion-trap instrument that has been modified to allow for ion/ion reactions. Reaction conditions and the approach to searching protein databases were developed with the assumption that the resolving power of the mass analyzer is insufficient to distinguish charge states on the basis of the isotope spacings. Ions derived from several charge states of cytochrome c, myoglobin, ribonuclease A, and ubiquitin were used to evaluate the approach for protein identification and to develop a two-step procedure to database searching to optimize specificity. The approach developed with the model proteins was then applied to whole cell lysate fractions of Saccharomyces cerevisiae. The results are illustrated with examples of assignments made for three a priori unknown proteins, each selected randomly from a lysate fraction. Two of the three proteins were assigned to species present in the database, whereas one did not match well any database entry. The combination of the mass measurement and the product ion masses suggested the possibility for the oxidation of two methionine residues of a protein in the database. The examples show that this limited whole-protein characterization approach can provide insights that might otherwise be lacking with approaches based on complete enzymatic digestion.</AbstractText><CopyrightInformation>2008 John Wiley &amp; Sons, Ltd</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Bowers</LastName><ForeName>Jeremiah J</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-43-6</RegistryNumber><NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.1.27.5</RegistryNumber><NameOfSubstance UI="D012259">Ribonuclease, Pancreatic</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045304">Cytochromes c</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D016208">Databases, Factual</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D040901">Proteomics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012259">Ribonuclease, Pancreatic</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D029701">Saccharomyces cerevisiae Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>7</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>3</Month><Day>21</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>7</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.1263</ArticleId><ArticleId IdType="pubmed">17613176</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17608403</PMID><DateCreated><Year>2007</Year><Month>08</Month><Day>03</Day></DateCreated><DateCompleted><Year>2008</Year><Month>09</Month><Day>26</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>6</Volume><Issue>8</Issue><PubDate><Year>2007</Year><Month>Aug</Month></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collisional activation of c and z* ions formed via gas-phase ion/ion electron-transfer dissociation.</ArticleTitle><Pagination><MedlinePgn>3062-9</MedlinePgn></Pagination><Abstract><AbstractText>A series of c- and z*-type product ions formed via gas-phase electron-transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z* species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-, and z-type ions. Most of the fragmentation pathways of z* species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z* species are different from the small losses observed from the charge-reduced peptide molecular species in electron-transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-13</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>07</Month><Day>03</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Mass Spectrom (Chichester, Eng). 2003;9(3):221-2</RefSource><PMID Version="1">12939500</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(9):1015-24</RefSource><PMID Version="1">9204576</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Sep;16(9):1523-35</RefSource><PMID Version="1">16023365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Methods Enzymol. 2005;402:148-85</RefSource><PMID Version="1">16401509</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Apr;17(4):576-85</RefSource><PMID Version="1">16503151</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Sep 13;128(36):11792-8</RefSource><PMID Version="1">16953618</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2006 Nov;41(11):1470-83</RefSource><PMID Version="1">17072914</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 Mar 15;79(6):2296-302</RefSource><PMID Version="1">17274597</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 15;71(20):4431-6</RefSource><PMID Version="1">10546526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2001 Feb;101(2):269-95</RefSource><PMID Version="1">11712248</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Mar;13(3):241-9</RefSource><PMID Version="1">11908804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Mar 15;75(6):1267-74</RefSource><PMID Version="1">12659185</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 23;125(29):8949-58</RefSource><PMID Version="1">12862492</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1987 Nov 1;59(21):2621-5</RefSource><PMID Version="1">3688448</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D020450">Heavy Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D044367">Phase Transition</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS62930</OtherID><OtherID Source="NLM">PMC2533743</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>7</Month><Day>03</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>7</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2008</Year><Month>9</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>7</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr070177t</ArticleId><ArticleId IdType="pubmed">17608403</ArticleId><ArticleId IdType="pmc">PMC2533743</ArticleId><ArticleId IdType="mid">NIHMS62930</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17436340</PMID><DateCreated><Year>2007</Year><Month>05</Month><Day>03</Day></DateCreated><DateCompleted><Year>2007</Year><Month>08</Month><Day>21</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">0951-4198</ISSN><JournalIssue CitedMedium="Print"><Volume>21</Volume><Issue>10</Issue><PubDate><Year>2007</Year></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Beam-type collisional activation of polypeptide cations that survive ion/ion electron transfer.</ArticleTitle><Pagination><MedlinePgn>1567-73</MedlinePgn></Pagination><Abstract><AbstractText>Doubly protonated peptides that undergo an electron transfer reaction without dissociation in a linear ion trap can be subjected to beam-type collisional activation upon transfer from the linear ion trap into an adjacent mass analyzer, as demonstrated here with a hybrid triple quadrupole/linear ion trap system. The activation can be promoted by use of a DC offset difference between the ion trap used for reaction and the ion trap into which the products are injected of 12-16 V, which gives rise to energetic collisions between the transferred ions and the collision/bath gas employed in the linear ion trap used for ion/ion reactions. Such a process can be executed routinely on hybrid linear ion trap/triple quadrupole tandem mass spectrometers and is demonstrated here with several model peptides as well as a few dozen tryptic peptides. Collisional activation of the peptide precursor ions that survive electron transfer frequently provides structural information that is absent from the precursor ions that fragment spontaneously upon electron transfer. The degree to which additional structural information is obtained by collisional activation of the surviving singly charged peptide ions depends upon peptide size. Little or no additional structural information is obtained from small peptides (&lt;8 residues) due to the high electron transfer dissociation (ETD) efficiencies noted for these peptides as well as the extensive sequence information that tends to be forthcoming from ETD of such species. Collisional activation of the surviving electron transfer products provided greatest benefit for peptides of 8-15 residues.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.21.4</RegistryNumber><NameOfSubstance UI="D014357">Trypsin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006868">Hydrolysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011489">Protein Denaturation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014357">Trypsin</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>4</Month><Day>17</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>8</Month><Day>22</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>4</Month><Day>17</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/rcm.2994</ArticleId><ArticleId IdType="pubmed">17436340</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17388568</PMID><DateCreated><Year>2007</Year><Month>04</Month><Day>30</Day></DateCreated><DateCompleted><Year>2007</Year><Month>06</Month><Day>14</Day></DateCompleted><DateRevised><Year>2007</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>79</Volume><Issue>9</Issue><PubDate><Year>2007</Year><Month>May</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Transmission mode ion/ion electron-transfer dissociation in a linear ion trap.</ArticleTitle><Pagination><MedlinePgn>3363-70</MedlinePgn></Pagination><Abstract><AbstractText>Two related methods for effecting electron-transfer dissociation (ETD) are described that involve either the storage of analyte cations in a linear ion trap while reagent anions are transmitted through the cations or storage of the reagent anions with transmission of the analyte cations. In the former approach, the ETD products are captured and stored in the linear ion trap for subsequent mass analysis. In the latter approach, the ETD products pass through the linear ion trap and must be collected or directly mass-analyzed by an external device. In the present study, another linear ion trap is placed in series with the ion trap where the ion/ion reaction was employed. A pulsed dual ion source approach coupled with a hybrid triple quadrupole/linear ion trap instrument was used to illustrate these methods. The two approaches give similar results in terms of the identities and relative abundances of the ETD products. Under optimum conditions, the two approaches also give comparable extents of ion/ion reactions for the same reaction time. Also, conversions of precursor ions to product ions over the same reaction time are similar to those noted for experiments in which ions of both polarities are stored simultaneously. These approaches, therefore, provide expanded experimental options for the use of ETD. An advantage of transmission mode experiments that they hold over mutual storage mode experiments is that they do not require that any specialized measures be taken to enable the simultaneous storage of oppositely charged ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hager</LastName><ForeName>James W</ForeName><Initials>JW</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>03</Month><Day>28</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D030562">Databases, Protein</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004735">Energy Transfer</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D040901">Proteomics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>3</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>3</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>6</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>3</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac062295q</ArticleId><ArticleId IdType="pubmed">17388568</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17349802</PMID><DateCreated><Year>2007</Year><Month>04</Month><Day>27</Day></DateCreated><DateCompleted><Year>2007</Year><Month>06</Month><Day>05</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>18</Volume><Issue>5</Issue><PubDate><Year>2007</Year><Month>May</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Transmission mode ion/ion proton transfer reactions in a linear ion trap.</ArticleTitle><Pagination><MedlinePgn>882-90</MedlinePgn></Pagination><Abstract><AbstractText>A new method is described for effecting ion/ion proton transfer reactions that involves storage of analyte ions while oppositely charged ions are transmitted through the stored ion population. In this approach, the products are captured and stored in the linear ion trap for subsequent mass analysis. Charge reduction of multiply charged protein ions is used as an example to illustrate the analytical usefulness of this method. In another variation of the transmission mode ion/ion reaction approach, two charge inversion experiments, implemented by passing analyte ions through a population of multiply charged reagent ions in a LIT, are also demonstrated. A pulsed dual ion source approach coupled with a hybrid triple quadrupole/linear ion trap instrument was used to demonstrate these two methods. The results for ion/ion reactions implemented using these so-called "transmission mode" experiments were comparable to those acquired using the more conventional mutual storage mode, both in terms of efficiency and information content of the spectra. An advantage of transmission mode experiments compared with mutual storage mode experiments is that they do not require any specialized measures to be taken to enable the simultaneous storage of oppositely charged ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2007</Year><Month>03</Month><Day>08</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2007 May 1;79(9):3363-70</RefSource><PMID Version="1">17388568</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jan 1;78(1):310-6</RefSource><PMID Version="1">16383342</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 May 15;77(10):3173-82</RefSource><PMID Version="1">15889906</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Sep 1;76(17):5006-15</RefSource><PMID Version="1">15373435</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 Jun;39(6):630-8</RefSource><PMID Version="1">15236301</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D053719">Tandem Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS22420</OtherID><OtherID Source="NLM">PMC1906930</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2006</Year><Month>12</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2007</Year><Month>1</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2007</Year><Month>2</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2007</Year><Month>3</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>6</Month><Day>6</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(07)00111-0</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2007.02.001</ArticleId><ArticleId IdType="pubmed">17349802</ArticleId><ArticleId IdType="pmc">PMC1906930</ArticleId><ArticleId IdType="mid">NIHMS22420</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17263338</PMID><DateCreated><Year>2007</Year><Month>01</Month><Day>31</Day></DateCreated><DateCompleted><Year>2007</Year><Month>03</Month><Day>27</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>79</Volume><Issue>3</Issue><PubDate><Year>2007</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Relative information content and top-down proteomics by mass spectrometry: utility of ion/ion proton-transfer reactions in electrospray-based approaches.</ArticleTitle><Pagination><MedlinePgn>1073-81</MedlinePgn></Pagination><Abstract><AbstractText>Computer simulations of electrospray ionization (ESI) and collision-induced dissociation (CID) experiments were employed to examine the informing power associated with "top-down" proteomics implemented with some commonly used mass analyzers, i.e., the quadrupole ion trap (QIT), the Fourier transform-ion cyclotron resonance mass spectrometer (FT-ICRMS), and the time-of-flight (TOF) mass spectrometer. Using a ratio of the separated (or resolved) peaks to the total number of predicted peaks as a measure of informing power, the ESI-MS simulation of a mixture of proteins showed that the FT-ICRMS exhibited the highest informing power among the three instruments being studied, with the QIT giving the lowest informing power, which was expected from the analysis of the "component capacity" of the three approaches. Also as expected on the basis of resolving elements per component, a dramatic increase in the informing power of the approach was obtained when ion/ion proton-transfer reactions were used to reduce the number of peaks and to minimize overlap between ions of different mass and charge but similar mass-to-charge ratio. With the assumptions made in this study, the informing power of the TOF + ion/ion approach rivaled or even exceeded that of the FT-ICRMS approach, despite significantly lower mass resolution. This result stemmed from both a reduction in the number of peaks and their dispersion over a much wider range of mass-to-charge ratios. Similar results were obtained from the CID simulation, where the informing power of different approaches was evaluated on the basis of the ratio of the number of ions for which a mass could be determined unambiguously to the total number of ions in the spectra.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Erickson</LastName><ForeName>David E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Mar 1;72(5):899-907</RefSource><PMID Version="1">10739190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1990 Apr 13;248(4952):201-4</RefSource><PMID Version="1">2326633</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1990 May 1;62(9):882-99</RefSource><PMID Version="1">2194402</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Sep 15;63(18):1971-8</RefSource><PMID Version="1">1661106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Nov 1;63(21):2488-99</RefSource><PMID Version="1">1763807</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1991 Mar;5(3):101-5</RefSource><PMID Version="1">1666527</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1993 Feb 15;65(4):425-38</RefSource><PMID Version="1">8382455</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1994 May;8(5):394-400</RefSource><PMID Version="1">8025335</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1994 Dec;8(12):933-8</RefSource><PMID Version="1">7696702</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Mar 15;70(6):1198-202</RefSource><PMID Version="1">9530009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Jan-Feb;17(1):1-35</RefSource><PMID Version="1">9768511</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Mar;9(3):225-33</RefSource><PMID Version="1">9879360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2005 Apr;40(4):430-43</RefSource><PMID Version="1">15838939</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2006 Mar;41(3):281-8</RefSource><PMID Version="1">16538648</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2006 Jul;17(7):923-31</RefSource><PMID Version="1">16698278</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D040901">Proteomics</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS61795</OtherID><OtherID Source="NLM">PMC2575742</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2007</Year><Month>2</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>3</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2007</Year><Month>2</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac061798t</ArticleId><ArticleId IdType="pubmed">17263338</ArticleId><ArticleId IdType="pmc">PMC2575742</ArticleId><ArticleId IdType="mid">NIHMS61795</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17165841</PMID><DateCreated><Year>2006</Year><Month>12</Month><Day>14</Day></DateCreated><DateCompleted><Year>2007</Year><Month>01</Month><Day>26</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>24</Issue><PubDate><Year>2006</Year><Month>Dec</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion/molecule reactions to chemically deconvolute the electrospray ionization mass spectra of synthetic polymers.</ArticleTitle><Pagination><MedlinePgn>8472-6</MedlinePgn></Pagination><Abstract><AbstractText>A new approach has been developed to analyze synthetic polymers via electrospray ionization mass spectrometry. Ion/molecule reactions, a unique feature of trapping instruments such as quadrupole ion trap mass spectrometers, can be used to chemically deconvolute the molecular mass distribution of polymers from the charge-state distribution generated by electrospray ionization. The reaction involves stripping charge from multiply charged oligomers to reduce the number of charge states. This reduces or eliminates the overlapping of oligomers from adjacent charge states. 15-Crown-5 was used to strip alkali cations (Na+) from several narrow polydisperse poly(ethylene glycol) standards. The charge-state distribution of each oligomer is reduced to primarily one charge state. Individual oligomers can be resolved, and the average molecular mass and polydispersities can be calculated for the polymers examined here. In most cases, the measured number-average molecular mass values are within 10% of the manufacturers' reported values obtained by gel permeation chromatography. The polydispersity was typically underestimated compared to values reported by the suppliers. Mn values were obtained with 0.5% RSD and are independent, over several orders of magnitude, of the polymer and cation concentration. The distributions that were obtained fit quite well to the Gaussian distribution indicating no high- or low-mass discriminations.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Lennon</LastName><ForeName>John D</ForeName><Initials>JD</Initials><Suffix>3rd</Suffix><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cole</LastName><ForeName>Scott P</ForeName><Initials>SP</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D003160">Comparative Study</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D043844">Crown Ethers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011108">Polymers</NameOfSubstance></Chemical><Chemical><RegistryNumber>42Z2K6ZL8P</RegistryNumber><NameOfSubstance UI="D008345">Manganese</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002850">Chromatography, Gel</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D043844">Crown Ethers</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008345">Manganese</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011092">Polyethylene Glycols</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011108">Polymers</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>12</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>1</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>12</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac061264s</ArticleId><ArticleId IdType="pubmed">17165841</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17101274</PMID><DateCreated><Year>2007</Year><Month>02</Month><Day>23</Day></DateCreated><DateCompleted><Year>2007</Year><Month>05</Month><Day>04</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>18</Volume><Issue>3</Issue><PubDate><Year>2007</Year><Month>Mar</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>A pulsed triple ionization source for sequential ion/ion reactions in an electrodynamic ion trap.</ArticleTitle><Pagination><MedlinePgn>369-76</MedlinePgn></Pagination><Abstract><AbstractText>A pulsed triple ionization source, using a common atmosphere/vacuum interface and ion path, has been developed to generate different types of ions for sequential ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The triple ionization source typically consists of a nano-electrospray emitter for analyte formation and two other emitters, an electrospray emitter and an atmospheric pressure chemical ionization emitter or a second nano-electrospray emitter for formation of the two different reagent ions. The three emitters are positioned in a parallel fashion close to the sampling orifice of the tandem mass spectrometer. The potentials applied to each emitter are sequentially pulsed so that desired ions are generated separately in time and space. Sequential ion/ion reactions take place after analyte ions of interest and different set of reagent ions are sequentially injected into a linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed triple ionization source allows independent optimization of each emitter and can be readily coupled to any atmospheric pressure ionization interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be synchronized with the emitter potentials. Several sequential ion/ion reactions examples are demonstrated to illustrate the analytical usefulness of the triple ionization source in the study of gas-phase ion/ion chemistry.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Hongling</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2006</Year><Month>11</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004563">Electrochemistry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D012815">Signal Processing, Computer-Assisted</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2006</Year><Month>9</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2006</Year><Month>10</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2006</Year><Month>10</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2006</Year><Month>11</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>11</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>5</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>11</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(06)00959-7</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2006.10.004</ArticleId><ArticleId IdType="pubmed">17101274</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">17073403</PMID><DateCreated><Year>2006</Year><Month>10</Month><Day>31</Day></DateCreated><DateCompleted><Year>2007</Year><Month>04</Month><Day>19</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>21</Issue><PubDate><Year>2006</Year><Month>Nov</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electron-transfer reagent anion formation via electrospray ionization and collision-induced dissociation.</ArticleTitle><Pagination><MedlinePgn>7387-91</MedlinePgn></Pagination><Abstract><AbstractText>A strategy is described and demonstrated for the formation of reagent anions via electrospray ionization (ESI) for electron-transfer dissociation (ETD). To circumvent difficulties associated with formation of high mass-to-charge ratio (m/z) reagent anions, it is desirable to form ETD reagents via means other than those that require reagent molecule vaporization. ESI is a candidate method, but anions that are generally generated efficiently by ESI tend to react with multiply protonated polypeptides via proton transfer. The strategy described herein involves the use of a precursor reagent molecule that ionizes efficiently via electrospray ionization and that can subsequently be converted to an ETD reagent via gas-phase dissociation. The approach is demonstrated with arenecarboxylic acids that yield strong signals associated with the deprotonated molecule and that subsequently undergo collision-induced dissociation (CID) by loss of CO(2). In the present work, triply protonated KGAILKGAILR served as a test substrate for the CID product ions to give rise to ETD. Several precursor molecules were shown to be capable of generating ETD reagents via ESI followed by CID. These included 9-anthracenecarboxylic acid, 2-fluoro-5-iodobenzoic acid, and 2-(fluoranthene-8-carbonyl)benzoic acid. The latter molecule has the most attractive set of characteristics as a precursor for a relatively high m/z ratio ETD reagent.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Teng-Yi</ForeName><Initials>TY</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Emory</LastName><ForeName>Joshua F</ForeName><Initials>JF</Initials></Author><Author ValidYN="Y"><LastName>O'Hair</LastName><ForeName>Richard A J</ForeName><Initials>RA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-15</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Mar 15;78(6):1995-2000</RefSource><PMID Version="1">16536438</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 15;78(12):4146-54</RefSource><PMID Version="1">16771545</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2006 Sep 13;128(36):11792-8</RefSource><PMID Version="1">16953618</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2002 Jan;102(1):231-82</RefSource><PMID Version="1">11782134</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 1;77(17):5662-9</RefSource><PMID Version="1">16131079</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 May 1;78(9):3208-12</RefSource><PMID Version="1">16643016</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS63635</OtherID><OtherID Source="NLM">PMC3168780</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>11</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>4</Month><Day>20</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>11</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac061409v</ArticleId><ArticleId IdType="pubmed">17073403</ArticleId><ArticleId IdType="pmc">PMC3168780</ArticleId><ArticleId IdType="mid">NIHMS63635</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16953618</PMID><DateCreated><Year>2006</Year><Month>09</Month><Day>06</Day></DateCreated><DateCompleted><Year>2007</Year><Month>08</Month><Day>15</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>128</Volume><Issue>36</Issue><PubDate><Year>2006</Year><Month>Sep</Month><Day>13</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Ion/molecule reactions of cation radicals formed from protonated polypeptides via gas-phase ion/ion electron transfer.</ArticleTitle><Pagination><MedlinePgn>11792-8</MedlinePgn></Pagination><Abstract><AbstractText>Cation radicals formed via gas-phase electron transfer to multiply protonated polypeptides have been found to react with molecular oxygen. Such cation radicals are of interest within the context of electron transfer dissociation, a phenomenon with high utility for the characterization of peptide and protein primary structures. Most of the cation radicals show the attachment of O(2) under room temperature storage conditions in an electrodynamic ion trap. At higher temperatures and under conditions of collisional activation, the oxygen adduct species lose O(2), HO(*), or HO(2)(*), depending upon the identity of the side chain at the radical site. The fragments containing the C-terminus, the so-called z-ions, which are predominantly radical species, engage in reactions with molecular oxygen. This allows for the facile distinction between z-ions and their complementary even-electron c-ion counterparts. Such a capability has utility in protein identification and characterization via mass spectrometry. Intact electron transfer products also show oxygen attachment. Subsequent activation of such adducts show dissociation behavior very similar to that noted for z-ion adducts. These observations indicate that ion/radical reactions can be used to probe the locations of radical sites in the undissociated electron transfer products as well as distinguish between c- and z-type ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>Erickson</LastName><ForeName>David E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001391">Azo Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005609">Free Radicals</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009578">Nitrobenzenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>20449-79-0</RegistryNumber><NameOfSubstance UI="D008555">Melitten</NameOfSubstance></Chemical><Chemical><RegistryNumber>39379-15-2</RegistryNumber><NameOfSubstance UI="D009496">Neurotensin</NameOfSubstance></Chemical><Chemical><RegistryNumber>E57JCN6SSY</RegistryNumber><NameOfSubstance UI="C036077">nitrobenzene</NameOfSubstance></Chemical><Chemical><RegistryNumber>F0U1H6UG5C</RegistryNumber><NameOfSubstance UI="C009850">azobenzene</NameOfSubstance></Chemical><Chemical><RegistryNumber>S88TT14065</RegistryNumber><NameOfSubstance UI="D010100">Oxygen</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001391">Azo Compounds</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005609">Free Radicals</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008555">Melitten</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009496">Neurotensin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009578">Nitrobenzenes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010100">Oxygen</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>9</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>8</Month><Day>19</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>9</Month><Day>7</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ja063248i</ArticleId><ArticleId IdType="pubmed">16953618</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16944919</PMID><DateCreated><Year>2006</Year><Month>09</Month><Day>01</Day></DateCreated><DateCompleted><Year>2006</Year><Month>11</Month><Day>20</Day></DateCompleted><DateRevised><Year>2007</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>5</Volume><Issue>9</Issue><PubDate><Year>2006</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Selective disulfide bond cleavage in gold(I) cationized polypeptide ions formed via gas-phase ion/ion cation switching.</ArticleTitle><Pagination><MedlinePgn>2087-92</MedlinePgn></Pagination><Abstract><AbstractText>Gaseous multiply protonated disulfide-linked peptides have been subjected to reactions with AuCl2(-) ions to explore the possibility of effecting cation switching of Au+ for two protons and to determine whether cationization by Au+ ions affords selective dissociation of disulfide linkages. The incorporation of Au+ into several model disulfide-linked peptides proved to be straightforward. The primary ion/ion reaction channels were proton transfer, which does not lead to Au+ incorporation, and attachment of AuCl2(-) ions to the polypeptide cation, which does incorporate Au+. Fragmentation of the attachment product, the extent of which varied with peptide and charge state, led to losses of one or more molecules of HCl and, to some extent, cleavage of polypeptides at the disulfide linkage into its two constituent chains. Collisional activation of the intact metal-ion-incorporated peptides showed cleavage of the disulfide linkage to be a major, and in some cases exclusive, process. Cations with protons as the only cationizing agents showed only small contributions from cleavage of the disulfide linkage. These results indicate that Au+ incorporation into a disulfide-linked polypeptide ion is a promising way to effect selective dissociation of disulfide bonds. Cation switching via ion/ion reactions is a convenient means for incorporating gold and is attractive because it avoids the requirement of adding metal salts to the analyte solution.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials><AffiliationInfo><Affiliation>Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>O'Hair</LastName><ForeName>Richard A J</ForeName><Initials>RA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D003160">Comparative Study</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004220">Disulfides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017612">Gold Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>11118-27-7</RegistryNumber><NameOfSubstance UI="C038016">gold chloride</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004220">Disulfides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017612">Gold Compounds</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>9</Month><Day>2</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>12</Month><Day>9</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>9</Month><Day>2</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr0602794</ArticleId><ArticleId IdType="pubmed">16944919</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">16808472</PMID><DateCreated><Year>2006</Year><Month>06</Month><Day>30</Day></DateCreated><DateCompleted><Year>2007</Year><Month>04</Month><Day>26</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>13</Issue><PubDate><Year>2006</Year><Month>Jul</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Thermally assisted collision-induced dissociation in a quadrupole ion trap mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>4609-14</MedlinePgn></Pagination><Abstract><AbstractText>Thermally assisted collision-induced dissociation (TA-CID) provides increased dissociation in comparison with CID performed at ambient temperature in a quadrupole ion trap mass spectrometer. Heating the bath/collision gas during CID increases the initial internal energy of the ions and reduces the collisional cooling rate. Thus, using the same CID parameters, the parent ion can be activated to higher levels of internal energy, increasing the efficiency of dissociation and the number of dissociation pathways. The increase in the number of dissociation pathways can provide additional structural information. A consequence of the increase in initial internal energy is the ability to use less power to effect collisional activation. This allows lower q(z) values to be used and, thus, a greater mass range of product ions to be observed. TA-CID alleviates the problems associated with traditional CID and results in more available information than traditional CID.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Racine</LastName><ForeName>Alawee H</ForeName><Initials>AH</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA. glish@unc.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Payne</LastName><ForeName>Anne H</ForeName><Initials>AH</Initials></Author><Author ValidYN="Y"><LastName>Remes</LastName><ForeName>Philip M</ForeName><Initials>PM</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>7</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>7</Month><Day>1</Day><Hour>9</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>7</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac060082v</ArticleId><ArticleId IdType="pubmed">16808472</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16771545</PMID><DateCreated><Year>2006</Year><Month>06</Month><Day>14</Day></DateCreated><DateCompleted><Year>2007</Year><Month>05</Month><Day>09</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>12</Issue><PubDate><Year>2006</Year><Month>Jun</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Implementation of ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>4146-54</MedlinePgn></Pagination><Abstract><AbstractText>A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary radio frequency is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton-transfer reactions. For the modified instrument, the mass resolving power is approximately 8000 for a wide m/z range, and the mass accuracy is approximately 20 ppm for external calibration and approximately 5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MS(n) experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z-type fragment ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Erickson</LastName><ForeName>David E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>Liu</LastName><ForeName>Jian</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>Yang</LastName><ForeName>Min J</ForeName><Initials>MJ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2000 Dec;35(12):1399-406</RefSource><PMID Version="1">11180630</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 May;12(5):497-504</RefSource><PMID Version="1">11349947</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2001 Aug;36(8):849-65</RefSource><PMID Version="1">11523084</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 2001 Oct;19(10):952-7</RefSource><PMID Version="1">11581661</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(20):1965-73</RefSource><PMID Version="1">11596143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(23):2334-40</RefSource><PMID Version="1">11746900</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Mar;37(3):270-82</RefSource><PMID Version="1">11921368</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2002 Nov-Dec;1(6):549-57</RefSource><PMID Version="1">12645623</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Nov 1;75(21):5944-52</RefSource><PMID Version="1">14588036</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jun 1;76(11):197A-203A</RefSource><PMID Version="1">15190879</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 May-Jun;3(3):621-6</RefSource><PMID Version="1">15253445</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 May 15;66(10):1637-45</RefSource><PMID Version="1">8030779</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(9):1015-24</RefSource><PMID Version="1">9204576</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Mar 15;70(6):1198-202</RefSource><PMID Version="1">9530009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1998 Jul;33(7):664-72</RefSource><PMID Version="1">9692249</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jul;16(7):1020-30</RefSource><PMID Version="1">15914021</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jan 1;78(1):310-6</RefSource><PMID Version="1">16383342</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2006 Jun 1;78(11):3788-93</RefSource><PMID Version="1">16737238</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D036103">Nanotechnology</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS61070</OtherID><OtherID Source="NLM">PMC2575740</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>6</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>5</Month><Day>10</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>6</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac0606296</ArticleId><ArticleId IdType="pubmed">16771545</ArticleId><ArticleId IdType="pmc">PMC2575740</ArticleId><ArticleId IdType="mid">NIHMS61070</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16737238</PMID><DateCreated><Year>2006</Year><Month>06</Month><Day>01</Day></DateCreated><DateCompleted><Year>2007</Year><Month>04</Month><Day>13</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>11</Issue><PubDate><Year>2006</Year><Month>Jun</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Phosphopeptide anion characterization via sequential charge inversion and electron-transfer dissociation.</ArticleTitle><Pagination><MedlinePgn>3788-93</MedlinePgn></Pagination><Abstract><AbstractText>Sequential ion/ion reactions have been used to characterize phosphopeptides present in relatively simple peptide mixtures, including one generated from the tryptic digestion of alpha-casein. The phosphopeptides in these mixtures gave rise to either low or no signals via positive ion electrospray ionization. Strong signals, however, were generated in the negative ion mode. An initial ion/ion reaction that employed multiply protonated amino-terminated dendrimers converted phosphopeptide anions to the doubly protonated species. The doubly charged cations were then subjected to ion/ion electron transfer to induce dissociation. Electron-transfer dissociation of doubly positively charged phosphopeptides yields characteristic c- and z-type fragment ions by dissociation of the N-C(alpha) bond along the peptide backbone while preserving the labile posttranslational modifications. These results illustrate the ability to alter ion charge after ion formation and prior to structural interrogation. Phosphopeptides provide an example where it can be difficult to form strong doubly charged cation signals directly when they are present in mixtures, which, as a result, precludes the use of electron-transfer dissociation as a structural probe. The sequential ion/ion reaction process described here, therefore, can provide a new capability for structural interrogation in phosphoproteomics.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Emory</LastName><ForeName>Joshua F</ForeName><Initials>JF</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-14</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010748">Phosphopeptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Curr Opin Chem Biol. 2001 Oct;5(5):591-602</RefSource><PMID Version="1">11578935</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(17):1593-9</RefSource><PMID Version="1">11544598</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Mar;13(3):241-9</RefSource><PMID Version="1">11908804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2001 Nov-Dec;20(6):362-87</RefSource><PMID Version="1">11997944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Oct 15;75(20):5441-50</RefSource><PMID Version="1">14714534</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 1;76(3):720-7</RefSource><PMID Version="1">14750868</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Feb 15;76(4):1165-74</RefSource><PMID Version="1">14961751</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Feb 1;68(3):527-33</RefSource><PMID Version="1">8712361</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Oct 1;68(19):3413-21</RefSource><PMID Version="1">8843139</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Jan 1;71(1):235-42</RefSource><PMID Version="1">9921130</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jun;16(6):880-2</RefSource><PMID Version="1">15907703</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9463-8</RefSource><PMID Version="1">15983376</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Sep 1;77(17):5662-9</RefSource><PMID Version="1">16131079</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2005 Nov;5(16):4052-61</RefSource><PMID Version="1">16196093</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 15;73(2):170-6</RefSource><PMID Version="1">11199962</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3305-11</RefSource><PMID Version="1">11476230</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2001 Feb;101(2):269-95</RefSource><PMID Version="1">11712248</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010748">Phosphopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS61009</OtherID><OtherID Source="NLM">PMC2575743</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>6</Month><Day>2</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>4</Month><Day>17</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>6</Month><Day>2</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac060164j</ArticleId><ArticleId IdType="pubmed">16737238</ArticleId><ArticleId IdType="pmc">PMC2575743</ArticleId><ArticleId IdType="mid">NIHMS61009</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16698280</PMID><DateCreated><Year>2006</Year><Month>07</Month><Day>03</Day></DateCreated><DateCompleted><Year>2007</Year><Month>07</Month><Day>03</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>17</Volume><Issue>7</Issue><PubDate><Year>2006</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Focus in honor of Gary J. Van Berkel, 2005 Biemann Medal awardee.</ArticleTitle><Pagination><MedlinePgn>887-8</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D019215">Biography</PublicationType><PublicationType UI="D016421">Editorial</PublicationType><PublicationType UI="D016456">Historical Article</PublicationType><PublicationType UI="D019477">Portraits</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2006</Year><Month>05</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D001363">Awards and Prizes</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004563">Electrochemistry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000266">history</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D049673">History, 20th Century</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D049674">History, 21st Century</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000266">history</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" Type="Geographic" UI="D014481">United States</DescriptorName></MeshHeading></MeshHeadingList><PersonalNameSubjectList><PersonalNameSubject><LastName>Van Berkel</LastName><ForeName>Gary J</ForeName><Initials>GJ</Initials></PersonalNameSubject></PersonalNameSubjectList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="aheadofprint"><Year>2006</Year><Month>5</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>5</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>7</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>5</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(06)00340-0</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2006.04.022</ArticleId><ArticleId IdType="pubmed">16698280</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16698278</PMID><DateCreated><Year>2006</Year><Month>07</Month><Day>03</Day></DateCreated><DateCompleted><Year>2007</Year><Month>07</Month><Day>03</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>17</Volume><Issue>7</Issue><PubDate><Year>2006</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collision-induced dissociation of human hemoglobin alpha-chain cations.</ArticleTitle><Pagination><MedlinePgn>923-31</MedlinePgn></Pagination><Abstract><AbstractText>Multiply protonated human hemoglobin alpha-chain species, ranging from [M + 4H]4+ to [M + 20H]20+, have been subjected to ion trap collisional activation. Cleavages at 88 of the 140 peptide bonds were indicated, summed over all charge states, although most product ion signals were concentrated in a significantly smaller number of channels. Consistent with previous whole protein ion dissociation studies conducted under similar conditions, the structural information inherent to a given precursor ion was highly sensitive to charge state. A strongly dominant cleavage at D75/M76, also noted previously in beam-type collisional activation studies, was observed for the [M + 8H]8+ to [M + 11H]11+ precursor ions. At lower charge states, C-terminal aspartic acid cleavages were also prominent but the most abundant products did not arise from the D75/M76 channel. The [M + 12H]12+-[M + 16H]16+ precursor ions generally yielded the greatest variety of amide bond cleavages. With the exception of the [M + 4H]4+ ion, all charge states showed cleavage at the L113/P114 bond. This cleavage proved to be the most prominent dissociation for charge states [M + 14H]14+ and higher. The diversity of dissociation channels observed within the charge state range studied potentially provides the opportunity to localize residues associated with variants via a top-down tandem mass spectrometry approach.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Mekecha</LastName><ForeName>Tegafaw T</ForeName><Initials>TT</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amunugama</LastName><ForeName>Ravi</ForeName><Initials>R</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 43572</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2006</Year><Month>05</Month><Day>15</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006454">Hemoglobins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000648">ultrastructure</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010449">Peptide Mapping</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011487">Protein Conformation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2005</Year><Month>12</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2006</Year><Month>1</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2006</Year><Month>1</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2006</Year><Month>5</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>5</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>7</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>5</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(06)00035-3</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2006.01.004</ArticleId><ArticleId IdType="pubmed">16698278</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16697658</PMID><DateCreated><Year>2006</Year><Month>07</Month><Day>03</Day></DateCreated><DateCompleted><Year>2007</Year><Month>07</Month><Day>03</Day></DateCompleted><DateRevised><Year>2007</Year><Month>12</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>17</Volume><Issue>7</Issue><PubDate><Year>2006</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Determination of cooling rates in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>932-8</MedlinePgn></Pagination><Abstract><AbstractText>Collisional cooling rates of infrared excited ions are measured in a quadrupole ion trap (QIT) mass spectrometer at different combinations of temperature and pressure. Measurements are carried out by monitoring fragmentation efficiency of leucine enkephalin as a function of irradiation time by an infrared laser after a short excitation and incrementally increasing cooling periods. Cooling rates are observed to be directly related to bath gas pressure and inversely related to bath gas temperature. The cooling rate at typical ion trap operating pressure (1 mTorr) and temperature (room T) is faster than can be measured. At elevated temperature and the lowest pressure used for the studies, the rate of collisional cooling becomes negligible compared to the rate of radiative cooling.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Black</LastName><ForeName>David M</ForeName><Initials>DM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Payne</LastName><ForeName>Anne H</ForeName><Initials>AH</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2006</Year><Month>05</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>58822-25-6</RegistryNumber><NameOfSubstance UI="D004743">Enkephalin, Leucine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004743">Enkephalin, Leucine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D008956">Models, Chemical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017550">Spectroscopy, Fourier Transform Infrared</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013696">Temperature</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2005</Year><Month>8</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2005</Year><Month>12</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2006</Year><Month>1</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2006</Year><Month>5</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>5</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>7</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>5</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(06)00018-3</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2006.01.001</ArticleId><ArticleId IdType="pubmed">16697658</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16643016</PMID><DateCreated><Year>2006</Year><Month>04</Month><Day>28</Day></DateCreated><DateCompleted><Year>2007</Year><Month>05</Month><Day>04</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>9</Issue><PubDate><Year>2006</Year><Month>May</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Alternately pulsed nanoelectrospray ionization/atmospheric pressure chemical ionization for ion/ion reactions in an electrodynamic ion trap.</ArticleTitle><Pagination><MedlinePgn>3208-12</MedlinePgn></Pagination><Abstract><AbstractText>The alternate operation of nanoelectrospray ionization and atmospheric pressure chemical ionization, using a common atmosphere/vacuum interface and ion path, has been implemented to facilitate ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The ion sources are operated in opposite polarity modes whereby one of the ion sources is used to form analyte ions while the other is used to form reagent ions of opposite polarity. This combination of ion sources is well-suited to implementation of experiments involving multiply charged ions in reaction with singly charged ions of opposite polarity. Three analytically useful ion/ion reaction types are illustrated: the partial deprotonation of a multiply protonated protein, the partial protonation of a multiply deprotonated oligonucleotide, and electron transfer to a multiply protonated peptide. The approach described herein is attractive in that it enables both single proton-transfer and single electron-transfer ion/ion reaction experiments to be implemented without requiring major modifications to the tandem mass spectrometer hardware. Furthermore, a wide range of reactant ions can be formed with these ionization methods and the pulsed nature of operation appears to lead to no significant compromise in the performance of either ion source.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-13</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Jun 1;77(11):3683-9</RefSource><PMID Version="1">15924405</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1997;11(8):875-80</RefSource><PMID Version="1">9183856</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Sep 1;76(17):5006-15</RefSource><PMID Version="1">15373435</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1876-87</RefSource><PMID Version="1">16198118</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Nov;16(11):1750-6</RefSource><PMID Version="1">16182558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2005 Sep 14;127(36):12627-39</RefSource><PMID Version="1">16144411</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001274">Atmospheric Pressure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004563">Electrochemistry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D036103">Nanotechnology</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS60980</OtherID><OtherID Source="NLM">PMC2575744</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>4</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>5</Month><Day>5</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>4</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac052288m</ArticleId><ArticleId IdType="pubmed">16643016</ArticleId><ArticleId IdType="pmc">PMC2575744</ArticleId><ArticleId IdType="mid">NIHMS60980</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16568152</PMID><DateCreated><Year>2006</Year><Month>07</Month><Day>14</Day></DateCreated><DateCompleted><Year>2007</Year><Month>06</Month><Day>12</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1089-5639</ISSN><JournalIssue CitedMedium="Print"><Volume>109</Volume><Issue>16</Issue><PubDate><Year>2005</Year><Month>Apr</Month><Day>28</Day></PubDate></JournalIssue><Title>The journal of physical chemistry. A</Title><ISOAbbreviation>J Phys Chem A</ISOAbbreviation></Journal><ArticleTitle>Gas-phase ion/ion reactions of multiply protonated polypeptides with metal containing anions.</ArticleTitle><Pagination><MedlinePgn>3608-16</MedlinePgn></Pagination><Abstract><AbstractText>Gas-phase reactions of multiply protonated polypeptides and metal containing anions represent a new methodology for manipulating the cationizing agent composition of polypeptides. This approach affords greater flexibility in forming metal containing ions than commonly used methods, such as electrospray ionization of a metal salt/peptide mixture and matrix-assisted laser desorption. Here, the effects of properties of the polypeptide and anionic reactant on the nature of the reaction products are investigated. For a given metal, the identity of the ligand in the metal containing anion is the dominant factor in determining product distributions. For a given polypeptide ion, the difference between the metal ion affinity and the proton affinity of the negatively charged ligand in the anionic reactant is of predictive value in anticipating the relative contributions of proton transfer and metal ion transfer. Furthermore, the binding strength of the ligand anion to charge sites in the polypeptide correlates with the extent of observed cluster ion formation. Polypeptide composition, sequence, and charge state can also play a notable role in determining the distribution of products. In addition to their usefulness in gas-phase ion synthesis strategies, the reactions of protonated polypeptides and metal containing anions represent an example of a gas-phase ion/ion reaction that is sensitive to polypeptide structure. These observations are noteworthy in that they allude to the possibility of obtaining information, without requiring fragmentation of the peptide backbone, about ion structure as well as the relative ion affinities associated with the reactants.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Newton</LastName><ForeName>Kelly A</ForeName><Initials>KA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amunugama</LastName><ForeName>Ravi</ForeName><Initials>R</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Phys Chem A</MedlineTA><NlmUniqueID>9890903</NlmUniqueID><ISSNLinking>1089-5639</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008024">Ligands</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008670">Metals</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>95IT3W8JZE</RegistryNumber><NameOfSubstance UI="D012835">Silver Nitrate</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2002;16(6):566-78</RefSource><PMID Version="1">11870894</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 5;124(22):6407-20</RefSource><PMID Version="1">12033872</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Oct 1;74(19):4889-94</RefSource><PMID Version="1">12380809</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Nov 1;75(21):5961-8</RefSource><PMID Version="1">14588038</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Oct 15;125(41):12404-5</RefSource><PMID Version="1">14531672</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2004 May;39(5):495-504</RefSource><PMID Version="1">15170745</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1990 May 1;62(9):882-99</RefSource><PMID Version="1">2194402</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1993 May 15;65(10):1355-9</RefSource><PMID Version="1">8517548</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2898-904</RefSource><PMID Version="1">7978296</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Dec 15;70(24):5162-5</RefSource><PMID Version="1">9868913</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Jul 1;71(13):2364-72</RefSource><PMID Version="1">10405604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Analyst. 2000 Apr;125(4):635-40</RefSource><PMID Version="1">10892020</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2000 Aug;11(8):738-45</RefSource><PMID Version="1">10937797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2000 Dec;35(12):1399-406</RefSource><PMID Version="1">11180630</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2001 May;12(5):497-504</RefSource><PMID Version="1">11349947</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2001 Aug;36(8):875-81</RefSource><PMID Version="1">11523086</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 May 1;74(9):2072-82</RefSource><PMID Version="1">12033309</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008024">Ligands</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008670">Metals</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008956">Models, Chemical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012835">Silver Nitrate</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7044</OtherID><OtherID Source="NLM">PMC1414117</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>3</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>6</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>3</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/jp044106i</ArticleId><ArticleId IdType="pubmed">16568152</ArticleId><ArticleId IdType="pmc">PMC1414117</ArticleId><ArticleId IdType="mid">NIHMS7044</ArticleId></ArticleIdList><?nihms ?></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16478115</PMID><DateCreated><Year>2006</Year><Month>02</Month><Day>15</Day></DateCreated><DateCompleted><Year>2007</Year><Month>03</Month><Day>29</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>4</Issue><PubDate><Year>2006</Year><Month>Feb</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions.</ArticleTitle><Pagination><MedlinePgn>1218-27</MedlinePgn></Pagination><Abstract><AbstractText>The beam-type and ion trap collision-induced dissociation (CID) behaviors of protonated bovine ubiquitin ions were studied for charge states ranging from +6 to +12 on a modified triple quadrupole/linear ion trap tandem mass spectrometer. Both beam-type CID and ion trap CID were conducted in a high-pressure linear ion trap, followed by proton-transfer ion/ion reactions to reduce the charge states of product ions mostly to +1. The product ions observed under each activation condition were predominantly b- and y-type ions. Fragmentation patterns showed a much stronger dependence on parent ion charge state with ion trap CID than with beam-type CID using nitrogen as the collision gas, with preferential cleavages C-terminal to aspartic acid at relatively low charge states, nonspecific fragmentation at moderate charge states, and favored cleavages N-terminal to proline residues at high charge states. In the beam-type CID case, extensive cleavage along the protein backbone was noted, which yielded richer sequence information (77% of backbone amide bond cleavages) than did ion trap CID (52% of backbone amide bond cleavages). Collision gas identity and collision energy were also evaluated in terms of their effects on the beam-type CID spectrum. The use of helium as collision gas, as opposed to nitrogen, resulted in CID behavior that was sensitive to changes in collision energy. At low collision energies, the beam-type CID data resembled the ion trap CID data with preferential cleavages predominant, while at high collision energies, nonspecific fragmentation was observed with increased contributions from sequential fragmentation.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>2</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>3</Month><Day>30</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>2</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac051622b</ArticleId><ArticleId IdType="pubmed">16478115</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16401509</PMID><DateCreated><Year>2006</Year><Month>01</Month><Day>10</Day></DateCreated><DateCompleted><Year>2006</Year><Month>02</Month><Day>28</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0076-6879</ISSN><JournalIssue CitedMedium="Print"><Volume>402</Volume><PubDate><Year>2005</Year></PubDate></JournalIssue><Title>Methods in enzymology</Title><ISOAbbreviation>Meth. Enzymol.</ISOAbbreviation></Journal><ArticleTitle>Collision-induced dissociation (CID) of peptides and proteins.</ArticleTitle><Pagination><MedlinePgn>148-85</MedlinePgn></Pagination><Abstract><AbstractText>The most commonly used activation method in the tandem mass spectrometry (MS) of peptides and proteins is energetic collisions with a neutral target gas. The overall process of collisional activation followed by fragmentation of the ion is commonly referred to as collision-induced dissociation (CID). The structural information that results from CID of a peptide or protein ion is highly dependent on the conditions used to effect CID. These include, for example, the relative translational energy of the ion and target, the nature of the target, the number of collisions that is likely to take place, and the observation window of the apparatus. This chapter summarizes the key experimental parameters in the CID of peptide and protein ions, as well as the conditions that tend to prevail in the most commonly employed tandem mass spectrometers.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J Mitchell</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Methods Enzymol</MedlineTA><NlmUniqueID>0212271</NlmUniqueID><ISSNLinking>0076-6879</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName></MeshHeading></MeshHeadingList><NumberOfReferences>112</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>1</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>3</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>1</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S0076-6879(05)02005-7</ArticleId><ArticleId IdType="doi">10.1016/S0076-6879(05)02005-7</ArticleId><ArticleId IdType="pubmed">16401509</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16401508</PMID><DateCreated><Year>2006</Year><Month>01</Month><Day>10</Day></DateCreated><DateCompleted><Year>2006</Year><Month>02</Month><Day>28</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0076-6879</ISSN><JournalIssue CitedMedium="Print"><Volume>402</Volume><PubDate><Year>2005</Year></PubDate></JournalIssue><Title>Methods in enzymology</Title><ISOAbbreviation>Meth. Enzymol.</ISOAbbreviation></Journal><ArticleTitle>Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers.</ArticleTitle><Pagination><MedlinePgn>109-48</MedlinePgn></Pagination><Abstract><AbstractText>Instruments that trap ions in a magnetic and/or electric field play a very important role in the analysis of biomolecules. The two predominant instruments in the category of trapping instrument are the quadrupole ion trap mass spectrometer (QIT-MS) and the ion cyclotron resonance (ICR) MS. The latter is also commonly called Fourier transform MS (FT-MS). The QIT is an inexpensive, simple, and rugged MS used for various routine applications. The ICR-MS is an expensive, high-performance instrument with figures of merit for resolution and mass accuracy surpassing all other mass spectrometers. This chapter covers the basic principles of operation of these instruments, including the trapping/manipulation/detection of ions and various approaches used to activate ions to perform tandem mass spectrometry experiments.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Payne</LastName><ForeName>Anne H</ForeName><Initials>AH</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Methods Enzymol</MedlineTA><NlmUniqueID>0212271</NlmUniqueID><ISSNLinking>0076-6879</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D017357">Cyclotrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005583">Fourier Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>94</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2006</Year><Month>1</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>3</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2006</Year><Month>1</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S0076-6879(05)02004-5</ArticleId><ArticleId IdType="doi">10.1016/S0076-6879(05)02004-5</ArticleId><ArticleId IdType="pubmed">16401508</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16383342</PMID><DateCreated><Year>2005</Year><Month>12</Month><Day>30</Day></DateCreated><DateCompleted><Year>2007</Year><Month>04</Month><Day>12</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>78</Volume><Issue>1</Issue><PubDate><Year>2006</Year><Month>Jan</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Parallel ion parking of protein mixtures.</ArticleTitle><Pagination><MedlinePgn>310-6</MedlinePgn></Pagination><Abstract><AbstractText>The multiple charging phenomenon resulting from electrospray ionization of proteins, while useful for the ability to make several mass measurements on a single component, can lead to highly complex spectra when mixtures are analyzed, as each component can generate multiple ions of distinct mass-to-charge ratio. Ion/ion proton-transfer reactions can overcome this problem by reduction of all components to the +1 charge state, but this typically requires the ability to extend the mass range of the instrument well beyond that available in most commercial instruments. Furthermore, reduction of protein charge to +1 also results in a reduction in detector response. Here it is shown that application of a relatively high amplitude, low-frequency auxiliary ac signal to the end cap electrodes of a 3-D ion trap during an ion/ion reaction can slow the ion/ion reaction rates of ions over a broad m/z range, in a process termed HALF parallel ion parking. Adjustment of the frequency and amplitude of the applied voltage allows the mass range into which the initial ion signal is moved to be controlled, allowing for the simplification of multicomponent mixtures within a mass range that is more commonly available on commercial systems. In addition to decreasing spectral complexity, this is advantageous for mixtures with low-abundance components, as there is less compromise with detector response than in reduction to the +1 charge state. Preliminary evidence also suggests that the ion collision cross section may play an important role in determining which charge states are most significantly inhibited from further ion/ion reactions under a given set of ion parking conditions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>12</Month><Day>31</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>4</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>12</Month><Day>31</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac0515778</ArticleId><ArticleId IdType="pubmed">16383342</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">16352436</PMID><DateCreated><Year>2006</Year><Month>01</Month><Day>09</Day></DateCreated><DateCompleted><Year>2006</Year><Month>03</Month><Day>24</Day></DateCompleted><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>17</Volume><Issue>1</Issue><PubDate><Year>2006</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>High amplitude short time excitation: a method to form and detect low mass product ions in a quadrupole ion trap mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>81-4</MedlinePgn></Pagination><Abstract><AbstractText>Collision induced dissociation (CID) in a quadrupole ion trap mass spectrometer using the conventional 30 ms activation time is compared with high amplitude short time excitation (HASTE) CID using 2 ms and 1 ms activation times. As a result of the shorter activation times, dissociation of the parent ions using the HASTE CID technique requires resonance excitation voltages greater than conventional CID. After activation, the rf trapping voltage is lowered to allow product ions below the low mass cut-off to be trapped. The HASTE CID spectra are notably different from those obtained using conventional CID and can include product ions below the low mass cut-off for the parent ions of interest. The MS/MS efficiencies of HASTE CID are not significantly different when compared with the conventional 30 ms CID. Similar results were obtained with a two-dimensional (linear) ion trap and a three-dimensional ion trap.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Cunningham</LastName><ForeName>Connell</ForeName><Initials>C</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Burinsky</LastName><ForeName>David J</ForeName><Initials>DJ</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2005</Year><Month>12</Month><Day>15</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2005</Year><Month>7</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2005</Year><Month>9</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2005</Year><Month>9</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2005</Year><Month>12</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>12</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>12</Month><Day>15</Day><Hour>9</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>12</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(05)00793-2</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2005.09.007</ArticleId><ArticleId IdType="pubmed">16352436</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16338146</PMID><DateCreated><Year>2006</Year><Month>01</Month><Day>09</Day></DateCreated><DateCompleted><Year>2006</Year><Month>03</Month><Day>24</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>17</Volume><Issue>1</Issue><PubDate><Year>2006</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Differentiation of aspartic and isoaspartic acids using electron transfer dissociation.</ArticleTitle><Pagination><MedlinePgn>15-9</MedlinePgn></Pagination><Abstract><AbstractText>Electron-transfer dissociation allows differentiation of isoaspartic acid and aspartic acid residues using the same c + 57 and z - 57 peaks that were previously observed with electron capture dissociation. These peaks clearly define both the presence and the position of isoaspartic acid residues and they are relatively abundant. The lower resolution of the ion trap instrument makes detection of the aspartic acid residue's diagnostic peak difficult because of interference with side-chain fragment ions from arginine residues, but the aspartic acid residues are still clearly observed in the backbone cleavages and can be inferred from the absence of the isoaspartic acid diagnostic ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>O'Connor</LastName><ForeName>Peter B</ForeName><Initials>PB</Initials><AffiliationInfo><Affiliation>Boston University Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA. poconnor@bu.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cournoyer</LastName><ForeName>Jason J</ForeName><Initials>JJ</Initials></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>P41RR10888</GrantID><Acronym>RR</Acronym><Agency>NCRR NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2005</Year><Month>12</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D026581">Isoaspartic Acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>30KYC7MIAI</RegistryNumber><NameOfSubstance UI="D001224">Aspartic Acid</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001224">Aspartic Acid</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D026581">Isoaspartic Acid</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2005</Year><Month>7</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2005</Year><Month>8</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2005</Year><Month>8</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2005</Year><Month>12</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>12</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>3</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>12</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(05)00767-1</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2005.08.019</ArticleId><ArticleId IdType="pubmed">16338146</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16182558</PMID><DateCreated><Year>2005</Year><Month>10</Month><Day>24</Day></DateCreated><DateCompleted><Year>2006</Year><Month>01</Month><Day>19</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>16</Volume><Issue>11</Issue><PubDate><Year>2005</Year><Month>Nov</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Pulsed dual electrospray ionization for ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>1750-6</MedlinePgn></Pagination><Abstract><AbstractText>A pulsed dual electrospray ionization source has been developed to generate positive and negative ions for subsequent ion/ion reaction experiments. The two sprayers, typically a nano-electrospray emitter for analytes and an electrospray emitter for reagents, are positioned in a parallel fashion close to the sampling orifice of a triple quadrupole/linear ion trap tandem mass spectrometer (Sciex Q TRAP). The potentials applied to each sprayer are alternately pulsed so that ions of opposite polarity are generated separately in time. Ion/ion reactions take place after ions of each polarity are sequentially injected into a high-pressure linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed dual electrospray source allows optimization of each sprayer and can be readily coupled to any spray interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be alternated in synchrony with the emitter potentials. Ion/ion reaction examples such as charge reduction of multiply charged protein ions, charge inversion of peptides ions, and protein-protein complex formation are given to illustrate capabilities of the pulsed dual electrospray source in the study of gas-phase ion/ion chemistry.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2005</Year><Month>09</Month><Day>22</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004563">Electrochemistry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D012815">Signal Processing, Computer-Assisted</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2005</Year><Month>5</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2005</Year><Month>7</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2005</Year><Month>7</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="aheadofprint"><Year>2005</Year><Month>9</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>9</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>1</Month><Day>20</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>9</Month><Day>27</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(05)00614-8</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2005.07.013</ArticleId><ArticleId IdType="pubmed">16182558</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16144411</PMID><DateCreated><Year>2005</Year><Month>09</Month><Day>07</Day></DateCreated><DateCompleted><Year>2006</Year><Month>02</Month><Day>03</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>127</Volume><Issue>36</Issue><PubDate><Year>2005</Year><Month>Sep</Month><Day>14</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer versus proton transfer in gas-phase ion/ion reactions of polyprotonated peptides.</ArticleTitle><Pagination><MedlinePgn>12627-39</MedlinePgn></Pagination><Abstract><AbstractText>The ion/ion reactions of several dozen reagent anions with triply protonated cations of the model peptide KGAILKGAILR have been examined to evaluate predictions of a Landau-Zener-based model for the likelihood for electron transfer. Evidence for electron transfer was provided by the appearance of fragment ions unique to electron transfer or electron capture dissociation. Proton transfer and electron transfer are competitive processes for any combination of anionic and cationic reactants. For reagent anions in reactions with protonated peptides, proton transfer is usually significantly more exothermic than electron transfer. If charge transfer occurs at relatively long distances, electron transfer should, therefore, be favored on kinetic grounds because the reactant and product channels cross at greater distances, provided conditions are favorable for electron transfer at the crossing point. The results are consistent with a model based on Landau-Zener theory that indicates both thermodynamic and geometric criteria apply for electron transfer involving polyatomic anions. Both the model and the data suggest that electron affinities associated with the anionic reagents greater than about 60-70 kcal/mol minimize the likelihood that electron transfer will be observed. Provided the electron affinity is not too high, the Franck-Condon factors associated with the anion and its corresponding neutral must not be too low. When one or the other of these criteria is not met, proton transfer tends to occur essentially exclusively. Experiments involving ion/ion attachment products also suggest that a significant barrier exists to the isomerization between chemical complexes that, if formed, lead to either proton transfer or electron transfer.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>Hodges</LastName><ForeName>Brittany D M</ForeName><Initials>BD</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Jul 1;75(13):3256-62</RefSource><PMID Version="1">12964777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Jan-Feb;3(1):46-54</RefSource><PMID Version="1">14998162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Mar 15;70(6):1198-202</RefSource><PMID Version="1">9530009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 1;71(19):4250-3</RefSource><PMID Version="1">10517147</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Feb;16(2):208-24</RefSource><PMID Version="1">15694771</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jul;16(7):1020-30</RefSource><PMID Version="1">15914021</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 5;124(22):6407-20</RefSource><PMID Version="1">12033872</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Mar;13(3):241-9</RefSource><PMID Version="1">11908804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1774-9</RefSource><PMID Version="1">11842225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Phys Chem A. 2005 Jul 7;109(26):5801-13</RefSource><PMID Version="1">16833914</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Oct 10;123(40):9792-9</RefSource><PMID Version="1">11583540</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jan 1;73(1):19-22</RefSource><PMID Version="1">11195502</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Jan 1;72(1):52-60</RefSource><PMID Version="1">10655634</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 15;71(20):4431-6</RefSource><PMID Version="1">10546526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2002 Jan;102(1):231-82</RefSource><PMID Version="1">11782134</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D013816">Thermodynamics</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7051</OtherID><OtherID Source="NLM">PMC1570753</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>9</Month><Day>8</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>2</Month><Day>4</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>9</Month><Day>8</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ja0526057</ArticleId><ArticleId IdType="pubmed">16144411</ArticleId><ArticleId IdType="pmc">PMC1570753</ArticleId><ArticleId IdType="mid">NIHMS7051</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">16131079</PMID><DateCreated><Year>2005</Year><Month>08</Month><Day>31</Day></DateCreated><DateCompleted><Year>2007</Year><Month>03</Month><Day>27</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>17</Issue><PubDate><Year>2005</Year><Month>Sep</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electron-transfer ion/ion reactions of doubly protonated peptides: effect of elevated bath gas temperature.</ArticleTitle><Pagination><MedlinePgn>5662-9</MedlinePgn></Pagination><Abstract><AbstractText>In this study, the electron-transfer dissociation (ETD) behavior of cations derived from 27 different peptides (22 of which are tryptic peptides) has been studied in a 3D quadrupole ion trap mass spectrometer. Ion/ion reactions between peptide cations and nitrobenzene anions have been examined at both room temperature and in an elevated temperature bath gas environment to form ETD product ions. From the peptides studied, the ETD sequence coverage tends to be inversely related to peptide size. At room temperature, very high sequence coverage (approximately 100%) was observed for small peptides (&lt; or =7 amino acids). For medium-sized peptides composed of 8-11 amino acids, the average sequence coverage was 46%. Larger peptides with 14 or more amino acids yielded an average sequence coverage of 23%. Elevated-temperature ETD provided increased sequence coverage over room-temperature experiments for the peptides of greater than 7 residues, giving an average of 67% for medium-sized peptides and 63% for larger peptides. Percent ETD, a measure of the extent of electron transfer, has also been calculated for the peptides and also shows an inverse relation with peptide size. Bath gas temperature does not have a consistent effect on percent ETD, however. For the tryptic peptides, fragmentation is localized at the ends of the peptides suggesting that the distribution of charge within the peptide may play an important role in determining fragmentation sites. A triply protonated peptide has also been studied and shows behavior similar to the doubly charged peptides. These preliminary results suggest that for a given charge state there is a maximum size for which high sequence coverage is obtained and that increasing the bath gas temperature can increase this maximum.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Oct 15;72(20):4778-84</RefSource><PMID Version="1">11055690</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10313-7</RefSource><PMID Version="1">10984529</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Electrophoresis. 2000 May;21(9):1707-32</RefSource><PMID Version="1">10870958</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Electrophoresis. 1999 Dec;20(18):3551-67</RefSource><PMID Version="1">10612281</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 1;73(13):2998-3005</RefSource><PMID Version="1">11467546</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2003;17(15):1759-68</RefSource><PMID Version="1">12872281</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Apr 1;75(7):1599-603</RefSource><PMID Version="1">12705591</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15863-8</RefSource><PMID Version="1">12444260</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 5;124(22):6407-20</RefSource><PMID Version="1">12033872</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jul;16(7):1020-30</RefSource><PMID Version="1">15914021</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Dec;15(12):1869-73</RefSource><PMID Version="1">15589763</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Dec 15;66(24):4390-9</RefSource><PMID Version="1">7847635</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Oct 10;123(40):9792-9</RefSource><PMID Version="1">11583540</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Protein Sci. 1993 Feb;2(2):183-96</RefSource><PMID Version="1">7680267</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Jul 1;75(13):3256-62</RefSource><PMID Version="1">12964777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Jul;15(7):1087-98</RefSource><PMID Version="1">15234367</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008970">Molecular Weight</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D013696">Temperature</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7050</OtherID><OtherID Source="NLM">PMC1356655</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>9</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>3</Month><Day>28</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>9</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac050666h</ArticleId><ArticleId IdType="pubmed">16131079</ArticleId><ArticleId IdType="pmc">PMC1356655</ArticleId><ArticleId IdType="mid">NIHMS7050</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15924405</PMID><DateCreated><Year>2005</Year><Month>05</Month><Day>31</Day></DateCreated><DateCompleted><Year>2007</Year><Month>04</Month><Day>02</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>11</Issue><PubDate><Year>2005</Year><Month>Jun</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Sonic spray as a dual polarity ion source for ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>3683-9</MedlinePgn></Pagination><Abstract><AbstractText>A single sonic spray source has been used to generate both positive and negative ions for subsequent ion/ion reaction experiments. Ion/ion reactions took place after ions of each polarity were sequentially injected into a linear ion trap, where axial trapping was effected by applying an auxiliary radio frequency voltage to one end lens. Absolute charge reductions via proton transfer were demonstrated for multiply charged protein/peptide cations and multiply charged oligonucleotide anions. Deprotonation of polypeptide cations occurs with anions derived from fluorinated compounds such as nonadecafluoro-1-decanol and perfluoro-1-octanol, while multiply charged oligonucleotide anions are efficiently protonated via reaction with proton sponge (N,N,N',N'-tetramethyl-1,8-naphthalenediamine) cations. No evidence for signal suppression of the biopolymer ions was noted to result from the presence of these reagents in the solution subjected to sonic spray. Several of the analytically useful applications of ion/ion proton-transfer reactions are demonstrated using a single sonic spray ion source. These include an ion parking experiment for the purpose of gas-phase ion concentration and charge-state reduction of product ions formed via beam-type and in-trap collision-induced dissociation of multiply charged oligonucleotide parent anions. Examples of complex formation are also given to illustrate the flexibility of the sonic spray-induced ion/ion reaction method.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Liang</LastName><ForeName>Xiaorong</ForeName><Initials>X</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011312">Pressure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>6</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>4</Month><Day>3</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>6</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac0481811</ArticleId><ArticleId IdType="pubmed">15924405</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15914021</PMID><DateCreated><Year>2005</Year><Month>06</Month><Day>24</Day></DateCreated><DateCompleted><Year>2005</Year><Month>08</Month><Day>30</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>16</Volume><Issue>7</Issue><PubDate><Year>2005</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>SO2-* electron transfer ion/ion reactions with disulfide linked polypeptide ions.</ArticleTitle><Pagination><MedlinePgn>1020-30</MedlinePgn></Pagination><Abstract><AbstractText>Multiply-charged peptide cations comprised of two polypeptide chains (designated A and B) bound via a disulfide linkage have been reacted with SO2-* in an electrodynamic ion trap mass spectrometer. These reactions proceed through both proton transfer (without dissociation) and electron transfer (with and without dissociation). Electron transfer reactions are shown to give rise to cleavage along the peptide backbone, loss of neutral molecules, and cleavage of the cystine bond. Disulfide bond cleavage is the preferred dissociation channel and both Chain A (or B)-S* and Chain A (or B)-SH fragment ions are observed, similar to those observed with electron capture dissociation (ECD) of disulfide-bound peptides. Electron transfer without dissociation produces [M + 2H]+* ions, which appear to be less kinetically stable than the proton transfer [M + H]+ product. When subjected to collision-induced dissociation (CID), the [M + 2H]+* ions fragment to give products that were also observed as dissociation products during the electron transfer reaction. However, not all dissociation channels noted in the electron transfer reaction were observed in the CID of the [M + 2H]+* ions. The charge state of the peptide has a significant effect on both the extent of electron transfer dissociation observed and the variety of dissociation products, with higher charge states giving more of each.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004220">Disulfides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013447">Sulfites</NameOfSubstance></Chemical><Chemical><RegistryNumber>111317-91-0</RegistryNumber><NameOfSubstance UI="C076621">conopressin G</NameOfSubstance></Chemical><Chemical><RegistryNumber>50-56-6</RegistryNumber><NameOfSubstance UI="D010121">Oxytocin</NameOfSubstance></Chemical><Chemical><RegistryNumber>51110-01-1</RegistryNumber><NameOfSubstance UI="D013004">Somatostatin</NameOfSubstance></Chemical><Chemical><RegistryNumber>9013-90-5</RegistryNumber><NameOfSubstance UI="D007768">Lactalbumin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Bioessays. 1988 Feb-Mar;8(2):57-63</RefSource><PMID Version="1">3282505</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1981 Sep 15;151(2):261-87</RefSource><PMID Version="1">7338898</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Sep-Oct;3(5):1033-41</RefSource><PMID Version="1">15473693</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2001 Feb;101(2):269-95</RefSource><PMID Version="1">11712248</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Biol Chem. 2001 Dec 7;276(49):45497-500</RefSource><PMID Version="1">11585843</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2001;15(23):2334-40</RefSource><PMID Version="1">11746900</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Mar;13(3):241-9</RefSource><PMID Version="1">11908804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 5;124(22):6407-20</RefSource><PMID Version="1">12033872</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Nov;37(11):1141-4</RefSource><PMID Version="1">12447890</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2002 Nov-Dec;1(6):549-57</RefSource><PMID Version="1">12645623</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 May 14;125(19):5954-63</RefSource><PMID Version="1">12733936</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Dec 1;75(23):6509-16</RefSource><PMID Version="1">14640721</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Mass Spectrom. 1984 Nov;11(11):601</RefSource><PMID Version="1">6525415</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):99-111</RefSource><PMID Version="1">3072035</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2005 Nov-Dec;24(6):931-58</RefSource><PMID Version="1">15706594</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Nov 1;66(21):3727-32</RefSource><PMID Version="1">7802257</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nature. 1989 Nov 16;342(6247):291-3</RefSource><PMID Version="1">2812028</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1990 Apr 1;62(7):693-8</RefSource><PMID Version="1">2327585</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Dec 15;63(24):1193A-1203A</RefSource><PMID Version="1">1789447</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1992 Mar;201(2):216-26</RefSource><PMID Version="1">1632509</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004220">Disulfides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007768">Lactalbumin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010121">Oxytocin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000031">analogs &amp; derivatives</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013004">Somatostatin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013447">Sulfites</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7046</OtherID><OtherID Source="NLM">PMC1356657</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2004</Year><Month>12</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2005</Year><Month>2</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2005</Year><Month>2</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>5</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>9</Month><Day>1</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>5</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(05)00125-X</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2005.02.010</ArticleId><ArticleId IdType="pubmed">15914021</ArticleId><ArticleId IdType="pmc">PMC1356657</ArticleId><ArticleId IdType="mid">NIHMS7046</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15889938</PMID><DateCreated><Year>2005</Year><Month>05</Month><Day>13</Day></DateCreated><DateCompleted><Year>2007</Year><Month>03</Month><Day>13</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>10</Issue><PubDate><Year>2005</Year><Month>May</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Parallel ion parking: improving conversion of parents to first-generation products in electron transfer dissociation.</ArticleTitle><Pagination><MedlinePgn>3411-4</MedlinePgn></Pagination><Abstract><AbstractText>Electron-transfer dissociation (ETD) in a tandem mass spectrometer is an analytically useful ion/ion reaction technique for deriving polypeptide sequence information, but its utility can be limited by sequential reactions of the products. Sequential reactions lead to neutralization of some products, as well as to signals from products derived from multiple cleavages that can be difficult to interpret. A method of inhibiting sequential ETD fragmentation in a quadrupole ion trap is demonstrated here for the reaction of a triply protonated peptide with nitrobenzene anions. A tailored waveform (in this case, a filtered noise field) is applied during the ion/ion reaction time to accelerate simultaneously first-generation product ions and thereby inhibit their further reaction. This results in a approximately 50% gain in the relative yield of first-generation products and allows for the conversion of more than 90% of the original parent ions into first-generation products. Gains are expected to be even larger when higher charge-state cations are used, as the rates of sequential reaction become closer to the initial reaction rate.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016422">Letter</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009578">Nitrobenzenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C118790">angiotensin I (1-7)</NameOfSubstance></Chemical><Chemical><RegistryNumber>9041-90-1</RegistryNumber><NameOfSubstance UI="D000803">Angiotensin I</NameOfSubstance></Chemical><Chemical><RegistryNumber>E57JCN6SSY</RegistryNumber><NameOfSubstance UI="C036077">nitrobenzene</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2005 Mar-Apr;4(2):628-32</RefSource><PMID Version="1">15822944</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Sep 15;66(18):2809-15</RefSource><PMID Version="1">7526742</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4033-43</RefSource><PMID Version="1">8916455</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2005 Mar 15;77(6):1831-9</RefSource><PMID Version="1">15762593</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000803">Angiotensin I</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009578">Nitrobenzenes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D020539">Sequence Analysis, Protein</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053719">Tandem Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7049</OtherID><OtherID Source="NLM">PMC1350601</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>5</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>5</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac0503613</ArticleId><ArticleId IdType="pubmed">15889938</ArticleId><ArticleId IdType="pmc">PMC1350601</ArticleId><ArticleId IdType="mid">NIHMS7049</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15889906</PMID><DateCreated><Year>2005</Year><Month>05</Month><Day>13</Day></DateCreated><DateCompleted><Year>2007</Year><Month>03</Month><Day>13</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>10</Issue><PubDate><Year>2005</Year><Month>May</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Reagent anions for charge inversion of polypeptide/protein cations in the gas phase.</ArticleTitle><Pagination><MedlinePgn>3173-82</MedlinePgn></Pagination><Abstract><AbstractText>Various reagent anions capable of converting polypeptide cations to anions via ion/ion reactions have been investigated. The major charge inversion reaction channels include multiple proton transfer and adduct formation. Dianions composed of sulfonate groups as the negative charge carriers show essentially exclusive adduct formation in converting protonated peptides and proteins to anions. Dianions composed of carboxylate groups, on the other hand, show far more charge inversion via multiple proton transfer, with the degree of adduct formation dependent upon both the size of the polypeptide and the spacings between carboxylate groups in the dianion. More highly charged carboxylate-containing anions, such as those derived from carboxylate-terminated polyamidoamine half-generation dendrimers show charge inversion to give anion charges as high in magnitude as -4, with the degree of adduct formation being inversely related to dendrimer generation. All observations can be interpreted on the basis of charge inversion taking place via a long-lived chemical complex. The lifetime of this complex is related to the strengths and numbers of the interactions of the reactants in the complex. Calculations with model systems are fully consistent with sulfonate groups giving rise to more stable complexes. The kinetic stability of the complex can also be affected by the presence of electrostatic repulsion if it is multiply charged. In general, this situation destabilizes the complex and reduces the likelihood for observation of adducts. The findings highlight the characteristics of multiply charged anions that play roles in determining the nature of charge inversion products associated with protonated peptides and proteins.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Emory</LastName><ForeName>Joshua F</ForeName><Initials>JF</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45327</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002264">Carboxylic Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011073">Polyamines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013451">Sulfonic Acids</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2001 Aug;36(8):875-81</RefSource><PMID Version="1">11523086</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Jun;13(6):614-22</RefSource><PMID Version="1">12056562</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Sep 15;74(18):4653-61</RefSource><PMID Version="1">12349967</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2002 Mar-Apr;21(2):87-107</RefSource><PMID Version="1">12373746</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jun 18;125(24):7238-49</RefSource><PMID Version="1">12797797</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Dec 1;75(23):6509-16</RefSource><PMID Version="1">14640721</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2004;18(9):960-72</RefSource><PMID Version="1">15116423</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Jul 15;76(14):4189-92</RefSource><PMID Version="1">15253662</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Sep 15;63(18):1971-8</RefSource><PMID Version="1">1661106</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1991 Dec 15;63(24):1193A-1203A</RefSource><PMID Version="1">1789447</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Bioconjug Chem. 1993 Sep-Oct;4(5):372-9</RefSource><PMID Version="1">8274523</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1996 May 14;93(10):4897-902</RefSource><PMID Version="1">8643500</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 1996 Oct;31(10):1093-100</RefSource><PMID Version="1">8916418</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1996 Nov 15;68(22):4026-32</RefSource><PMID Version="1">8916454</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 1998 Jun;9(6):585-96</RefSource><PMID Version="1">9879372</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Mar 1;72(5):899-907</RefSource><PMID Version="1">10739190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Nov 1;72(21):5158-61</RefSource><PMID Version="1">11080858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1999 Jan 8;283(5399):194-7</RefSource><PMID Version="1">9880246</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002264">Carboxylic Acids</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011073">Polyamines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013451">Sulfonic Acids</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7047</OtherID><OtherID Source="NLM">PMC1356656</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>5</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>5</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac0482312</ArticleId><ArticleId IdType="pubmed">15889906</ArticleId><ArticleId IdType="pmc">PMC1356656</ArticleId><ArticleId IdType="mid">NIHMS7047</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15889904</PMID><DateCreated><Year>2005</Year><Month>05</Month><Day>13</Day></DateCreated><DateCompleted><Year>2007</Year><Month>03</Month><Day>13</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>10</Issue><PubDate><Year>2005</Year><Month>May</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Continuous real-time analysis of products from the reaction of some monoterpenes with ozone using atmospheric sampling glow discharge ionization coupled to a quadrupole ion trap mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>3156-63</MedlinePgn></Pagination><Abstract><AbstractText>An on-line technique has been demonstrated for the analysis of photochemical oxidation reaction products. The technique is based on the direct introduction of gas and particulate oxidation products into a custom-built atmospheric sampling glow discharge ionization source (ASGDI) coupled to a quadrupole ion trap mass spectrometer (QITMS). Operational parameters of the ASGDI system were investigated to determine their influence on the ion signal for the analysis of oxidation products in real time. These parameters include the discharge current, ion accumulation time, and type of reagent gas. Reference mass spectra from standards were generated for a variety of biogenic compounds and terpene reaction products containing keto, hydroxy, aldehyde, carboxylic acid, or epoxy groups to better understand the fragmentation that occurs in the glow discharge ion source. Results are presented for ozonolysis reactions of four biogenic monoterpenes (alpha-pinene, beta-pinene, D-limonene, Delta(3)-carene) monitored with the ASGDI quadrupole ion trap to demonstrate the ability to obtain real-time measurements. The reaction products identified with ASGDI-QITMS correspond to those products identified with other techniques, including on-line atmospheric pressure chemical ionization techniques. Efficient differentiation of multifunctional products including mono-/di-/hydroxy-/keto-carboxylic acid and keto-/hydroxy-aldehyde was possible by use of the MS/MS capability of the instrument.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Dalton</LastName><ForeName>Christine N</ForeName><Initials>CN</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jaoui</LastName><ForeName>Mohammed</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Kamens</LastName><ForeName>Richard M</ForeName><Initials>RM</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001643">Bicyclo Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002264">Carboxylic Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D053138">Cyclohexenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003998">Dicarboxylic Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D039821">Monoterpenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013729">Terpenes</NameOfSubstance></Chemical><Chemical><RegistryNumber>4MS8VHZ1HJ</RegistryNumber><NameOfSubstance UI="C010789">beta-pinene</NameOfSubstance></Chemical><Chemical><RegistryNumber>66H7ZZK23N</RegistryNumber><NameOfSubstance UI="D010126">Ozone</NameOfSubstance></Chemical><Chemical><RegistryNumber>9MC3I34447</RegistryNumber><NameOfSubstance UI="C008281">limonene</NameOfSubstance></Chemical><Chemical><RegistryNumber>H2M15SNR6N</RegistryNumber><NameOfSubstance UI="C030218">3-carene</NameOfSubstance></Chemical><Chemical><RegistryNumber>JPF3YI7O34</RegistryNumber><NameOfSubstance UI="C005451">alpha-pinene</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D001272">Atmosphere</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001643">Bicyclo Compounds</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002264">Carboxylic Acids</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D053138">Cyclohexenes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003998">Dicarboxylic Acids</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D039821">Monoterpenes</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010126">Ozone</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013729">Terpenes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>5</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>3</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>5</Month><Day>14</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac050153a</ArticleId><ArticleId IdType="pubmed">15889904</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15822944</PMID><DateCreated><Year>2005</Year><Month>04</Month><Day>12</Day></DateCreated><DateCompleted><Year>2005</Year><Month>07</Month><Day>28</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>4</Volume><Issue>2</Issue><PubDate><MedlineDate>2005 Mar-Apr</MedlineDate></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation.</ArticleTitle><Pagination><MedlinePgn>628-32</MedlinePgn></Pagination><Abstract><AbstractText>Glycosylation is an important post-translational modification. Analysis of glycopeptides is difficult using collision-induced dissociation, as it typically yields only information about the glycan structure, without any peptide sequence information. We demonstrate here how a 3D-quadrupole ion trap, using the complementary techniques of collision induced dissociation (CID) and electron-transfer dissociation (ETD), can be used to elucidate the glycan structure and peptide sequence of the N-glycosylated peptide from a fractionated tryptic digest of the lectin from the coral tree, Erythina cristagalli. CID experiments on the multiply protonated glycopeptide ions yield, almost exclusively, cleavage at glycosidic bonds, with little peptide backbone fragmentation. ETD reactions of the triply charged glycopeptide cations with either sulfur dioxide or nitrobenzene anions yield cleavage of the peptide backbone with no loss of the glycan structure. These results show that a 3D-quadrupole ion trap can be used to provide glycopeptide amino acid sequence information as well as information about the glycan structure.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, 560 Oval Drive, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006020">Glycopeptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1999 Oct 15;71(20):4431-6</RefSource><PMID Version="1">10546526</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochim Biophys Acta. 1999 Dec 6;1473(1):4-8</RefSource><PMID Version="1">10580125</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 2001 Mar 13;40(10):3109-16</RefSource><PMID Version="1">11258925</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 1;73(13):2998-3005</RefSource><PMID Version="1">11467546</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Sep 15;73(18):4530-6</RefSource><PMID Version="1">11575803</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proteomics. 2001 Feb;1(2):311-28</RefSource><PMID Version="1">11680878</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Chem Rev. 2002 Feb;102(2):321-69</RefSource><PMID Version="1">11841246</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 2003 Jan-Feb;22(1):57-77</RefSource><PMID Version="1">12768604</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Jul 1;75(13):3256-62</RefSource><PMID Version="1">12964777</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2004;18(14):1575-82</RefSource><PMID Version="1">15282782</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2004;18(15):1741-8</RefSource><PMID Version="1">15282773</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Oct 15;76(20):6097-101</RefSource><PMID Version="1">15481958</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Eur J Biochem. 1987 Jul 15;166(2):311-20</RefSource><PMID Version="1">3609010</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Protein Sci. 1993 Feb;2(2):183-96</RefSource><PMID Version="1">7680267</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1993 Apr 1;65(7):877-84</RefSource><PMID Version="1">8470819</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Glycobiology. 1997 Oct;7(7):881-96</RefSource><PMID Version="1">9363430</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Nov 15;76(22):6560-5</RefSource><PMID Version="1">15538777</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007887">Fabaceae</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006020">Glycopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011487">Protein Conformation</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7048</OtherID><OtherID Source="NLM">PMC1350609</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>4</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>7</Month><Day>29</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>4</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr049770q</ArticleId><ArticleId IdType="pubmed">15822944</ArticleId><ArticleId IdType="pmc">PMC1350609</ArticleId><ArticleId IdType="mid">NIHMS7048</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15762593</PMID><DateCreated><Year>2005</Year><Month>03</Month><Day>14</Day></DateCreated><DateCompleted><Year>2007</Year><Month>01</Month><Day>24</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>77</Volume><Issue>6</Issue><PubDate><Year>2005</Year><Month>Mar</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO2*-.</ArticleTitle><Pagination><MedlinePgn>1831-9</MedlinePgn></Pagination><Abstract><AbstractText>Ion-ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2*-. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2*- give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2*- shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0UZA3422Q4</RegistryNumber><NameOfSubstance UI="D013458">Sulfur Dioxide</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>Protein Sci. 1993 Feb;2(2):183-96</RefSource><PMID Version="1">7680267</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Dec;15(12):1869-73</RefSource><PMID Version="1">15589763</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):22-7</RefSource><PMID Version="1">15653360</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2005 Jan;16(1):71-81</RefSource><PMID Version="1">15653365</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Electrophoresis. 1999 Dec;20(18):3551-67</RefSource><PMID Version="1">10612281</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Feb 1;72(3):563-73</RefSource><PMID Version="1">10695143</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Electrophoresis. 2000 May;21(9):1707-32</RefSource><PMID Version="1">10870958</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Nat Biotechnol. 2001 Mar;19(3):242-7</RefSource><PMID Version="1">11231557</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Chromatogr B Biomed Sci Appl. 2001 Mar 10;752(2):281-91</RefSource><PMID Version="1">11270867</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Aug 1;73(15):3605-10</RefSource><PMID Version="1">11510824</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2002 Mar;13(3):241-9</RefSource><PMID Version="1">11908804</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Mar 1;74(5):976-84</RefSource><PMID Version="1">11925000</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Dec 1;73(23):5683-90</RefSource><PMID Version="1">11774908</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 5;124(22):6407-20</RefSource><PMID Version="1">12033872</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Nov;37(11):1141-4</RefSource><PMID Version="1">12447890</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 May 14;125(19):5954-63</RefSource><PMID Version="1">12733936</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Jan-Feb;3(1):46-54</RefSource><PMID Version="1">14998162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Apr 15;76(8):2231-8</RefSource><PMID Version="1">15080732</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33</RefSource><PMID Version="1">15210983</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Soc Mass Spectrom. 2004 Jul;15(7):1087-98</RefSource><PMID Version="1">15234367</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2004 Aug 1;76(15):4263-6</RefSource><PMID Version="1">15283558</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Mass Spectrom. 1984 Nov;11(11):601</RefSource><PMID Version="1">6525415</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biomed Environ Mass Spectrom. 1988 Oct;16(1-12):99-111</RefSource><PMID Version="1">3072035</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011-5</RefSource><PMID Version="1">8506346</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1994 Dec 15;66(24):4390-9</RefSource><PMID Version="1">7847635</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013458">Sulfur Dioxide</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7045</OtherID><OtherID Source="NLM">PMC1564063</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>3</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2007</Year><Month>1</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>3</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac0483872</ArticleId><ArticleId IdType="pubmed">15762593</ArticleId><ArticleId IdType="pmc">PMC1564063</ArticleId><ArticleId IdType="mid">NIHMS7045</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15712244</PMID><DateCreated><Year>2005</Year><Month>04</Month><Day>26</Day></DateCreated><DateCompleted><Year>2006</Year><Month>04</Month><Day>04</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>40</Volume><Issue>4</Issue><PubDate><Year>2005</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Targeted biomarker detection via whole protein ion trap tandem mass spectrometry: thymosin beta4 in a human lung cancer cell line.</ArticleTitle><Pagination><MedlinePgn>444-51</MedlinePgn></Pagination><Abstract><AbstractText>N-Terminally acetylated thymosin beta4, a species implicated for use as a cancer biomarker, was identified in a human lung cancer cell line using ion trap tandem mass spectrometry at the whole protein level. Ion-ion proton transfer reactions were used for parent ion concentration/manipulation and to simplify interpretation of product ion spectra. Dissociation data for the +6 to +3 charge states are reported. As is usually the case, structural information available from the ion trap collisional activation of the protein is sensitive to parent ion charge state. Each parent ion charge state selected, however, provided sufficient information to make a confident identification. Furthermore, each charge state provided relatively rich fragmentation. Therefore, any of the charge states can be used to detect with high specificity thymosin beta(4) in a complex protein mixture. There are advantages associated with the rapid detection of protein biomarkers at the whole protein level, as opposed to the peptide level following protein digestion, particularly for relatively small protein and polypeptide biomarkers. Having identified and characterized the protein, product ion spectra obtained directly, without recourse to ion-ion proton transfer reactions, can be used for library matching. However, ion-ion proton transfer reactions for parent ion concentration and charge state purification are advantageous in addressing relatively complex mixtures.</AbstractText><CopyrightInformation>Copyright 2005 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Yan</LastName><ForeName>Fang</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>Rossie</LastName><ForeName>Sandra S</ForeName><Initials>SS</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>NS31221</GrantID><Acronym>NS</Acronym><Agency>NINDS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372-11</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D015415">Biological Markers</NameOfSubstance></Chemical><Chemical><RegistryNumber>61512-21-8</RegistryNumber><NameOfSubstance UI="D013947">Thymosin</NameOfSubstance></Chemical><Chemical><RegistryNumber>77591-33-4</RegistryNumber><NameOfSubstance UI="C033402">thymosin beta(4)</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015415">Biological Markers</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045744">Cell Line, Tumor</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008175">Lung Neoplasms</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013947">Thymosin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>2</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>4</Month><Day>6</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>2</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/jms.797</ArticleId><ArticleId IdType="pubmed">15712244</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15706594</PMID><DateCreated><Year>2005</Year><Month>10</Month><Day>05</Day></DateCreated><DateCompleted><Year>2005</Year><Month>11</Month><Day>29</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0277-7037</ISSN><JournalIssue CitedMedium="Print"><Volume>24</Volume><Issue>6</Issue><PubDate><MedlineDate>2005 Nov-Dec</MedlineDate></PubDate></JournalIssue><Title>Mass spectrometry reviews</Title><ISOAbbreviation>Mass Spectrom Rev</ISOAbbreviation></Journal><ArticleTitle>Recent developments in the ion/ion chemistry of high-mass multiply charged ions.</ArticleTitle><Pagination><MedlinePgn>931-58</MedlinePgn></Pagination><Abstract><AbstractText>The ability to form multiply charged high-mass ions in the gas-phase, most notably via electrospray ionization (ESI), has allowed the study of many different combinations of positively and negatively charged ions. The charged products are directly amenable to study with mass spectrometry. Ion/ion reactions have proved to be "universal" in the sense that the high exothermicities and large rate constants associated with essentially any combination of oppositely charged ions lead to reaction regardless of the chemical functionalities associated with the ions. These characteristics make ion/ion reactions potentially analytically useful provided reagent ion densities and spatial overlap of the oppositely charged ions are high. These conditions can be readily met by several instrumental configurations. The focus of this review is to highlight developments in this field since 1998. Novel instrumentation has been developed to study ion/ion reactions, such as atmospheric pressure ion/ion reactors followed by mass analysis, or electrodynamic ion trap mass spectrometers, which are used as reaction vessels at sub-atmospheric pressures. A wide variety of reaction phenomenologies have been observed in various ion/ion reactions, with proton transfer being the most common. New phenomenologies have been observed in the reactions of multiply charged positive ions with singly charged negative ions, including cation transfer and cation exchange. A new series of reactions between multiply charged positive ions and multiply charged negative ions have been made possible by recent instrumentation developments. These reactions have led to the observation of proton transfer and complex formation. These observations have provided new insights into ion/ion reaction dynamics and a bound orbit model appears to best account for experimental results. New applications are also discussed for a several ion/ion reaction.</AbstractText><CopyrightInformation>(c) 2005 Wiley Periodicals, Inc., Mass Spec Rev 24:931-958, 2005.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Mass Spectrom Rev</MedlineTA><NlmUniqueID>8219702</NlmUniqueID><ISSNLinking>0277-7037</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D020450">Heavy Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D008956">Models, Chemical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008970">Molecular Weight</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>65</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>2</Month><Day>12</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>12</Month><Day>13</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>2</Month><Day>12</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1002/mas.20048</ArticleId><ArticleId IdType="pubmed">15706594</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15653365</PMID><DateCreated><Year>2005</Year><Month>01</Month><Day>17</Day></DateCreated><DateCompleted><Year>2005</Year><Month>04</Month><Day>08</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>16</Volume><Issue>1</Issue><PubDate><Year>2005</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Mutual storage mode ion/ion reactions in a hybrid linear ion trap.</ArticleTitle><Pagination><MedlinePgn>71-81</MedlinePgn></Pagination><Abstract><AbstractText>Ion/ion proton transfer reactions involving mutual storage of both ion polarities in a linear ion trap (LIT) that comprises part of a hybrid triple quadrupole/linear ion trap mass spectrometer have been effected. Mutual ion storage in the x- and y-dimensions arises from the normal operation of the oscillating quadrupole field of the quadrupole array, while storage in the z-dimension is enabled by applying unbalanced radio-frequency amplitudes to opposing sets of rods of the array. Efficient trapping (&gt;90%) is achieved for thermalized ions over periods of several seconds. Reactions were demonstrated for multiply charged protein/peptide cations formed by electrospray with anions derived from glow discharge ionization of perfluoro(methyldecalin) (PMD) introduced from the side of the LIT rod array. Doubly and singly charged protein ions are readily formed via ion/ion reactions. The parameters that affect ion/ion reactions are discussed, including the degree of RF unbalance on the LIT rods, vacuum pressure, nature of the buffer gas, reaction time, anion abundance, and the low mass cutoff for ion/ion reaction. The present system has a demonstrated upper mass-to-charge ratio limit of at least 33,000. The system also has high flexibility with respect to defining MS(n) experiments involving both collision-induced dissociation (CID) and ion/ion reactions. Experiments are demonstrated involving beam-type CID in the pressurized collision quadrupole (Q2) followed by ion/ion reactions involving the product ions in the LIT. Ion parking experiments are also demonstrated using the mutual storage ion/ion reaction mode in the LIT, with a parking efficiency over 60%.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Jin</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>Hager</LastName><ForeName>James W</ForeName><Initials>JW</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2004</Year><Month>Sep</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2004</Year><Month>Sep</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2005</Year><Month>1</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>4</Month><Day>9</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2005</Year><Month>1</Month><Day>18</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pii">S1044-0305(04)00629-4</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2004.09.017</ArticleId><ArticleId IdType="pubmed">15653365</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15473693</PMID><DateCreated><Year>2004</Year><Month>10</Month><Day>11</Day></DateCreated><DateCompleted><Year>2005</Year><Month>03</Month><Day>15</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>5</Issue><PubDate><MedlineDate>2004 Sep-Oct</MedlineDate></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Effects of single amino acid substitution on the collision-induced dissociation of intact protein ions: Turkey ovomucoid third domain.</ArticleTitle><Pagination><MedlinePgn>1033-41</MedlinePgn></Pagination><Abstract><AbstractText>Expanded understanding of the factors that direct polypeptide ion fragmentation can lead to improved specificity in the use of tandem mass spectrometry for the identification and characterization of proteins. Like the fragmentation of peptide cations, the dissociation of whole protein cations shows several preferred cleavages, the likelihood for which is parent ion charge dependent. While such cleavages are often observed, they are far from universally observed, despite the presence of the residues known to promote them. Furthermore, cleavages at residues not noted to be common in a variety of proteins can be dominant for a particular protein or protein ion charge state. Motivated by the ability to study a small protein, turkey ovomucoid third domain, for which a variety of single amino acid variants are available, the effects of changing the identity of one amino acid in the protein sequence on its dissociation behavior were examined. In particular, changes in amino acids associated with C-terminal aspartic acid cleavage and N-terminal proline cleavage were emphasized. Consistent with previous studies, the product ion spectra were found to be dependent upon the parent ion charge state. Furthermore, the fraction of possible C-terminal aspartic acid cleavages observed to occur for this protein was significantly larger than the fraction of possible N-terminal proline cleavages. In fact, very little N-terminal proline cleavage was noted for the wild-type protein despite the presence of three proline residues in the protein. The addition/removal of proline and aspartic acids was studied along with changes in selected residues adjacent to proline residues. Evidence for inhibition of proline cleavage by the presence of nearby basic residues was noted, particularly if the basic residue was likely to be protonated.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Newton</LastName><ForeName>Kelly A</ForeName><Initials>KA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>Laskowski</LastName><ForeName>Michael</ForeName><Initials>M</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 10831</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>GM 63539</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>30KYC7MIAI</RegistryNumber><NameOfSubstance UI="D001224">Aspartic Acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>37281-36-0</RegistryNumber><NameOfSubstance UI="D010059">Ovomucin</NameOfSubstance></Chemical><Chemical><RegistryNumber>4QD397987E</RegistryNumber><NameOfSubstance UI="D006639">Histidine</NameOfSubstance></Chemical><Chemical><RegistryNumber>94ZLA3W45F</RegistryNumber><NameOfSubstance UI="D001120">Arginine</NameOfSubstance></Chemical><Chemical><RegistryNumber>9DLQ4CIU6V</RegistryNumber><NameOfSubstance UI="D011392">Proline</NameOfSubstance></Chemical><Chemical><RegistryNumber>K3Z4F929H6</RegistryNumber><NameOfSubstance UI="D008239">Lysine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2004 Mar 17;126(10):3034-5</RefSource><PMID Version="1">15012117</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochemistry. 1983 May 24;22(11):2630-6</RefSource><PMID Version="1">6871151</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1986 Sep;83(17):6233-7</RefSource><PMID Version="1">3462691</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011-5</RefSource><PMID Version="1">8506346</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Biochem Biophys Res Commun. 1993 Aug 31;195(1):58-64</RefSource><PMID Version="1">8363627</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 1993 Nov 1;214(2):397-408</RefSource><PMID Version="1">8109726</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1994 Sep 23;242(3):203-14</RefSource><PMID Version="1">8089842</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8264-7</RefSource><PMID Version="1">8710858</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mol Biol. 1997 Feb 21;266(2):441-61</RefSource><PMID Version="1">9047374</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1998 Sep 1;70(17):3533-44</RefSource><PMID Version="1">9737205</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 1999;13(20):2040-8</RefSource><PMID Version="1">10510418</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Curr Opin Biotechnol. 2002 Feb;13(1):57-64</RefSource><PMID Version="1">11849959</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Feb 1;74(3):577-83</RefSource><PMID Version="1">11838679</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Jan 15;74(2):336-46</RefSource><PMID Version="1">11811406</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1410-5</RefSource><PMID Version="1">11171964</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10313-7</RefSource><PMID Version="1">10984529</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Mar 15;72(6):1112-8</RefSource><PMID Version="1">10740847</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2000 Mar 1;72(5):899-907</RefSource><PMID Version="1">10739190</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2004 Jan-Feb;3(1):46-54</RefSource><PMID Version="1">14998162</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Nov 15;75(22):6251-64</RefSource><PMID Version="1">14616009</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Sep 1;75(17):4525-33</RefSource><PMID Version="1">14632060</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Dec 1;75(23):6509-16</RefSource><PMID Version="1">14640721</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Proteome Res. 2003 Sep-Oct;2(5):495-505</RefSource><PMID Version="1">14582646</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 May 1;75(9):1963-71</RefSource><PMID Version="1">12720328</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2003 Mar;38(3):245-56</RefSource><PMID Version="1">12644985</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2003 Mar 1;75(5):1155-63</RefSource><PMID Version="1">12641236</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Sep 15;74(18):4653-61</RefSource><PMID Version="1">12349967</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Jul;37(7):663-75</RefSource><PMID Version="1">12124999</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2002 Jun 26;124(25):7353-62</RefSource><PMID Version="1">12071744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Biochem. 2002 Jun 1;305(1):68-81</RefSource><PMID Version="1">12018947</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Mass Spectrom. 2002 Mar;37(3):270-82</RefSource><PMID Version="1">11921368</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D019943">Amino Acid Substitution</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001120">Arginine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001224">Aspartic Acid</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006639">Histidine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008239">Lysine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010059">Ovomucin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011392">Proline</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011994">Recombinant Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014422">Turkeys</DescriptorName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7042</OtherID><OtherID Source="NLM">PMC1350662</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>10</Month><Day>12</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>3</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>10</Month><Day>12</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/pr049910w</ArticleId><ArticleId IdType="pubmed">15473693</ArticleId><ArticleId IdType="pmc">PMC1350662</ArticleId><ArticleId IdType="mid">NIHMS7042</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15373435</PMID><DateCreated><Year>2004</Year><Month>09</Month><Day>17</Day></DateCreated><DateCompleted><Year>2006</Year><Month>05</Month><Day>02</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>76</Volume><Issue>17</Issue><PubDate><Year>2004</Year><Month>Sep</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Positive ion transmission mode ion/ion reactions in a hybrid linear ion trap.</ArticleTitle><Pagination><MedlinePgn>5006-15</MedlinePgn></Pagination><Abstract><AbstractText>A triple quadrupole mass spectrometer capable of ion trapping experiments has been adapted for ion/ion reaction studies. The instrument is based on a commercially available linear ion trap (LIT) tandem mass spectrometer (i.e., an MDS SCIEX 2000 Q TRAP) that has been modified by mounting an atmospheric sampling glow discharge ionization (ASGDI) source to the side of the vacuum manifold for production of singly charged anions. The ASGDI source is located line of sight to the side of the third quadrupole of the triple quadrupole assembly (Q3). Anions are focused into the side of the rod array (i.e., anion injection occurs orthogonal to the normal ion flight path). A transmission mode method to perform ion/ion reactions has been developed whereby positive ions are transmitted through the pressurized collision quadrupole (Q2) while anions are stored in Q2. The Q2 LIT is used to trap negative ions whereas the Q3 LIT is used to accumulate positive ions transmitted from Q2. Anions are injected to Q3 and transferred to Q2, where they are stored and collisionally cooled. Multiply charged protein/peptide ions, formed by electrospray, are then mass selected by the first quadrupole assembly (Q1) operated in the rf/dc mode and injected into Q2. The positive ions, including the residual precursor ions and the product ions arising from ion/ion proton-transfer reactions, are accumulated in Q3 until they are analyzed via mass-selective axial ejection for mass analysis. The parameters that affect ion/ion reactions are discussed, including pressure, nature of the gas in Q2, and operation of Q2 as a linear accelerator. Ion/ion reactions in this mode can be readily utilized to separate ions with the same m/z but largely different mass and charge, e.g., +1 bradykinin and +16 myoglobin, in the gas phase.</AbstractText><CopyrightInformation>Copyright 2004 American Chemical Society</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Jin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hager</LastName><ForeName>James W</ForeName><Initials>JW</Initials></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>Londry</LastName><ForeName>Frank A</ForeName><Initials>FA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>9</Month><Day>18</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2006</Year><Month>5</Month><Day>3</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>9</Month><Day>18</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">15373435</ArticleId><ArticleId IdType="doi">10.1021/ac049359m</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15253662</PMID><DateCreated><Year>2004</Year><Month>07</Month><Day>15</Day></DateCreated><DateCompleted><Year>2005</Year><Month>05</Month><Day>24</Day></DateCompleted><DateRevised><Year>2014</Year><Month>09</Month><Day>16</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>76</Volume><Issue>14</Issue><PubDate><Year>2004</Year><Month>Jul</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Increasing the negative charge of a macroanion in the gas phase via sequential charge inversion reactions.</ArticleTitle><Pagination><MedlinePgn>4189-92</MedlinePgn></Pagination><Abstract><AbstractText>Protonated and deprotonated biological molecules in the gas phase play an important role in life sciences research. The structural information accessible from the ions is highly dependent upon their charge states. Therefore, it is desirable to develop means for increasing absolute charge states, particularly for ionization methods, such as MALDI, that yield relatively low charge ions. The work presented here demonstrates the formation of a doubly deprotonated polypeptide or oligonucleotide ion (dianion) from a singly deprotonated analogue via two sequential ion/ion proton-transfer reactions involving charge inversion. The high exoergicity and the large cross section arising from the long-range attractive Coulomb potential of ion/ion reactions make this process plausible. In this example, an overall efficiency of conversion of singly charged ions to doubly charged ions of roughly 8% for polypeptide was noted while lower efficiency (roughly 2%) observed with an oligonucleotide is likely due to a greater degree of neutralization. No other approach to increasing the net negative charge of an anion in the gas phase has as yet been reported.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant><Grant><GrantID>R01 GM045372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2003 Jul 2;125(26):7756-7</RefSource><PMID Version="1">12822966</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Rapid Commun Mass Spectrom. 2004;18(9):960-72</RefSource><PMID Version="1">15116423</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1988 Oct 15;60(20):2299-301</RefSource><PMID Version="1">3239801</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Science. 1989 Oct 6;246(4926):64-71</RefSource><PMID Version="1">2675315</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 1995 Jul 15;67(14):2493-7</RefSource><PMID Version="1">8686879</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2002 Dec 15;74(24):6237-43</RefSource><PMID Version="1">12510744</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>J Am Chem Soc. 2001 Dec 12;123(49):12428-9</RefSource><PMID Version="1">11734052</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407</RefSource><PMID Version="1">10360331</PMID></CommentsCorrections><CommentsCorrections RefType="Cites"><RefSource>Anal Chem. 2001 Jul 15;73(14):3274-81</RefSource><PMID Version="1">11476225</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><OtherID Source="NLM">NIHMS7041</OtherID><OtherID Source="NLM">PMC1404507</OtherID></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>7</Month><Day>16</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2005</Year><Month>5</Month><Day>25</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>7</Month><Day>16</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">15253662</ArticleId><ArticleId IdType="doi">10.1021/ac0496087</ArticleId><ArticleId IdType="pmc">PMC1404507</ArticleId><ArticleId IdType="mid">NIHMS7041</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15236301</PMID><DateCreated><Year>2004</Year><Month>07</Month><Day>05</Day></DateCreated><DateCompleted><Year>2004</Year><Month>08</Month><Day>13</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>39</Volume><Issue>6</Issue><PubDate><Year>2004</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Synthesis of multi-unit protein hetero-complexes in the gas phase via ion-ion chemistry.</ArticleTitle><Pagination><MedlinePgn>630-8</MedlinePgn></Pagination><Abstract><AbstractText>The synthesis of protein hetero-complex ions via ion-ion reactions in the gas phase is demonstrated in a quadrupole ion trap. Bovine cytochrome c cations and bovine ubiquitin anions are used as reactant species in the stepwise construction of complexes containing as many as six protein sub-units. For any set of reactants, a series of competitive and consecutive reactions is possible. The yield of complex ions for any given sequence of reactions is primarily limited by the presence of competitive reactions. Proton transfer represents the most important competitive reaction that adversely affects protein complex synthesis. In the present data, proton transfer takes place most extensively in the first step of complex synthesis, when single protein sub-units are subjected to reaction with one another. Proton transfer is found to be less extensive when one of the reactants is a protein complex. The generation of hexameric hetero-complexes containing two cytochrome c molecules and four ubiquitin molecules is demonstrated with two different synthesis approaches. The first involved the initial reaction of several charge states of cytochrome c and several charges states of ubiquitin. The sequence of reactions in this example illustrates the array of possible competitive and consecutive reactions associated with even a relatively simple set of multiply charged reactants. The second approach involved the initial reaction of the 9(+) charge state of cytochrome c and the 5(-) charge state of ubiquitin. The latter approach highlights the utility of the multi-stage mass spectrometric (MS(n)) capabilities of the ion trap in defining reactant ion identities (i.e. charge states and polarities) so that synthesis reactions can be directed along a particular set of pathways.</AbstractText><CopyrightInformation>Copyright 2004 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000138">chemical synthesis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>7</Month><Day>6</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>8</Month><Day>17</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>7</Month><Day>6</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">15236301</ArticleId><ArticleId IdType="doi">10.1002/jms.629</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15116423</PMID><DateCreated><Year>2004</Year><Month>04</Month><Day>29</Day></DateCreated><DateCompleted><Year>2004</Year><Month>05</Month><Day>25</Day></DateCompleted><DateRevised><Year>2010</Year><Month>11</Month><Day>18</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0951-4198</ISSN><JournalIssue CitedMedium="Print"><Volume>18</Volume><Issue>9</Issue><PubDate><Year>2004</Year></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Tandem mass spectrometry of half-generation PAMAM dendrimer anions.</ArticleTitle><Pagination><MedlinePgn>960-72</MedlinePgn></Pagination><Abstract><AbstractText>Ions derived from negative electrospray ionization of polyamidoamine (PAMAM) dendrimer generation 0.5 were subjected to ion trap tandem mass spectrometry. Ion/ion proton transfer reactions were used to manipulate the charge states of PAMAM precursor ions to form lower charge states from those initially formed by electrospray, as well as to facilitate the interpretation of the product ion mass spectra. Most of the products derived from dendrimer precursor ions could be rationalized by retro-Michael decomposition reactions. The dominant fragmentation channels are highly dependent on the composition of the counter-ions, which in this case are restricted to different numbers of sodium ions and protons, and whether the precursor ion is multiply charged or singly charged. An interpretation is given that is consistent with all of the observations made with the various anions associated with this study. The nature of the structural information that can be obtained via ion trap tandem mass spectrometry of the dendrimers is dependent on the types of precursor ions subjected to study. The tandem mass spectrometry data also provided information about the structure of faulty synthesis products present in the PAMAM dendrimer sample.</AbstractText><CopyrightInformation>Copyright 2004 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001672">Biocompatible Materials</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C104700">PAMAM Starburst</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011073">Polyamines</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001672">Biocompatible Materials</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011073">Polyamines</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>4</Month><Day>30</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>5</Month><Day>27</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>4</Month><Day>30</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">15116423</ArticleId><ArticleId IdType="doi">10.1002/rcm.1431</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">15047065</PMID><DateCreated><Year>2004</Year><Month>03</Month><Day>29</Day></DateCreated><DateCompleted><Year>2004</Year><Month>05</Month><Day>25</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><Issue>4</Issue><PubDate><Year>2004</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Generation and manipulation of sodium cationized peptides in the gas phase.</ArticleTitle><Pagination><MedlinePgn>607-15</MedlinePgn></Pagination><Abstract><AbstractText>Sodiated peptides are often generated by electrospray ionization (ESI) of solutions containing peptides and a sodium salt. Fragmentation of singly sodiated, singly charged peptide ions commonly provides specific sequence information. However, these ions may be difficult to form by directly electrospraying a mixture. In the application of a recently described technique for forming metal containing peptide ions in the gas phase, singly sodiated, singly charged ions are formed via cation-switching ion/ion reactions of multiply protonated peptides. Proton transfer ion/ion reactions can also be used to form [M + Na]+ through the reduction of charge states of multiply charged, singly sodiated ions. The specificity and flexibility of the techniques employed provide a highly controlled means of generating sodiated peptide and protein ions. Thus, the methodologies presented here have potential for forming ions not readily observed via ESI or MALDI. Furthermore, the use of ion/ion reactions to form sodiated peptides facilitates direct comparisons of the fragmentation behavior of [M + Na]+ peptides formed in the absence of solvent with that of [M + Na]+ peptides generated by directly electrospraying a sodium salt/peptide mixture. Thus, in addition to descriptions of the formation of [M + Na]+ peptides in the gas phase using ion/ion reactions, results from CID of reaction products are presented herein.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Newton</LastName><ForeName>Kelly A</ForeName><Initials>KA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>9NEZ333N27</RegistryNumber><NameOfSubstance UI="D012964">Sodium</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012964">Sodium</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>3</Month><Day>30</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>5</Month><Day>27</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2003</Year><Month>Oct</Month><Day>7</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2003</Year><Month>Dec</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2003</Year><Month>Dec</Month><Day>19</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>3</Month><Day>30</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">15047065</ArticleId><ArticleId IdType="doi">10.1016/j.jasms.2003.12.014</ArticleId><ArticleId IdType="pii">S1044030504000145</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14998162</PMID><DateCreated><Year>2004</Year><Month>03</Month><Day>04</Day></DateCreated><DateCompleted><Year>2004</Year><Month>10</Month><Day>14</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>1</Issue><PubDate><MedlineDate>2004 Jan-Feb</MedlineDate></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Affecting proton mobility in activated peptide and whole protein ions via lysine guanidination.</ArticleTitle><Pagination><MedlinePgn>46-54</MedlinePgn></Pagination><Abstract><AbstractText>We have evaluated the effect of lysine guanidination in peptides and proteins on the dissociation of protonated ions in the gas phase. The dissociation of guanidinated model peptide ions compared to their unmodified forms showed behavior consistent with concepts of proton mobility as a major factor in determining favored fragmentation channels. Reduction of proton mobility associated with lysine guanidination was reflected by a relative increase in cleavages occurring C-terminal to aspartic acid residues as well as increases in small molecule losses. To evaluate the effect of guanidination on the dissociation behavior of whole protein ions, bovine ubiquitin was selected as a model. Essentially, all of the amide bond cleavages associated with the +10 charge state of fully guanidinated ubiquitin were observed to occur C-terminal to aspartic acid residues, unlike the dissociation behavior of the +10 ion of the unmodified protein, where competing cleavage N-terminal to proline and nonspecific amide bond cleavages were also observed. The +8 and lower charge states of the guanidinated protein showed prominent losses of small neutral molecules. This overall fragmentation behavior is consistent with current hypotheses regarding whole protein dissociation that consider proton mobility and intramolecular charge solvation as important factors in determining favored dissociation channels, and are also consistent with the fragmentation behaviors observed for the guanidinated model peptide ions. Further evaluation of the utility of condensed phase guanidination of whole proteins is necessary but the results described here confirm that guanidination can be an effective strategy for enhancing C-terminal aspartic acid cleavages. Gas phase dissociation exclusively at aspartic acid residues, especially for whole protein ions, could be useful in identifying and characterizing proteins via tandem mass spectrometry of whole protein ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>JU58VJ6Y3B</RegistryNumber><NameOfSubstance UI="D019791">Guanidine</NameOfSubstance></Chemical><Chemical><RegistryNumber>K3Z4F929H6</RegistryNumber><NameOfSubstance UI="D008239">Lysine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019791">Guanidine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008239">Lysine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>3</Month><Day>5</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>10</Month><Day>16</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>3</Month><Day>5</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14998162</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14961751</PMID><DateCreated><Year>2004</Year><Month>02</Month><Day>13</Day></DateCreated><DateCompleted><Year>2004</Year><Month>08</Month><Day>05</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>76</Volume><Issue>4</Issue><PubDate><Year>2004</Year><Month>Feb</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Nanoelectrospray ionization of protein mixtures: solution pH and protein pI.</ArticleTitle><Pagination><MedlinePgn>1165-74</MedlinePgn></Pagination><Abstract><AbstractText>Solutions consisting of single proteins and mixtures of proteins at different pH values have been subjected to both positive ion and negative ion nanoelectrospray ionization to study the influence of solvent pH and protein pI on the ionization responses of proteins. As has been noted previously, it is possible to form protein ions of one polarity despite the fact that the proteins are present as the opposite polarity in solution. However, total response under this condition tends to be at least an order of magnitude less than the condition in which the nanoelectrospray ionization polarity is the same as the net charge of the proteins in solution. Furthermore, maximum signals in positive ion mode were noted when the pH value of the solution was 4-5 units lower than the protein pI. In the negative ion mode, maximum protein anion signals were observed when the pH was roughly 5 units higher than the protein pI. While only small changes in the abundance-weighted average charge were noted as a function of solution conditions, the extent of sodium ion incorporation was seen to depend strongly on the relationship between net protein charge in solution and gas-phase ion polarity. Sodium ion incorporation was minimized under conditions of maximum signal (i.e., low pH positive ion mode and high pH negative ion mode). Sodium ion incorporation was highest when the protein ion polarities in solution and the gas phase were opposite. These observations are consistent with the charged residue model for electrospray ionization and suggest that a degree of selectivity for electrospray ionization applied to protein mixtures can be realized via judicious selection of solution pH and ionization polarity. Furthermore, the relative extent of sodium ion incorporation under a given set of conditions appears to correlate, at least qualitatively, with protein pI.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Peng</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gunawardena</LastName><ForeName>Harsha P</ForeName><Initials>HP</Initials></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Yu</ForeName><Initials>Y</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007526">Isoelectric Point</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D036103">Nanotechnology</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>2</Month><Day>14</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>8</Month><Day>6</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>2</Month><Day>14</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14961751</ArticleId><ArticleId IdType="doi">10.1021/ac035209k</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14750868</PMID><DateCreated><Year>2004</Year><Month>01</Month><Day>30</Day></DateCreated><DateCompleted><Year>2004</Year><Month>09</Month><Day>30</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>76</Volume><Issue>3</Issue><PubDate><Year>2004</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Whole protein dissociation in a quadrupole ion trap: identification of an a priori unknown modified protein.</ArticleTitle><Pagination><MedlinePgn>720-7</MedlinePgn></Pagination><Abstract><AbstractText>A protein mixture derived from a whole cell lysate fraction of Saccharomyces cerevisiae, which contains roughly 19 proteins, has been analyzed to identify an a priori unknown modified protein using a quadrupole ion trap tandem mass spectrometer. Collection of the experimental data was facilitated by collision-induced dissociation and ion/ion proton-transfer reactions in multistage mass spectrometry procedures. Ion/ion reactions were used to manipulate charge states of both parent ions and product ions for the purpose of concentrating charge into the parent ion of interest and to reduce the product ion charge states for determination of product ion mass and abundance. The identification of the protein was achieved by matching the uninterpreted product ion spectrum against protein sequence databases with varying degrees of annotation, coupled with a scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential sites. The protein was identified to be an acetylated yeast heat shock protein, HS12_Yeast (11.6 kDa), with the initiating methionine residue removed. This constitutes the first example of the identification of an a priori unknown protein that is not present in an annotated protein database using a "top-down" approach with a quadrupole ion trap. This example illustrates the utility of relatively low cost instrumentation with modest mass analysis characteristics for the identification of modified proteins without recourse to enzymatic digestion. It also illustrates how experimental data can be used interactively with protein databases when the modified protein of interest is not initially present in the database.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Amunugama</LastName><ForeName>Ravi</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>Newton</LastName><ForeName>Kelly A</ForeName><Initials>KA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D030562">Databases, Protein</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012441">Saccharomyces cerevisiae</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D029701">Saccharomyces cerevisiae Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>1</Month><Day>31</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>10</Month><Day>1</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>1</Month><Day>31</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14750868</ArticleId><ArticleId IdType="doi">10.1021/ac034900k</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14710826</PMID><DateCreated><Year>2004</Year><Month>01</Month><Day>08</Day></DateCreated><DateCompleted><Year>2004</Year><Month>10</Month><Day>05</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>75</Volume><Issue>20</Issue><PubDate><Year>2003</Year><Month>Oct</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>The effect of small cations on the positive electrospray responses of proteins at low pH.</ArticleTitle><Pagination><MedlinePgn>5468-74</MedlinePgn></Pagination><Abstract><AbstractText>Solutions consisting of protein and small molecule mixtures have been subjected to electrospray ionization to study the influence of small molecule/cation components at high concentrations on the electrospray responses of proteins. Emphasis was placed on solutions consisting of equal parts methanol and water and containing 1 vol % acetic acid. The results, therefore, are relevant to low pH solutions with significant organic content, a commonly used set of conditions in electrospray ionization mass spectrometry that tends to denature proteins. A variety of small cations/molecules were selected to sample a range of chemical characteristics. For example, sodium and cesium cations were studied to represent metal ions, tetrabutylammonium and tetramethylammonium cations were studied to represent quaternary ammonium compounds with different surface activities, and octadecylamine and glycine were studied to represent species that compete for protons but have different surface activities. A methodology for measuring relative ion suppression efficiencies was developed and applied for protein ions derived from bovine cytochrome c. The form of the small cation (i.e., metal ion, quaternary ammonium ion, or protonated molecule) did not appear to be a factor in determining the efficiency with which protein ion signals were suppressed. The extent to which ions are expected to concentrate on the surface, however, was the major factor in determining the ion suppression efficiency. Itwas found that the ion suppression efficiency of the most surface active species in this study was comparable to that of a protein on another protein after normalization by charge. These results are particularly relevant to the development of mixture analysis strategies based on ionization and tandem mass spectrometry applied to mixtures of whole proteins.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Peng</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000588">Amines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001965">Bromides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007454">Iodides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000644">Quaternary Ammonium Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017670">Sodium Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>06M25EDM3F</RegistryNumber><NameOfSubstance UI="C078556">cesium bromide</NameOfSubstance></Chemical><Chemical><RegistryNumber>1KSV9V4Y4I</RegistryNumber><NameOfSubstance UI="D002586">Cesium</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-43-6</RegistryNumber><NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance></Chemical><Chemical><RegistryNumber>CBU2X6BBJR</RegistryNumber><NameOfSubstance UI="C009405">tetrabutylammonium</NameOfSubstance></Chemical><Chemical><RegistryNumber>FFV58UNY7O</RegistryNumber><NameOfSubstance UI="C009317">stearylamine</NameOfSubstance></Chemical><Chemical><RegistryNumber>LC1V549NOM</RegistryNumber><NameOfSubstance UI="C027938">sodium bromide</NameOfSubstance></Chemical><Chemical><RegistryNumber>U1P3GVC56L</RegistryNumber><NameOfSubstance UI="C040050">cesium iodide</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000588">Amines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001965">Bromides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002586">Cesium</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045304">Cytochromes c</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007454">Iodides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000644">Quaternary Ammonium Compounds</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017670">Sodium Compounds</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2004</Year><Month>1</Month><Day>9</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>10</Month><Day>6</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2004</Year><Month>1</Month><Day>9</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14710826</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14640721</PMID><DateCreated><Year>2003</Year><Month>12</Month><Day>03</Day></DateCreated><DateCompleted><Year>2004</Year><Month>10</Month><Day>19</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>75</Volume><Issue>23</Issue><PubDate><Year>2003</Year><Month>Dec</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Phosphorylation site identification via ion trap tandem mass spectrometry of whole protein and peptide ions: bovine alpha-crystallin A chain.</ArticleTitle><Pagination><MedlinePgn>6509-16</MedlinePgn></Pagination><Abstract><AbstractText>Tandem mass spectrometry was applied both to ions of a tryptic fragment and intact protein of bovine alpha-crystallin A chain to localize the single site of phosphorylation. The [M + 19H](19+) to [M + 11H](11+) charge states of both phosphorylated and unphosphorylated bovine alpha-crystallin A chain whole protein ions were subjected to collisional activation in a quadrupole ion trap. Ion parking was used to increase the number of parent ions over that yielded by electrospray. Ion-ion proton-transfer reactions were used to reduce the product ion charge states largely to +1 to simplify spectral interpretation. In agreement with previous studies on whole protein ion fragmentation, both protein forms showed backbone cleavages C-terminal to aspartic acid residues at lower charge states. The phosphorylated protein showed competitive fragmentation between backbone cleavage and the neutral loss of phosphoric acid. Analysis of which backbone cleavage products did or did not contain the phosphate was used to localize the site of phosphorylation to one of two possible serine residues. A tryptic digest of the bovine alpha-crystallin A chain yielded a phosphopeptide containing one missed cleavage site. The peptide provided information complementary to that obtained from the intact protein and localized the modified serine to residue 122. Fragmentation of the triply charged phosphopeptide yielded five possible serine phosphorylation sites. Fragmentation of the doubly charged phosphopeptide, formed by ion/ion proton-transfer reactions, positively identified the phosphorylation site as serine-122.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pitteri</LastName><ForeName>Sharon J</ForeName><Initials>SJ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D038202">alpha-Crystallin A Chain</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010766">Phosphorylation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D038202">alpha-Crystallin A Chain</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>12</Month><Day>4</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>10</Month><Day>20</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>12</Month><Day>4</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14640721</ArticleId><ArticleId IdType="doi">10.1021/ac034410s</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14531672</PMID><DateCreated><Year>2003</Year><Month>10</Month><Day>08</Day></DateCreated><DateCompleted><Year>2003</Year><Month>12</Month><Day>15</Day></DateCompleted><DateRevised><Year>2008</Year><Month>01</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>125</Volume><Issue>41</Issue><PubDate><Year>2003</Year><Month>Oct</Month><Day>15</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase peptide/protein cationizing agent switching via ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>12404-5</MedlinePgn></Pagination><Abstract><AbstractText>Polypeptide ions comprising different cationizing agents show distinct fragmentation behavior in the gas phase. Thus, it is desirable to be able to form ions with different cationizing agents such as protons and metal ions. Usually, metal-cationized peptide/protein ions are introduced to the mass spectrometer by electrospraying solutions containing a mixture of the peptide/protein of interest and a metal salt. A new technique for generating metal-containing polypeptide ions that involves gas-phase ion/ion reactions is described. In this strategy, solutions of metal-containing ions and solutions of proteins are each electrosprayed into separate ion sources. The approach allows for independent maximization of ion signal and selection of ions prior to gas-phase reactions. Selected ions are stored in a quadrupole ion trap where reactions of ions of opposite polarity form metal-cationized peptides and proteins in the gas phase by cation switching. This approach affords a high degree of flexibility in forming metal-containing peptide and protein ions via the ability to mass-select reactant ions. The ability to form a variety of peptide/protein ions with various cationizing reagents in the gas phase is attractive both for the study of intrinsic interactions of metal ions with polypeptides and for maximizing the structural information available from tandem mass spectrometry of peptides and proteins.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Newton</LastName><ForeName>Kelly A</ForeName><Initials>KA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000085">Acetates</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008670">Metals</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>39379-15-2</RegistryNumber><NameOfSubstance UI="D009496">Neurotensin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000085">Acetates</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008670">Metals</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009496">Neurotensin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>10</Month><Day>9</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>12</Month><Day>16</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>10</Month><Day>9</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14531672</ArticleId><ArticleId IdType="doi">10.1021/ja036924e</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14530090</PMID><DateCreated><Year>2003</Year><Month>10</Month><Day>07</Day></DateCreated><DateCompleted><Year>2004</Year><Month>02</Month><Day>10</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>14</Volume><Issue>10</Issue><PubDate><Year>2003</Year><Month>Oct</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>The use of static pressures of heavy gases within a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1099-109</MedlinePgn></Pagination><Abstract><AbstractText>The performance of quadrupole ion traps using argon or air as the buffer gas was evaluated and compared to the standard helium only operation. In all cases a pure buffer gas, not mixtures of gases, was investigated. Experiments were performed on a Bruker Esquire ion trap, a Finnigan LCQ, and a Finnigan ITMS for comparison. The heavier gases were found to have some advantages, particularly in the areas of sensitivity and collision-induced dissociation efficiency; however, there is a significant resolution loss due to dissociation and/or scattering of ions. Additionally, the heavier gases were found to affect ion activation and deactivation during MS/MS, influencing the product ion intensities observed. Finally, the specific quadrupole ion trap design and the ion ejection parameters were found to be crucial in the quality of the spectra obtained in the presence of heavy gases. Operation with static pressures of heavy gases can be beneficial under certain design and operating conditions of the quadrupole ion trap.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Danell</LastName><ForeName>Ryan M</ForeName><Initials>RM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Danell</LastName><ForeName>Allison S</ForeName><Initials>AS</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>Richard W</ForeName><Initials>RW</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002021">Buffers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>206GF3GB41</RegistryNumber><NameOfSubstance UI="D006371">Helium</NameOfSubstance></Chemical><Chemical><RegistryNumber>58822-25-6</RegistryNumber><NameOfSubstance UI="D004743">Enkephalin, Leucine</NameOfSubstance></Chemical><Chemical><RegistryNumber>67XQY1V3KH</RegistryNumber><NameOfSubstance UI="D001128">Argon</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001128">Argon</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002021">Buffers</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004743">Enkephalin, Leucine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006371">Helium</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011312">Pressure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>10</Month><Day>8</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>2</Month><Day>11</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>10</Month><Day>8</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14530090</ArticleId><ArticleId IdType="pii">S1044030503004045</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(03)00404-5</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">14530088</PMID><DateCreated><Year>2003</Year><Month>10</Month><Day>07</Day></DateCreated><DateCompleted><Year>2004</Year><Month>02</Month><Day>10</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>14</Volume><Issue>10</Issue><PubDate><Year>2003</Year><Month>Oct</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads.</ArticleTitle><Pagination><MedlinePgn>1076-85</MedlinePgn></Pagination><Abstract><AbstractText>A method has been developed for rapid and sensitive identification of epitope-containing peptides, based on direct MALDI-MS/MS analysis of epitope-containing peptides affinity bound to affinity beads. This technique provides sequence information of the epitope that allows unambiguous identification of the epitope either by database searching or de novo sequencing. With MALDI-MS, affinity beads with bound peptides can be placed directly on the MALDI target and analyzed. Coupling a MALDI source to an orthogonal injection quadrupole time-of-flight (QqTOF) mass spectrometer allows direct sequencing of the bound peptides. In contrast to ESI-MS/MS, elution of the affinity-bound peptides followed by additional concentration and purification steps is not required, thus reducing the potential for sample loss. Direct mass spectrometric sequencing of affinity-bound peptides eliminates the need for chemical or enzymatic sequencing. Other advantages of this direct MALDI-MS/MS analysis of epitope-containing peptides bound to the affinity beads include its sensitivity (femtomole levels) and speed. In addition, direct analysis of peptides on affinity beads does not adversely affect the high mass accuracy of a QqTOF, and database searching can be performed on the MS/MS spectra obtained. In proof-of-principle experiments, this method has been demonstrated on beads containing immobilized antibodies against phosphotyrosine, the c-myc epitope tag, as well as immobilized avidin. Furthermore, de novo sequencing of epitope-containing peptides is demonstrated. The first application of this method was with anti-FLAG-tag affinity beads, where direct MALDI MS/MS was used to determine an unexpected enzymatic cleavage site on a growth factor protein.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Raska</LastName><ForeName>Christina S</ForeName><Initials>CS</Initials><AffiliationInfo><Affiliation>Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Carol E</ForeName><Initials>CE</Initials></Author><Author ValidYN="Y"><LastName>Sunnarborg</LastName><ForeName>Susan W</ForeName><Initials>SW</Initials></Author><Author ValidYN="Y"><LastName>Pope</LastName><ForeName>R Marshall</ForeName><Initials>RM</Initials></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>David C</ForeName><Initials>DC</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Borchers</LastName><ForeName>Christoph H</ForeName><Initials>CH</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>CA 85410</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000906">Antibodies</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D045163">Antibodies, Phospho-Specific</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000939">Epitopes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016271">Proto-Oncogene Proteins c-myc</NameOfSubstance></Chemical><Chemical><RegistryNumber>1405-69-2</RegistryNumber><NameOfSubstance UI="D001360">Avidin</NameOfSubstance></Chemical><Chemical><RegistryNumber>21820-51-9</RegistryNumber><NameOfSubstance UI="D019000">Phosphotyrosine</NameOfSubstance></Chemical><Chemical><RegistryNumber>6SO6U10H04</RegistryNumber><NameOfSubstance UI="D001710">Biotin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000906">Antibodies</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045163">Antibodies, Phospho-Specific</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000918">Antibody Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001360">Avidin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001710">Biotin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000939">Epitopes</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008863">Microspheres</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019000">Phosphotyrosine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011485">Protein Binding</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D016271">Proto-Oncogene Proteins c-myc</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000276">immunology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>10</Month><Day>8</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2004</Year><Month>2</Month><Day>11</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>10</Month><Day>8</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">14530088</ArticleId><ArticleId IdType="pii">S1044030503004057</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(03)00405-7</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12822966</PMID><DateCreated><Year>2003</Year><Month>06</Month><Day>25</Day></DateCreated><DateCompleted><Year>2003</Year><Month>09</Month><Day>22</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>125</Volume><Issue>26</Issue><PubDate><Year>2003</Year><Month>Jul</Month><Day>2</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Two ion/ion charge inversion steps to form a doubly protonated peptide from a singly protonated peptide in the gas phase.</ArticleTitle><Pagination><MedlinePgn>7756-7</MedlinePgn></Pagination><Abstract><AbstractText>An approach is described to increase the degree of protonation of a polypeptide ion in the gas phase. Sequential charge inversion reactions involving the reactions of oppositely charged ions are used to yield a net increase in ion charge. The approach is illustrated here with the conversion of singly protonated bradykinin to doubly protonated bradykinin. The first step involves conversion of the singly protonated peptide to the singly deprotonated peptide via reactions with multiply charged anions derived from carboxylate-terminated dendrimers. Some of the singly deprotonated peptide was then converted to doubly protonated peptide via reactions with multiply charged cations derived from amino-terminated dendrimers. The overall approach is illustrative of a general strategy for increasing the absolute charge states of large ions in the gas phase.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050091">Dendrimers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C104700">PAMAM Starburst</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011073">Polyamines</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical><Chemical><RegistryNumber>V10TVZ52E4</RegistryNumber><NameOfSubstance UI="D011700">Putrescine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D050091">Dendrimers</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011073">Polyamines</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011700">Putrescine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>6</Month><Day>26</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>9</Month><Day>23</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>6</Month><Day>26</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12822966</ArticleId><ArticleId IdType="doi">10.1021/ja0354521</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12797797</PMID><DateCreated><Year>2003</Year><Month>06</Month><Day>11</Day></DateCreated><DateCompleted><Year>2003</Year><Month>07</Month><Day>28</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>125</Volume><Issue>24</Issue><PubDate><Year>2003</Year><Month>Jun</Month><Day>18</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Formation and characterization of protein-protein complexes in vacuo.</ArticleTitle><Pagination><MedlinePgn>7238-49</MedlinePgn></Pagination><Abstract><AbstractText>Gas-phase reactions between multiply charged positive and negative protein ions are carried out in a quadrupole ion trap mass spectrometer. The ions react with one another by proton transfer and complex formation. Proton transfer products and complexes are formed via competitive processes in single ion/ion encounters. The relative contributions of proton transfer versus complex formation are dependent upon the charges of the ions as well as other characteristics of the ions yet to be clearly delineated. No fragmentation of covalent bonds of the protein reactants is observed. A model that considers the trajectories associated with ion/ion interactions appears to hold the most promise in accounting for the results. The formation of bound ion/ion orbits appears to play an important role in determining overall reaction kinetics as well as the distribution of ion/ion reaction products. Tandem mass spectrometry is used to compare protein complexes formed in the gas-phase with those formed initially in solution and subsequently liberated by electrospray; it is shown that both forms of complex dissociate similarly, but the complexes formed in the gas phase can retain a "memory" of their method of formation.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J Mitchell</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019281">Dimerization</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006736">Horses</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014618">Vacuum</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014835">Volatilization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>6</Month><Day>12</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>7</Month><Day>29</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>6</Month><Day>12</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12797797</ArticleId><ArticleId IdType="doi">10.1021/ja035051l</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">12705594</PMID><DateCreated><Year>2003</Year><Month>04</Month><Day>22</Day></DateCreated><DateCompleted><Year>2003</Year><Month>08</Month><Day>07</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>75</Volume><Issue>7</Issue><PubDate><Year>2003</Year><Month>Apr</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electrospray-atmospheric sampling glow discharge ionization source for the direct analysis of liquid samples.</ArticleTitle><Pagination><MedlinePgn>1620-7</MedlinePgn></Pagination><Abstract><AbstractText>Coupling electrospray with atmospheric sampling glow discharge ionization for the direct analysis of liquid-phase samples is demonstrated. Electrospray is utilized for nebulizing and transporting intact sample molecules into the glow discharge where ionization occurs through various pathways, including electron ionization and ion-molecule reactions with reagent ions. Reagent ions are formed through ionization of air molecules in an area of reduced pressure. The effects of discharge current, electrospray voltage, and solution flow rate on the absolute and relative ion intensities observed in the mass spectra are discussed. This technique is applicable to compounds containing various functional groups and encompassing a range of volatility. Analysis of organic compounds with varying volatility and polarity is discussed to illustrate the utility of this ionization technique.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Dalton</LastName><ForeName>Christine N</ForeName><Initials>CN</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>4</Month><Day>23</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>4</Month><Day>23</Day><Hour>5</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>4</Month><Day>23</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12705594</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12659214</PMID><DateCreated><Year>2003</Year><Month>03</Month><Day>27</Day></DateCreated><DateCompleted><Year>2003</Year><Month>10</Month><Day>10</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>75</Volume><Issue>6</Issue><PubDate><Year>2003</Year><Month>Mar</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Electrospray ionization of protein mixtures at low pH.</ArticleTitle><Pagination><MedlinePgn>1491-9</MedlinePgn></Pagination><Abstract><AbstractText>Solutions composed of single proteins and mixtures of proteins are subjected to electrospray ionization to study the influence of protein components on the responses of one another. Protein matrix effects in electrospray ionization are particularly relevant to the development of top-down protein identification methodologies involving protein mixtures, whereby whole protein ions are subjected to tandem mass spectrometry. Emphasis is placed largely on solutions composed of equal parts methanol and water and 1% acetic acid. The results, therefore, are relevant to low-pH solutions with significant organic content, a commonly used set of conditions in electrospray ionization mass spectrometry that tends to denature proteins. Under these conditions, very similar response curves are measured for a variety of proteins after charge normalization. That is, when the data are plotted in terms of the concentration of charge sites, rather than in terms of the concentration of protein molecules, the slopes of the response curves as well as the point at which response becomes less than linear with concentration are similar. Charge normalization is made on the basis of the weighted average charge of a protein, as reflected in the electrospray ionization mass spectrum. When proteins can be regarded as a collection of equivalent charge sites, the signal response from one protein can be used to predict the responses for other proteins. Furthermore, it is also possible to predict the dependence of the signal response for a particular protein in a mixture on the concentration of other proteins in the mixture. Examining signal response on a weighted average charge basis appears to be an effective means for identifying situations in which the protein does not behave as a collection of equivalent charge sites.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>Peng</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008962">Models, Theoretical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>3</Month><Day>28</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>10</Month><Day>11</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>3</Month><Day>28</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12659214</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12645623</PMID><DateCreated><Year>2003</Year><Month>03</Month><Day>20</Day></DateCreated><DateCompleted><Year>2003</Year><Month>04</Month><Day>16</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1535-3893</ISSN><JournalIssue CitedMedium="Print"><Volume>1</Volume><Issue>6</Issue><PubDate><MedlineDate>2002 Nov-Dec</MedlineDate></PubDate></JournalIssue><Title>Journal of proteome research</Title><ISOAbbreviation>J. Proteome Res.</ISOAbbreviation></Journal><ArticleTitle>Dissociations of disulfide-linked gaseous polypeptide/protein anions: ion chemistry with implications for protein identification and characterization.</ArticleTitle><Pagination><MedlinePgn>549-57</MedlinePgn></Pagination><Abstract><AbstractText>Ion trap collisional activation of whole protein anions that contain disulfide bonds results in the cleavage of one of the bonds that comprises the disulfide linkage. The disulfide linkage can break at any of three possible locations, giving rise to several products with different partitioning of sulfur atoms. A facile second-generation dissociation occurs at the polypeptide backbone from products formed from cleavage of the nearest C-S bond of a disulfide linkage. This cleavage occurs exclusively at the N-terminal side of the cysteine residue, from which the C-S bond was cleaved, thereby yielding c and z-S type product ions. This secondary reaction is apparently a relatively low-energy reaction with relatively high entropy requirements because it is not observed to be a major process under beam-type collisional activation conditions, but is a major process under ion trap collisional activation conditions. The specificity of this cleavage, as well as the ability to distinguish it from other cleavages by the sulfur atom distribution, make it useful for the identification of unknown proteins via database searching. Furthermore, the pattern of disulfide cleavages can be useful in providing information about the location of post-translational modifications. Examples using bovine pancreatic trypsin inhibitor and ribonuclease A and B are given to illustrate these points.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>1393 Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Proteome Res</MedlineTA><NlmUniqueID>101128775</NlmUniqueID><ISSNLinking>1535-3893</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>48TCX9A1VT</RegistryNumber><NameOfSubstance UI="D003553">Cystine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003553">Cystine</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>3</Month><Day>21</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>4</Month><Day>17</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>3</Month><Day>21</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12645623</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12644985</PMID><DateCreated><Year>2003</Year><Month>03</Month><Day>19</Day></DateCreated><DateCompleted><Year>2003</Year><Month>05</Month><Day>16</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>38</Volume><Issue>3</Issue><PubDate><Year>2003</Year><Month>Mar</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Charge state dependent collision-induced dissociation of native and reduced porcine elastase.</ArticleTitle><Pagination><MedlinePgn>245-56</MedlinePgn></Pagination><Abstract><AbstractText>The [M + 20H](20+)-[M + 12H](12+) charge states of native and reduced porcine elastase, a 25.9 kDa serine protease, were subjected to collisional activation in a quadrupole ion trap. For most charge states, ion parking was used to increase the number of parent ions over that yielded directly by electrospray. Ion-ion proton transfer reactions were used to reduce product ion charge states largely to +1 to simplify spectral interpretation. Both forms of the protein show charge state dependent fragmentation behavior. The native protein, which contains four disulfide linkages, shows almost no evidence for fragmentation within the regions of the protein linked by disulfide bonds. However, at the lowest charge states studied, evidence for cleavage of a least one of the disulfide bonds was evident in the appearance of a c-type ion. The highest charge states of native elastase showed several prominent cleavages C-terminal to valine residues. As the charge state decreased, however, preferential cleavages at acidic amino acid residues became important. The reduced form of the protein did not show particularly prominent cleavages at valine residues. However, many of the same preferential cleavages at acidic amino acid residues noted for the native protein were also observed in the same charge states of the reduced protein. The reduced protein also showed additional cleavages from regions of the protein that are ordinarily protected by disulfide linkages in the native form.</AbstractText><CopyrightInformation>Copyright 2003 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.4.21.36</RegistryNumber><NameOfSubstance UI="D010196">Pancreatic Elastase</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002851">Chromatography, High Pressure Liquid</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010196">Pancreatic Elastase</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D013552">Swine</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>3</Month><Day>20</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>5</Month><Day>17</Day><Hour>5</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>3</Month><Day>20</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12644985</ArticleId><ArticleId IdType="doi">10.1002/jms.458</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12563305</PMID><DateCreated><Year>2003</Year><Month>02</Month><Day>03</Day></DateCreated><DateCompleted><Year>2003</Year><Month>02</Month><Day>20</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1474-1776</ISSN><JournalIssue CitedMedium="Print"><Volume>2</Volume><Issue>2</Issue><PubDate><Year>2003</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Nature reviews. Drug discovery</Title><ISOAbbreviation>Nat Rev Drug Discov</ISOAbbreviation></Journal><ArticleTitle>The basics of mass spectrometry in the twenty-first century.</ArticleTitle><Pagination><MedlinePgn>140-50</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA. glish@unc.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>Richard W</ForeName><Initials>RW</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Nat Rev Drug Discov</MedlineTA><NlmUniqueID>101124171</NlmUniqueID><ISSNLinking>1474-1776</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000592">standards</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D036103">Nanotechnology</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010600">Pharmacology</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000639">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList><NumberOfReferences>64</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>2</Month><Day>4</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>2</Month><Day>21</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>2</Month><Day>4</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12563305</ArticleId><ArticleId IdType="doi">10.1038/nrd1011</ArticleId><ArticleId IdType="pii">nrd1011</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12510744</PMID><DateCreated><Year>2003</Year><Month>01</Month><Day>03</Day></DateCreated><DateCompleted><Year>2003</Year><Month>03</Month><Day>11</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>74</Volume><Issue>24</Issue><PubDate><Year>2002</Year><Month>Dec</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>A quadrupole ion trap mass spectrometer with three independent ion sources for the study of gas-phase ion/ion reactions.</ArticleTitle><Pagination><MedlinePgn>6237-43</MedlinePgn></Pagination><Abstract><AbstractText>An instrument for the study of gas-phase ion/ion reactions in which three independent sources of ions, namely, two electrospray ionization sources and one atmospheric sampling glow discharge ionization source, are interfaced to a quadrupole ion trap mass analyzer is described. This instrument expands the scope of gas-phase ion/ion reaction studies by allowing for manipulation of the charge states of multiply charged reactant and product ions. Examples are provided involving the formation of protein-protein complexes in the gas phase. Complexes with charge states that cannot be formed from reactant ion charge states present in the normal electrospray charge state distributions can be formed in the new apparatus. Strategies that rely on both reactant ion charge state manipulation and product ion charge state manipulation are demonstrated. In addition, simplification of product ion spectra generated from dissociation of complexes formed via ion/ion reactions can be effected by using the discharge source to reduce the charge state of the product ions to primarily 1+.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Badman</LastName><ForeName>Ethan R</ForeName><Initials>ER</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical><Chemical><RegistryNumber>49DFR088MY</RegistryNumber><NameOfSubstance UI="D010984">Platinum</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010984">Platinum</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2003</Year><Month>1</Month><Day>4</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>3</Month><Day>12</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2003</Year><Month>1</Month><Day>4</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12510744</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12349967</PMID><DateCreated><Year>2002</Year><Month>09</Month><Day>27</Day></DateCreated><DateCompleted><Year>2002</Year><Month>10</Month><Day>24</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>74</Volume><Issue>18</Issue><PubDate><Year>2002</Year><Month>Sep</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Dissociation of multiple protein ion charge states following a single gas-phase purification and concentration procedure.</ArticleTitle><Pagination><MedlinePgn>4653-61</MedlinePgn></Pagination><Abstract><AbstractText>The formation of a range of precursor ion charge states from a single concentrated and purified charge state, followed by activation of each charge state, is introduced as a means to obtain more protein structural information than is available from dissociation of a single charge state alone. This approach is illustrated using off-resonance collisional activation of the [M + 8H]8+ to [M + 6H]6+ precursor ions of the bacteriophage MS2 viral coat protein following concentration and purification of the [M + 8H]8+ charge state. This range of charge states was selected on the basis of an ion trap collisional activation study of the effects of precursor ion charge state on the dissociation of the [M + 12H]12+ to [M + 5H]5+ ions. Gas-phase ion/ion proton-transfer reactions and the ion parking technique were applied to purify and concentrate selected precursor ion charge states as well as to simplify the product ion spectra. The high-charge-state ions fragment preferentially at the N-terminal side of proline residues while the product ion spectra of the lowest charge states investigated are dominated by C-terminal aspartic acid cleavages. Maximum structural information is obtained by fragmentation of the intermediate-charge states.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>He</LastName><ForeName>Min</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials></Author><Author ValidYN="Y"><LastName>Shang</LastName><ForeName>Hao</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Gil U</ForeName><Initials>GU</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002213">Capsid</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="N" UI="Q000302">isolation &amp; purification</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017909">Levivirus</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>9</Month><Day>28</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>10</Month><Day>31</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>9</Month><Day>28</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12349967</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">12322951</PMID><DateCreated><Year>2002</Year><Month>09</Month><Day>26</Day></DateCreated><DateCompleted><Year>2002</Year><Month>10</Month><Day>11</Day></DateCompleted><DateRevised><Year>2003</Year><Month>11</Month><Day>03</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>13</Volume><Issue>9</Issue><PubDate><Year>2002</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Pseudo-MS3 in a MALDI orthogonal quadrupole-time of flight mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>1034-41</MedlinePgn></Pagination><Abstract><AbstractText>Both the matrix selected and the laser fluence play important roles in MALDI-quadrupole/time of flight (QqTOF) fragmentation processes. "Hot" matrices, such as alpha-cyano4-hydroxycinnamic acid (HCCA), can increase fragmentation in MS spectra. Higher laser fluence also increases fragmentation. Typical peptide fragment ions observed in the QqTOF are a, b, and y ion series, which resemble low-energy CID product ions. This fragmentation may occur in the high-pressure region before the first mass-analyzing quadrupole. Fragment ions can be selected by the first quadrupole (Q1), and further sequenced by conventional MS/MS. This allows pseudo-MS3 experiments to be performed. For peptides of higher molecular weight, pseudo-MS3 can extend the mass range beyond what is usually accessible for sequencing, by allowing one to sequence a fragment ion of lower molecular weight instead of the full-length peptide. Peptides that predominantly show a single product ion after MS/MS yield improved sequence information when this technique is applied. This method was applied to the analysis of an in vitro phosphorylated peptide, where the intact enzymatically-generated peptide showed poor dissociation via MS/MS. Sequencing a fragment ion from the phosphopeptide enabled the phosphorylation site to be unambiguously determined.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Raska</LastName><ForeName>Christina S</ForeName><Initials>CS</Initials><AffiliationInfo><Affiliation>University of North Carolina at Chapel Hill, 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Carol E</ForeName><Initials>CE</Initials></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Cai</ForeName><Initials>C</Initials></Author><Author ValidYN="Y"><LastName>Han</LastName><ForeName>Jun</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Pope</LastName><ForeName>Marshall</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Borchers</LastName><ForeName>Christoph H</ForeName><Initials>CH</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>9</Month><Day>27</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>9</Month><Day>27</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>9</Month><Day>27</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12322951</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(02)00433-6</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12188366</PMID><DateCreated><Year>2002</Year><Month>08</Month><Day>21</Day></DateCreated><DateCompleted><Year>2003</Year><Month>01</Month><Day>08</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0013-936X</ISSN><JournalIssue CitedMedium="Print"><Volume>36</Volume><Issue>15</Issue><PubDate><Year>2002</Year><Month>Aug</Month><Day>1</Day></PubDate></JournalIssue><Title>Environmental science &amp; technology</Title><ISOAbbreviation>Environ. Sci. Technol.</ISOAbbreviation></Journal><ArticleTitle>Hydrogen abstraction and decomposition of bromopicrin and other trihalogenated disinfection byproducts by GC/MS.</ArticleTitle><Pagination><MedlinePgn>3362-71</MedlinePgn></Pagination><Abstract><AbstractText>Tribromonitromethane (bromopicrin), dibromochloronitromethane, bromodichloronitromethane, and trichloronitromethane (chloropicrin) have been identified as drinking water disinfection byproducts (DBPs). They are thermally unstable and decompose under commonly used injection port temperatures (200-250 degrees C) during gas chromatography (GC) or GC/mass spectrometry (GC/MS) analysis. The major decomposition products are haloforms (such as bromoform), which result from the abstraction of a hydrogen atom from the solvent bythermally generated trihalomethyl radicals. A number of other products formed by radical reactions with the solvent and other radicals were also detected. The trihalonitromethanes also decompose in the hot GC/MS transfer line, and the mass spectra obtained are mixed spectra of the undecomposed parent compound and decomposition products. This can complicate the identification of these compounds by GC/MS. Trihalomethyl compounds that do not have a nitro group, such as tribromoacetonitrile, carbon tetrabromide, methyl tribromoacetate, and tribromoacetaldehyde, do not decompose or only slightly decompose in the GC injection port and GC/MS transfer line. The brominated trihalomethyl compounds studied also showed H/Br exchange by some of their fragment ions. This H/Br exchange also makes the identification of these compounds in drinking water more difficult. The extent of H/Br exchange was found to depend on the mass spectrometer ion source temperature, and it is proposed that the internal surface of the ion source is involved in this process.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Paul H</ForeName><Initials>PH</Initials><AffiliationInfo><Affiliation>US Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Richardson</LastName><ForeName>Susan D</ForeName><Initials>SD</Initials></Author><Author ValidYN="Y"><LastName>Krasner</LastName><ForeName>Stuart W</ForeName><Initials>SW</Initials></Author><Author ValidYN="Y"><LastName>Majetich</LastName><ForeName>George</ForeName><Initials>G</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Environ Sci Technol</MedlineTA><NlmUniqueID>0213155</NlmUniqueID><ISSNLinking>0013-936X</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017605">Bromine Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017606">Chlorine Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004202">Disinfectants</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006219">Halogens</NameOfSubstance></Chemical><Chemical><RegistryNumber>7YNJ3PO35Z</RegistryNumber><NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance></Chemical><Chemical><RegistryNumber>OP0UW79H66</RegistryNumber><NameOfSubstance UI="D008697">Methane</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017605">Bromine Compounds</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017606">Chlorine Compounds</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004202">Disinfectants</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004784">Environmental Monitoring</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008401">Gas Chromatography-Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006219">Halogens</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006859">Hydrogen</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008697">Methane</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D014881">Water Supply</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>8</Month><Day>22</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2003</Year><Month>1</Month><Day>9</Day><Hour>4</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>8</Month><Day>22</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12188366</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12139050</PMID><DateCreated><Year>2002</Year><Month>07</Month><Day>25</Day></DateCreated><DateCompleted><Year>2002</Year><Month>08</Month><Day>27</Day></DateCompleted><DateRevised><Year>2009</Year><Month>11</Month><Day>19</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>74</Volume><Issue>14</Issue><PubDate><Year>2002</Year><Month>Jul</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beads.</ArticleTitle><Pagination><MedlinePgn>3429-33</MedlinePgn></Pagination><Abstract><AbstractText>Immobilized metal ion affinity chromatography (IMAC) is a useful method to selectively isolate and enrich phosphopeptides from a peptide mixture. Mass spectrometry is a very suitable method for exact molecular weight determination of IMAC-isolated phosphopeptides, due to its inherent high sensitivity. Even exact molecular weight determination, however, is not sufficient for identification of the phosphorylation site if more than one potential phosphorylation site is present on a peptide. The previous method of choice for sequencing the affinity-bound peptides was electrospray tandem mass spectrometry (ESI-MS/MS). This method required elution and salt removal prior to MS analysis of the peptides, which can lead to sample loss. Using a matrix-assisted laser desorption/ionization (MALDI) source coupled to an orthogonal injection quadrupole time-of-flight (QqTOF) mass spectrometer with true MS/MS capabilities, direct sequencing of IMAC-enriched peptides has been performed on IMAC beads applied directly to the MALDI target. The utility of this new method has been demonstrated on a protein with unknown phosphorylation sites, where direct MALDI-MS/MS of the tryptic peptides bound to the IMAC beads resulted in the identification of two novel phosphopeptides. Using this technique, the phosphorylation site determination is unambiguous, even with a peptide containing four potentially phosphorylated residues. Direct analysis of phosphorylated peptides on IMAC beads does not adversely affect the high-mass accuracy of an orthogonal injection QqTOF mass spectrometer, making it a suitable technique for phosphoproteomics.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Raska</LastName><ForeName>Christina S</ForeName><Initials>CS</Initials><AffiliationInfo><Affiliation>Department of Biochemistry &amp; Biophysics, University of North Carolina at Chapel Hill, 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Parker</LastName><ForeName>Carol E</ForeName><Initials>CE</Initials></Author><Author ValidYN="Y"><LastName>Dominski</LastName><ForeName>Zbigniew</ForeName><Initials>Z</Initials></Author><Author ValidYN="Y"><LastName>Marzluff</LastName><ForeName>William F</ForeName><Initials>WF</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Pope</LastName><ForeName>R Marshall</ForeName><Initials>RM</Initials></Author><Author ValidYN="Y"><LastName>Borchers</LastName><ForeName>Christoph H</ForeName><Initials>CH</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D019476">Insect Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008670">Metals</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010748">Phosphopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.7.10.1</RegistryNumber><NameOfSubstance UI="D011972">Receptor, Insulin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002846">Chromatography, Affinity</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004331">Drosophila melanogaster</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019476">Insect Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000302">isolation &amp; purification</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008670">Metals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010748">Phosphopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000302">isolation &amp; purification</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D016601">RNA-Binding Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000302">isolation &amp; purification</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011972">Receptor, Insulin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000302">isolation &amp; purification</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>7</Month><Day>26</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>8</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>7</Month><Day>26</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12139050</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12124999</PMID><DateCreated><Year>2002</Year><Month>07</Month><Day>18</Day></DateCreated><DateCompleted><Year>2002</Year><Month>09</Month><Day>10</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>37</Volume><Issue>7</Issue><PubDate><Year>2002</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>'Top down' protein characterization via tandem mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>663-75</MedlinePgn></Pagination><Abstract><AbstractText>Technological and scientific advances over the past decade have enabled protein identification and characterization strategies to be developed that are based on subjecting intact protein ions and large protein fragments directly to tandem mass spectrometry. These approaches are referred to collectively as 'top down' to contrast them with 'bottom up' approaches whereby protein identification is based on mass spectrometric analysis of peptides derived from proteolytic digestion, usually with trypsin. A key step in enabling top down approaches has been the ability to assign tandem mass spectrometer product ion identities, which can be done either via high resolving power or through product ion charge state manipulation. The ability to determine product ion charge states has permitted studies of the reactions, including dissociation, ion-molecule reactions, ion-electron reactions and ion-ion reactions of high-mass, multiply charged protein ions. Electrospray ionization combined with high magnetic field strength Fourier transform ion cyclotron resonance has proven to be particularly powerful for detailed protein characterization owing to its high mass resolution and mass accuracy and its ability to effect electron capture-induced dissociation. Other types of tandem mass spectrometers are also beginning to find increasing use in top down protein identification/characterization studies. Charge state manipulation via ion-ion reactions in electrodynamic ion traps, for example, enables top down strategies to be considered using instruments with relatively modest mass resolution capabilities. Precursor ion charge state manipulation techniques have also recently been demonstrated to be capable of concentrating and charge-state purifying proteins in the gas phase. Advances in technologies applied to the structural analysis of whole protein ions and in understanding their reactions, such as those described here, are providing new options for the study of complex protein mixtures.</AbstractText><CopyrightInformation>Copyright 2002 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList><NumberOfReferences>126</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>7</Month><Day>19</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>9</Month><Day>11</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>7</Month><Day>19</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12124999</ArticleId><ArticleId IdType="doi">10.1002/jms.346</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12071744</PMID><DateCreated><Year>2002</Year><Month>06</Month><Day>19</Day></DateCreated><DateCompleted><Year>2002</Year><Month>08</Month><Day>19</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>124</Volume><Issue>25</Issue><PubDate><Year>2002</Year><Month>Jun</Month><Day>26</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Gas-phase concentration, purification, and identification of whole proteins from complex mixtures.</ArticleTitle><Pagination><MedlinePgn>7353-62</MedlinePgn></Pagination><Abstract><AbstractText>Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials><AffiliationInfo><Affiliation>Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shang</LastName><ForeName>Hao</ForeName><Initials>H</Initials></Author><Author ValidYN="Y"><LastName>Hogan</LastName><ForeName>Jason M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>Lee</LastName><ForeName>Gil U</ForeName><Initials>GU</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001426">Bacterial Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000302">isolation &amp; purification</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002851">Chromatography, High Pressure Liquid</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004926">Escherichia coli</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008970">Molecular Weight</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>6</Month><Day>20</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>8</Month><Day>20</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>6</Month><Day>20</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12071744</ArticleId><ArticleId IdType="pii">ja025966k</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12056565</PMID><DateCreated><Year>2002</Year><Month>06</Month><Day>11</Day></DateCreated><DateCompleted><Year>2002</Year><Month>06</Month><Day>26</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>13</Volume><Issue>6</Issue><PubDate><Year>2002</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Collision-induced signal enhancement (CISE): the use of boundary activation to effect non-resonant CISE.</ArticleTitle><Pagination><MedlinePgn>650-8</MedlinePgn></Pagination><Abstract><AbstractText>An alternative to resonant excitation collision-induced signal enhancement (CISE) is presented. This alternative utilizes boundary activation instead of resonant excitation to effect CISE and is called boundary activated collision induced signal enhancement (BA-CISE). There are three ways to effect BA-CISE to enhance the signal for an MS(n+1) experiment. Each technique utilizes the beta(z) = 0 boundary, which ions encounter from high to low mass/charge ratio. BA-CISE is shown to produce an almost 900% increase in the C2 ion of [maltohexaose + Li]+. The use of a heavy collision gas in addition to the helium bath gas generally produced a signal enhancement inferior to the same experiment without the heavy gas.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Asam</LastName><ForeName>Michael R</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>Chemistry Department, University of North Carolina at Chapel Hill, 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>Gary L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance></Chemical><Chemical><RegistryNumber>206GF3GB41</RegistryNumber><NameOfSubstance UI="D006371">Helium</NameOfSubstance></Chemical><Chemical><RegistryNumber>67XQY1V3KH</RegistryNumber><NameOfSubstance UI="D001128">Argon</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001128">Argon</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006371">Helium</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011134">Polysaccharides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>6</Month><Day>12</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>6</Month><Day>27</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>6</Month><Day>12</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12056565</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(02)00380-X</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">12056562</PMID><DateCreated><Year>2002</Year><Month>06</Month><Day>11</Day></DateCreated><DateCompleted><Year>2002</Year><Month>06</Month><Day>26</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>13</Volume><Issue>6</Issue><PubDate><Year>2002</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>"Dueling" ESI: instrumentation to study ion/ion reactions of electrospray-generated cations and anions.</ArticleTitle><Pagination><MedlinePgn>614-22</MedlinePgn></Pagination><Abstract><AbstractText>Novel instrumentation has been developed which allows for the sequential injection and subsequent reaction of oppositely-charged ions generated via electrospray ionization (ESI) in a quadrupole ion trap mass spectrometer. The instrument uses a DC turning quadrupole to sequentially direct the two ion polarities into the ion trap from ESI sources which are situated 90 degrees from the axial (z) dimension of the trap, and 180 degrees from one another. This arrangement significantly expands the range of ionic reactants amenable to study over previously-used instrumentation. For example, ion/ion reactions of multiply-charged positive ions with multiply-charged negative ions can be studied. Also, reactions of multiply-charged ions with singly-charged ions of opposite polarity that could not be generated by previously used ionization methods, or that could not be efficiently injected through the ion trap ring electrode, can be studied with the new instrument. This capability allows, for example, the charge state manipulation of negatively-charged precursor and product ions derived from proteins and oligonucleotides via proton transfer reactions with singly-charged cations generated by ESI.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J Mitchell</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>Paul A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004566">Electrodes</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D025801">Ubiquitin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>6</Month><Day>12</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>6</Month><Day>27</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>6</Month><Day>12</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">12056562</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(01)00364-6</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11925000</PMID><DateCreated><Year>2002</Year><Month>04</Month><Day>01</Day></DateCreated><DateCompleted><Year>2002</Year><Month>04</Month><Day>24</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>74</Volume><Issue>5</Issue><PubDate><Year>2002</Year><Month>Mar</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Oligonucleotide mixture analysis via electrospray and ion/ion reactions in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>976-84</MedlinePgn></Pagination><Abstract><AbstractText>Electrospray ionization combined with ion/ion reactions in a quadrupole ion trap can be used for the direct analysis of oligonucleotide mixtures. Elements to the success of this approach include factors related to ionization, ion/ion reactions, and mass analysis. This paper deals with issues regarding the ion polarity combination, viz., positive oligonucleotides/negative charge-transfer agent versus negative oligonucleotides/positive charge-transfer agent. Anions derived from perfluorocarbons appear to be directly applicable to mixtures of positive ions derived from electrospray of oligonucleotides, in direct analogy with positive protein ions. Conditions for forming positive oligonucleotide ions devoid of adducts were more difficult to establish than for forming relatively clean negative oligonucleotide ions. A new approach for manipulating negative ion charge states in the ion trap is described and is based on use of the electric field of the positive charge-transfer agent for storage of high-mass negative ions formed during the ion/ion reaction period. Oxygen cations are shown to be acceptable for charge-state manipulation of mixed-base oligomers but induce fragmentation in polyadenylate homopolymers. Protonated isobutylene (C4H9+), on the other hand, is shown to induce significantly less fragmentation of polyadenylate homopolymers.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA. mcluckey@purdue.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>Jin</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Bundy</LastName><ForeName>Jonathan L</ForeName><Initials>JL</Initials></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>James L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>Hurst</LastName><ForeName>Gregory B</ForeName><Initials>GB</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R21-HG01887-01</GrantID><Acronym>HG</Acronym><Agency>NHGRI NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005466">Fluorocarbons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005466">Fluorocarbons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>4</Month><Day>2</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>4</Month><Day>25</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>4</Month><Day>2</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11925000</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11849959</PMID><DateCreated><Year>2002</Year><Month>02</Month><Day>18</Day></DateCreated><DateCompleted><Year>2002</Year><Month>04</Month><Day>29</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0958-1669</ISSN><JournalIssue CitedMedium="Print"><Volume>13</Volume><Issue>1</Issue><PubDate><Year>2002</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Current opinion in biotechnology</Title><ISOAbbreviation>Curr. Opin. Biotechnol.</ISOAbbreviation></Journal><ArticleTitle>Ion/ion chemistry as a top-down approach for protein analysis.</ArticleTitle><Pagination><MedlinePgn>57-64</MedlinePgn></Pagination><Abstract><AbstractText>Developing methodology for analyzing complex protein mixtures in a rapid fashion is one of the most challenging problems facing analytical biochemists today. Recent advances in mass spectrometry for the analysis of intact proteins (i.e. the top-down approach) show great promise for rapid protein identification. The ion/ion chemistry approach for the detection and identification of target proteins in complex matrices, determination of fragmentation channels as a function of precursor ion charge state, and post-translational modification characterization are discussed with particular emphasis on tandem mass spectrometry of intact proteins.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>James L</ForeName><Initials>JL</Initials><AffiliationInfo><Affiliation>Research Triangle Institute, 3040 Cornwallis Road, PO Box 12194, Research Triangle Park, NC 27709-2194, USA. stephensonjl@rti.org</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials></Author><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J Mitchell</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>Bundy</LastName><ForeName>Jonathan L</ForeName><Initials>JL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Curr Opin Biotechnol</MedlineTA><NlmUniqueID>9100492</NlmUniqueID><ISSNLinking>0958-1669</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>53</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>2</Month><Day>19</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>5</Month><Day>1</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>2</Month><Day>19</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11849959</ArticleId><ArticleId IdType="pii">S0958166902002859</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11838679</PMID><DateCreated><Year>2002</Year><Month>02</Month><Day>12</Day></DateCreated><DateCompleted><Year>2002</Year><Month>03</Month><Day>07</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>74</Volume><Issue>3</Issue><PubDate><Year>2002</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Tandem mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions.</ArticleTitle><Pagination><MedlinePgn>577-83</MedlinePgn></Pagination><Abstract><AbstractText>Recently, an approach for the "top down" sequence analysis of whole protein ions has been developed, employing electrospray ionization, collision-induced dissociation, and ion/ion proton-transfer reactions in a quadrupole ion trap mass spectrometer. This approach has now been extended to an analysis of the [M + 12H]12+ to [M + 5H]5+ ions of ribonuclease A and its N-linked glycosylated analogue, ribonuclease B, to determine the influence of the posttranslational modification on protein fragmentation. In agreement with previous studies on the fragmentation of a range of protein ions, facile gas-phase fragmentation was observed to occur along the protein backbone at the C-terminal of aspartic acid residues, and at the N-terminal of proline, depending on the precursor ion charge state. Interestingly, no evidence was found for gas-phase deglycosylation of the N-linked sugar in ribonuclease B, presumably due to effective competition from the facile amide bond cleavage channels that "protect" the N-linked glycosidic bond from cleavage. Thus, localization of the posttranslational modification site may be determined by analysis of the "protein fragment ion mass fingerprint".</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907-1393, USA. gavinreid@purdue.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>James L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.1.-</RegistryNumber><NameOfSubstance UI="D012260">Ribonucleases</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.1.27.-</RegistryNumber><NameOfSubstance UI="C029600">ribonuclease B</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.1.27.5</RegistryNumber><NameOfSubstance UI="D012259">Ribonuclease, Pancreatic</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006023">Glycoproteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006031">Glycosylation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015394">Molecular Structure</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012259">Ribonuclease, Pancreatic</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012260">Ribonucleases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>2</Month><Day>13</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>3</Month><Day>8</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>2</Month><Day>13</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11838679</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11811406</PMID><DateCreated><Year>2002</Year><Month>01</Month><Day>28</Day></DateCreated><DateCompleted><Year>2002</Year><Month>03</Month><Day>07</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>74</Volume><Issue>2</Issue><PubDate><Year>2002</Year><Month>Jan</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion parking during ion/ion reactions in electrodynamic ion traps.</ArticleTitle><Pagination><MedlinePgn>336-46</MedlinePgn></Pagination><Abstract><AbstractText>Under appropriate ion density conditions, it is possible to selectively inhibit rates of ion/ion reactions in a quadrupole ion trap via the application of oscillatory voltages to one or more electrodes of the ion trap. The phenomenon is demonstrated using dipolar resonance excitation applied to the end-cap electrodes of a three-dimensional quadrupole ion trap. The application of a resonance excitation voltage tuned to inhibit the ion/ion reaction rate of a specific range of ion mass-to-charge ratios is referred to as "ion parking". The bases for rate inhibition are (i) an increase in the relative velocity of the ion/ion reaction pair, which reduces the cross section for ion/ion capture and, at least in some cases, (ii) reduction in the time of physical overlap of positively charged and negatively charged ion clouds. The efficiency and specificity of the ion parking experiment is highly dependent upon ion densities, trapping conditions, ion charge states, and resonance excitation conditions. The ion parking experiment is illustrated herein along with applications to the concentration of ions originally present over a range of charge states into a selected charge state and in the selection of a particular ion from a set of ions derived from a simple protein mixture.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>Scott A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA. mcluckey@purdue.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>Gavin E</ForeName><Initials>GE</Initials></Author><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J Mitchell</ForeName><Initials>JM</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006736">Horses</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>1</Month><Day>29</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>3</Month><Day>8</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>1</Month><Day>29</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11811406</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11766760</PMID><DateCreated><Year>2001</Year><Month>12</Month><Day>19</Day></DateCreated><DateCompleted><Year>2002</Year><Month>01</Month><Day>31</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>12</Volume><Issue>12</Issue><PubDate><Year>2001</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Evidence for ionization-related conformational differences of peptide ions in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1331-8</MedlinePgn></Pagination><Abstract><AbstractText>The differences in boundary-activated dissociation (BAD) onsets have been investigated for peptide ions that were generated by two different ionization techniques, nanoflow electrospray ionization (nanoESI) and liquid secondary-ion mass spectrometry (LSIMS). BAD onsets of these ions were determined to compare the relative internal energies of the ions. Protonated peptide ions formed by nanoESI had lower BAD onsets than ions formed by LSIMS. The BAD onsets of peptides derivatized to have a fixed charge on the N-terminus also were lower for those generated by nanoESI than those generated by LSIMS. The BAD onsets of ions formed by nanoESI did not change with the variation of collisional cooling periods after gating ions into the ion trap and after isolating them prior to dissociation, indicating that the ions formed by the two ionization techniques would not adopt the same energy distributions. It is proposed that the ions formed by the two techniques differ in secondary structure, and the LSIMS ions are collisionally cooled to a lower local minimum along the potential energy surface than the nan</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Danell</LastName><ForeName>A S</ForeName><Initials>AS</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27514, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011487">Protein Conformation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D016339">Spectrometry, Mass, Fast Atom Bombardment</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2002</Year><Month>1</Month><Day>5</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>2</Month><Day>1</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2002</Year><Month>1</Month><Day>5</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11766760</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(01)00325-7</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11746900</PMID><DateCreated><Year>2001</Year><Month>12</Month><Day>17</Day></DateCreated><DateCompleted><Year>2002</Year><Month>01</Month><Day>25</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0951-4198</ISSN><JournalIssue CitedMedium="Print"><Volume>15</Volume><Issue>23</Issue><PubDate><Year>2001</Year></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Loss of charged versus neutral heme from gaseous holomyoglobin ions.</ArticleTitle><Pagination><MedlinePgn>2334-40</MedlinePgn></Pagination><Abstract><AbstractText>The dissociation of holomyoglobin ions ranging in charge state from +10 to +2 has been studied using collisional activation in a quadrupole ion trap. Collisional activation times and amplitudes were varied to investigate the effects of these variables on dissociation of the heme group from the holoprotein. The onset of neutral heme loss occurs at a lower activation amplitude than loss of charged heme. For solutions of ferri-myoglobin, charged heme loss was prominent for +10 to +4 holomyoglobin ions, while neutral heme loss product was found to be dominant for charge states +3 and +2. For any given charge state, activation of holomyoglobin ions from a solution containing primarily ferro-myoglobin yielded significantly more abundant neutral heme loss products than was observed for activation of ions from solutions containing primarily ferri-myoglobin. The relative concentrations of the two oxidation states were shown to be affected by redox chemistry within the nano-electrospray emitter used in this work. Results from a double activation experiment revealed that the precursor ions of a given charge state contained a mixture of two populations, with ferro-myoglobin giving rise to neutral heme loss upon dissociation and ferri-myoglobin yielding charged heme. No evidence for electron transfer upon collisional activation of ferri-myoglobin ions was observed. Furthermore, little or no evidence for electron transfer associated with ion/ion reactions with anions derived from perfluoro-1,3-dimethylcyclohexane was observed. Definitive results could not be drawn for the lowest precursor ion charge states (+3 and +2) due to low dissociation efficiencies.</AbstractText><CopyrightInformation>Copyright 2001 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>P A</ForeName><Initials>PA</Initials><AffiliationInfo><Affiliation>1393 Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Newton</LastName><ForeName>K A</ForeName><Initials>KA</Initials></Author><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>G E</ForeName><Initials>GE</Initials></Author><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R0I GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001059">Apoproteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C010857">apomyoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>42VZT0U6YR</RegistryNumber><NameOfSubstance UI="D006418">Heme</NameOfSubstance></Chemical><Chemical><RegistryNumber>E1UOL152H7</RegistryNumber><NameOfSubstance UI="D007501">Iron</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001059">Apoproteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004563">Electrochemistry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006418">Heme</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007501">Iron</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>12</Month><Day>18</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>1</Month><Day>26</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>12</Month><Day>18</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11746900</ArticleId><ArticleId IdType="pii">10.1002/rcm.512</ArticleId><ArticleId IdType="doi">10.1002/rcm.512</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11734052</PMID><DateCreated><Year>2001</Year><Month>12</Month><Day>05</Day></DateCreated><DateCompleted><Year>2002</Year><Month>01</Month><Day>30</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0002-7863</ISSN><JournalIssue CitedMedium="Print"><Volume>123</Volume><Issue>49</Issue><PubDate><Year>2001</Year><Month>Dec</Month><Day>12</Day></PubDate></JournalIssue><Title>Journal of the American Chemical Society</Title><ISOAbbreviation>J. Am. Chem. Soc.</ISOAbbreviation></Journal><ArticleTitle>Formation of protein-protein complexes in vacuo.</ArticleTitle><Pagination><MedlinePgn>12428-9</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, IN 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>P A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Chem Soc</MedlineTA><NlmUniqueID>7503056</NlmUniqueID><ISSNLinking>0002-7863</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005740">Gases</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005740">Gases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014618">Vacuum</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>12</Month><Day>6</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>1</Month><Day>31</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>12</Month><Day>6</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11734052</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">11712257</PMID><DateCreated><Year>2001</Year><Month>11</Month><Day>19</Day></DateCreated><DateCompleted><Year>2001</Year><Month>12</Month><Day>07</Day></DateCompleted><DateRevised><Year>2003</Year><Month>10</Month><Day>31</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0009-2665</ISSN><JournalIssue CitedMedium="Print"><Volume>101</Volume><Issue>2</Issue><PubDate><Year>2001</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Chemical reviews</Title><ISOAbbreviation>Chem. Rev.</ISOAbbreviation></Journal><ArticleTitle>Mass analysis at the advent of the 21st century.</ArticleTitle><Pagination><MedlinePgn>571-606</MedlinePgn></Pagination><Abstract><AbstractText>There have been many new and exciting developments in mass spectrometer systems in recent years. Many of these developments are being driven by challenges presented by molecular biology. The activity is fueled by resources being devoted to drug development, for example, and other medically and biologically related activities. Progress in these applications will be accelerated by improved sensitivity, specificity, and speed. In mass spectrometry, this translates to greater mass resolving power, mass accuracy, mass-to-charge range, efficiency, and speed. It is safe to say that the demands resulting from current analytical needs are likely to be met to varying degrees but probably not by a single analyzer technology or hybrid instrument. On-line and/or off-line separations and manipulations combined with mass spectrometry will also play increasingly important roles. For any analyzer, or combination of analyzers, to become widely used it must have an important application for which its figures of merit are best suited, relative to competing approaches. The relative cost of competing technologies is also an important factor. The mass filter has seen so much use in the past 30 years because its characteristics best fit a wide range of applications. As an example, biological applications, which are currently driving many instrument development activities in mass spectrometry, demand more information, of higher quality, from less material, faster, and at lower cost. Which technologies will dominate biological applications in the coming years is open to speculation. However, in considering the relative merits of today's dominant mass analyzers, areas of opportunity for improvement are apparent. Furthermore, new and more demanding measurement needs are constantly being recognized that will continue to exercise the creativity of the mass spectrometry community.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA. mcluckey@purdue.edu</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J M</ForeName><Initials>JM</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Chem Rev</MedlineTA><NlmUniqueID>2985134R</NlmUniqueID><ISSNLinking>0009-2665</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>11</Month><Day>20</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>11</Month><Day>20</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>11</Month><Day>20</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11712257</ArticleId><ArticleId IdType="pii">cr990087a</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11510816</PMID><DateCreated><Year>2001</Year><Month>08</Month><Day>20</Day></DateCreated><DateCompleted><Year>2001</Year><Month>12</Month><Day>05</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>73</Volume><Issue>15</Issue><PubDate><Year>2001</Year><Month>Aug</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Thermally assisted infrared multiphoton photodissociation in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>3542-8</MedlinePgn></Pagination><Abstract><AbstractText>Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (&lt; or = 10(-5) Torr) is not that required for optimal performance of the QITMS (10(-3) Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an approximately 1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Payne</LastName><ForeName>A H</ForeName><Initials>AH</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D007259">Infrared Rays</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D017785">Photons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>8</Month><Day>21</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2002</Year><Month>1</Month><Day>5</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>8</Month><Day>21</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11510816</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11476225</PMID><DateCreated><Year>2001</Year><Month>07</Month><Day>30</Day></DateCreated><DateCompleted><Year>2001</Year><Month>08</Month><Day>30</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>73</Volume><Issue>14</Issue><PubDate><Year>2001</Year><Month>Jul</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Charge-state-dependent sequence analysis of protonated ubiquitin ions via ion trap tandem mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>3274-81</MedlinePgn></Pagination><Abstract><AbstractText>One of the major factors governing the "top-down" sequence analysis of intact multiply protonated proteins by tandem mass spectrometry is the effect of the precursor ion charge state on the formation of product ions. To more fully understand this effect, electrospray ionization coupled to a quadrupole ion trap mass spectrometer, collision-induced dissociation, and gas-phase ion/ion reactions have been employed to examine the fragmentation of the [M + 12H]12+ to [M + H]+ ions of bovine ubiquitin. At low charge states (+1 to +6), loss of NH3 or H2O from the protonated precursor and directed cleavage at aspartic acid residues was observed. At intermediate charge states, (+7, +8, and +9), extensive nonspecific fragmentation of the protein backbone was observed, with 50% sequence coverage obtained from the [M + 8H]8+ ion alone. At high charge states, (+10, +11, +12), the single dominant channel that was observed was the preferential fragmentation of a single proline residue. These data can be readily explained in terms of the current model for intramolecular proton mobilization, that is, the "mobile proton model", the mechanisms for amide bond dissociation developed for protonated peptides, as well as the structures of the multiply charged ions of ubiquitin in the gas phase, examined by ion mobility and hydrogen/deuterium exchange measurements.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>G E</ForeName><Initials>GE</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wu</LastName><ForeName>J</ForeName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Chrisman</LastName><ForeName>P A</ForeName><Initials>PA</Initials></Author><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J M</ForeName><Initials>JM</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014452">Ubiquitins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D020539">Sequence Analysis, Protein</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D021241">Spectrometry, Mass, Electrospray Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014452">Ubiquitins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>7</Month><Day>31</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>8</Month><Day>31</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>7</Month><Day>31</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11476225</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11444611</PMID><DateCreated><Year>2001</Year><Month>07</Month><Day>10</Day></DateCreated><DateCompleted><Year>2001</Year><Month>07</Month><Day>26</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>12</Volume><Issue>7</Issue><PubDate><Year>2001</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Dissociation reactions of gaseous ferro-, ferri-, and apo-cytochrome c ions.</ArticleTitle><Pagination><MedlinePgn>873-6</MedlinePgn></Pagination><Abstract><AbstractText>Electrochemical reduction of the iron bound in the heme group of cytochrome c is shown to occur in the nano-electrospray capillary if the protein is sprayed from neutral water using a steel wire as the electrical contact. Quadrupole ion trap collisional activation is used to study the dissociation reactions of cytochrome c as a function of the oxidation state of the iron. Oxidized (Fe(III)) cytochrome c dissociates via sequence-specific amide bond cleavage, while the reduced (Fe(II)) form of the protein dissociates almost exclusively by loss of protonated heme. Apo-cytochrome c, from which the heme has been removed either via gas-phase dissociation of the reduced holo-protein or via solution chemistry, dissociates via amide bond cleavage in similar fashion to the oxidized holo-protein.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Wells</LastName><ForeName>J M</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-1393, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Reid</LastName><ForeName>G E</ForeName><Initials>GE</Initials></Author><Author ValidYN="Y"><LastName>Engel</LastName><ForeName>B J</ForeName><Initials>BJ</Initials></Author><Author ValidYN="Y"><LastName>Pan</LastName><ForeName>P</ForeName><Initials>P</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001059">Apoproteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>42VZT0U6YR</RegistryNumber><NameOfSubstance UI="D006418">Heme</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-43-6</RegistryNumber><NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001059">Apoproteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D045304">Cytochromes c</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004563">Electrochemistry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006418">Heme</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>7</Month><Day>11</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>7</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>7</Month><Day>11</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11444611</ArticleId><ArticleId IdType="pii">S1044-0305(01)00275-6</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(01)00275-6</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11349947</PMID><DateCreated><Year>2001</Year><Month>05</Month><Day>14</Day></DateCreated><DateCompleted><Year>2001</Year><Month>05</Month><Day>31</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>12</Volume><Issue>5</Issue><PubDate><Year>2001</Year><Month>May</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Dissociation pathways of alkali-cationized peptides: opportunities for C-terminal peptide sequencing.</ArticleTitle><Pagination><MedlinePgn>497-504</MedlinePgn></Pagination><Abstract><AbstractText>Dissociation pathways of alkali-cationized peptides have been studied using multiple stages of mass spectrometry (MSx) with a quadrupole ion trap mass spectrometer. Over 100 peptide ions ranging from 2 to 10 residues in length and containing each of the 20 common amino acids have been examined. The formation of the [b(n-1) + Na + OH]+ product ion is the predominant dissociation pathway for the majority of the common amino acids. This product corresponds to a sodium-cationized peptide one residue shorter in length than the original peptide. In a few cases, product ions such as [b(n-1) + Na - H]+ and those formed by loss, or partial loss, of a sidechain are observed. Both [b(n-1) + Na + OH]+ and [b(n-1) + Na - H]+ product ions can be selected as parent ions for a subsequent stage of tandem mass spectrometry (MS/MS). It is shown that these dissociation patterns provide opportunities for peptide sequencing by successive dissociation from the C-terminus of alkali-cationized peptides. Up to seven stages of MS/MS have been performed on a series of [b + Na + OH]+ ions to provide sequence information from the C-terminus. This method is analogous to Edman degradation except that the cleavage occurs from the C-terminus instead of the N-terminus, making it more attractive for N-terminal blocked peptides. The isomers leucine and isoleucine cannot be differentiated by this method but the isobars lysine and glutamine can.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>T</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Payne</LastName><ForeName>A H</ForeName><Initials>AH</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000468">Alkalies</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>04Y7590D77</RegistryNumber><NameOfSubstance UI="D007532">Isoleucine</NameOfSubstance></Chemical><Chemical><RegistryNumber>0RH81L854J</RegistryNumber><NameOfSubstance UI="D005973">Glutamine</NameOfSubstance></Chemical><Chemical><RegistryNumber>9NEZ333N27</RegistryNumber><NameOfSubstance UI="D012964">Sodium</NameOfSubstance></Chemical><Chemical><RegistryNumber>GMW67QNF9C</RegistryNumber><NameOfSubstance UI="D007930">Leucine</NameOfSubstance></Chemical><Chemical><RegistryNumber>K3Z4F929H6</RegistryNumber><NameOfSubstance UI="D008239">Lysine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000468">Alkalies</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000596">Amino Acids</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002851">Chromatography, High Pressure Liquid</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005973">Glutamine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007532">Isoleucine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007536">Isomerism</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007930">Leucine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008239">Lysine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D016415">Sequence Alignment</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D020539">Sequence Analysis, Protein</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D012964">Sodium</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013329">Structure-Activity Relationship</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>5</Month><Day>15</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>6</Month><Day>2</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>5</Month><Day>15</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11349947</ArticleId><ArticleId IdType="pii">S1044-0305(01)00234-3</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(01)00234-3</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">11305663</PMID><DateCreated><Year>2001</Year><Month>04</Month><Day>17</Day></DateCreated><DateCompleted><Year>2001</Year><Month>05</Month><Day>21</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>73</Volume><Issue>6</Issue><PubDate><Year>2001</Year><Month>Mar</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Identification of bacteriophage MS2 coat protein from E. coli lysates via ion trap collisional activation of intact protein ions.</ArticleTitle><Pagination><MedlinePgn>1277-85</MedlinePgn></Pagination><Abstract><AbstractText>Collisional activation of the intact MS2 viral capsid protein with subsequent ion/ion reactions has been used to identify the presence of this virus in E. coli lysates. Tandem ion trap mass spectrometry experiments on the +7, +8, and +9 charge states, followed by ion/ion reactions, provided the necessary sequence tag information (and molecular weight data) needed for protein identification via database searching. The most directly informative structural information is obtained from those charge states that produce a series of product ions arising from fragmentation at adjacent residues. The formation of these product ions via dissociation at adjacent amino acid residues depends greatly on the charge state of the parent ion. Database searching of the charge-state-specific sequence tags was performed by two different search engines: the ProteinInfo program from the Protein information Retrieval On-line World Wide Web Lab or PROWL and the TagIdent program from the ExPASy molecular biology server. These search engines were used in conjunction with the sequence tag information generated via collisional activation of the intact viral coat protein. These programs were used to evaluate the feasibility of generating sequence tags from collisional activation of intact multiply charged protein ions in a quadrupole ion trap.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Cargile</LastName><ForeName>B J</ForeName><Initials>BJ</Initials><AffiliationInfo><Affiliation>Department of Biochemistry, University of Illinois Urbana-Champagne 61801, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002213">Capsid</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004926">Escherichia coli</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000821">virology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017909">Levivirus</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2001</Year><Month>4</Month><Day>18</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>5</Month><Day>25</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2001</Year><Month>4</Month><Day>18</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11305663</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">10892020</PMID><DateCreated><Year>2000</Year><Month>08</Month><Day>02</Day></DateCreated><DateCompleted><Year>2000</Year><Month>08</Month><Day>02</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2654</ISSN><JournalIssue CitedMedium="Print"><Volume>125</Volume><Issue>4</Issue><PubDate><Year>2000</Year><Month>Apr</Month></PubDate></JournalIssue><Title>The Analyst</Title><ISOAbbreviation>Analyst</ISOAbbreviation></Journal><ArticleTitle>C-terminal peptide sequencing using acetylated peptides with MSn in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>635-40</MedlinePgn></Pagination><Abstract><AbstractText>MS/MS has been used to sequence peptides and small proteins for a number of years. This method allows one to isolate the peptide of interest, which makes it possible to analyze impure samples and unseparated mixtures, such as protein digests. Collision-induced dissociation (CID) of the selected peptide ion generates the product ions that provide sequence information. However, often the MS/MS spectrum does not provide adequate information for complete sequence determination. The quadrupole ion trap has the capability to do multiple stages of mass spectrometry, MSn, which can increase the information available to determine the peptide sequence. A regular and predictable dissociation pattern for peptides further simplifies this analysis. By forming predominantly one type of ion, ambiguity is removed as to whether the ion is N- or C-terminal. This pattern can also be advantageous in that ion intensity remains concentrated for the next stage of MS/MS. In this work, a method to take advantage of the MSn capabilities of the quadrupole ion trap by controlling the dissociation pathways is explored. Dissociation is altered by acetylating the N-terminus of the peptide. MSn of a variety of acetylated peptides is used to determine the effects of the identity of the C-terminal residue and the length of the peptide on the dissociation pathways observed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Payne</LastName><ForeName>A H</ForeName><Initials>AH</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chelf</LastName><ForeName>J H</ForeName><Initials>JH</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>ENGLAND</Country><MedlineTA>Analyst</MedlineTA><NlmUniqueID>0372652</NlmUniqueID><ISSNLinking>0003-2654</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2000</Year><Month>7</Month><Day>13</Day><Hour>11</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>8</Month><Day>6</Day><Hour>11</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2000</Year><Month>7</Month><Day>13</Day><Hour>11</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">10892020</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">10739190</PMID><DateCreated><Year>2000</Year><Month>04</Month><Day>12</Day></DateCreated><DateCompleted><Year>2000</Year><Month>04</Month><Day>12</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>72</Volume><Issue>5</Issue><PubDate><Year>2000</Year><Month>Mar</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collisional activation of the (M + 2H)2+ - (M + 17H)17+ ions of human hemoglobin beta-chain.</ArticleTitle><Pagination><MedlinePgn>899-907</MedlinePgn></Pagination><Abstract><AbstractText>The parent ions of human hemoglobin beta-chain ranging in charge from 2+ to 17+ have been subjected to ion trap collisional activation. The highest charge-state ions (17+ to 13+) yielded series of products arising from dissociation of adjacent residues. The intermediate charge-state ions (12+ to 5+) tended to fragment preferentially at the N-terminal sides of proline residues and the C-terminal sides of acidic residues. Many, but not all, of the possible cleavages at proline, aspartic acid, and glutamic acid residues were represented in the spectra. The lowest charge-state ions were difficult to dissociate with high efficiency and yielded spectra with poorly defined product ion signals. This observation is attributed to sequential fragmentations arising from losses of small molecules such as water and/or ammonia. The poor fragmentation efficiency observed for the low charge states is due at least in part to the low trapping wells used to store the ions. Higher ion stabilities due to lower Coulombic repulsion and charges being sequestered at highly basic sites may also play an important role. Ion/ion proton-transfer reactions involving protein parent ions allows for the formation of a wide range of parent ion charge states. In addition, the ion/ion proton-transfer reactions involving protein dissociation products simplify interpretation of the product ion spectra.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Schaaff</LastName><ForeName>T G</ForeName><Initials>TG</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cargile</LastName><ForeName>B J</ForeName><Initials>BJ</Initials></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006454">Hemoglobins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2000</Year><Month>3</Month><Day>30</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>4</Month><Day>15</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2000</Year><Month>3</Month><Day>30</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">10739190</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">10689670</PMID><DateCreated><Year>2000</Year><Month>04</Month><Day>04</Day></DateCreated><DateCompleted><Year>2000</Year><Month>04</Month><Day>04</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>11</Volume><Issue>2</Issue><PubDate><Year>2000</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Gas phase H/D exchange kinetics: DI versus D2O.</ArticleTitle><Pagination><MedlinePgn>167-71</MedlinePgn></Pagination><Abstract><AbstractText>The gas phase H/D exchange reactions of bradykinin (M + 3H)3+ ions with D2O and DI were monitored in a quadrupole ion trap mass spectrometer. The H/D exchange kinetics of both chemical probes (D2O and DI) indicate the presence of two noninterconverting reactive gas phase ion populations of bradykinin (M + 3H)3+ at room temperature. The H/D exchange involving DI, however, generally proceeds faster than that involving D2O. The rate observations described here can be rationalized on the basis of the "relay mechanism" (see Campbell et al. J. Am. Chem. Soc. 1995, 117, 12840-12854) recently proposed to account for H/D exchange between D2O and gaseous protonated polypeptides. The higher exchange rate with DI is believed to arise primarily as a result of its lower gas-phase acidity relative to that of D2O and, secondarily, as a result of the longer bond length of DI relative to that of OD in D2O.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Schaaff</LastName><ForeName>T G</ForeName><Initials>TG</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007454">Iodides</NameOfSubstance></Chemical><Chemical><RegistryNumber>AR09D82C7G</RegistryNumber><NameOfSubstance UI="D003903">Deuterium</NameOfSubstance></Chemical><Chemical><RegistryNumber>J65BV539M3</RegistryNumber><NameOfSubstance UI="D017666">Deuterium Oxide</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003903">Deuterium</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017666">Deuterium Oxide</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008401">Gas Chromatography-Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007454">Iodides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2000</Year><Month>2</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2000</Year><Month>2</Month><Day>26</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">10689670</ArticleId><ArticleId IdType="pii">S1044-0305(99)00137-3</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(99)00137-3</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">11118118</PMID><DateCreated><Year>2000</Year><Month>12</Month><Day>12</Day></DateCreated><DateCompleted><Year>2001</Year><Month>02</Month><Day>08</Day></DateCompleted><DateRevised><Year>2003</Year><Month>10</Month><Day>31</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>11</Volume><Issue>12</Issue><PubDate><Year>2000</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>A new approach for effecting surface-induced dissociation in an ion cyclotron resonance mass spectrometer: a modeling study.</ArticleTitle><Pagination><MedlinePgn>1107-17</MedlinePgn></Pagination><Abstract><AbstractText>With the increasing use of ion cyclotron resonance (ICR) for tandem mass spectrometry (MS/MS) analysis of biomolecules, surface-induced dissociation (SID) should be given serious consideration as an ion activation technique. There are at least two compelling reasons to consider SID: it can deposit significant amounts of internal energy into large ions, and no collision gas is required. These potential advantages have led us to undertake a modeling study of the SID process in an ICR using the ion optics program SIMION. The various methods previously used to obtain SID spectra are compared to a new approach for effecting SID in an ICR. Through simulations, many different parameters present in the experiment are correlated to the kinetic energy of the parent ion upon impact and the overall product ion collection efficiency (and hence the signal intensity) expected. The modeling results suggest this new approach allows larger, more precise, and controllable impact energies to be used, as well as providing higher collection efficiencies. The validity of the modeling results is supported by good qualitative agreement with previously reported experimental results.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Danell</LastName><ForeName>R M</ForeName><Initials>RM</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27514, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2000</Year><Month>1</Month><Day>11</Day><Hour>19</Hour><Minute>15</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>1</Month><Day>11</Day><Hour>19</Hour><Minute>16</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2000</Year><Month>1</Month><Day>11</Day><Hour>19</Hour><Minute>15</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11118118</ArticleId><ArticleId IdType="pii">S1044030500001884</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(00)00188-4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">11118114</PMID><DateCreated><Year>2000</Year><Month>12</Month><Day>12</Day></DateCreated><DateCompleted><Year>2001</Year><Month>02</Month><Day>08</Day></DateCompleted><DateRevised><Year>2003</Year><Month>10</Month><Day>31</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>11</Volume><Issue>12</Issue><PubDate><Year>2000</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Measurement of collision-induced dissociation rates for tantalum oxide ions in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1072-8</MedlinePgn></Pagination><Abstract><AbstractText>A study of factors influencing the collision-induced dissociation (CID) rate of strongly bound diatomic ions effected via resonance excitation in a quadrupole ion trap is presented. From these studies, an approach to measuring the CID rates is described wherein product ion recovery is optimized and the effect of competitive processes (e.g., parent ion ejection and product ion reactions) on rate measurements are prevented from influencing rate measurements. Tantalum oxide ions (dissociation energy = 8.2 eV), used as a model system, were formed via reactions of glow discharge generated Ta+ ions with residual gases in the ion trap. Neon (0.5 mtorr) was found to be a more favorable target gas for the dissociation of TaO+ than He and Ar, but collisional activation of TaO+ ions in neon during ion isolation by mass selective instability necessitated ion cooling prior to dissociation. A 25 ms delay time at qz = 0.2 allowed for kinetic cooling of stored TaO+ ions and enabled precise dissociation rate measurements to be made. CID of TaO+ was determined to be most efficient at qz = 0.67 (226 kHz for m/z 197). Suitable resonance excitation voltages and times ranged from 0.56 to 1.2 V(p-p) and 1 to 68 ms, respectively. Under these conditions, measurement of rates approaching 80 s(-1) for the dissociation of TaO+ could be made without significant complications associated with competing processes, such as ion ejection.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Duckworth</LastName><ForeName>D C</ForeName><Initials>DC</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6375, USA. DuckworthDC@ornl.gov</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2000</Year><Month>1</Month><Day>11</Day><Hour>19</Hour><Minute>15</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>1</Month><Day>11</Day><Hour>19</Hour><Minute>16</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2000</Year><Month>1</Month><Day>11</Day><Hour>19</Hour><Minute>15</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">11118114</ArticleId><ArticleId IdType="pii">S1044030500001859</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(00)00185-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">10510418</PMID><DateCreated><Year>2000</Year><Month>01</Month><Day>28</Day></DateCreated><DateCompleted><Year>2000</Year><Month>01</Month><Day>28</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0951-4198</ISSN><JournalIssue CitedMedium="Print"><Volume>13</Volume><Issue>20</Issue><PubDate><Year>1999</Year></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collisional activation of disulfide linkage intact and reduced multiply protonated polypeptides.</ArticleTitle><Pagination><MedlinePgn>2040-8</MedlinePgn></Pagination><Abstract><AbstractText>The presence of disulfide linkages in multiply charged polypeptide ions tends to inhibit the formation of structurally informative product ions under conventional quadrupole ion trap collisional activation conditions. In particular, fragmentation that requires two cleavages (i.e., cleavage of a disulfide linkage and a peptide linkage) is strongly suppressed. Reduction of the disulfide linkage(s) by use of dithiothreitol yields parent ions upon electrospray without this complication. Far richer structural information is revealed by ion trap collisional activation of the disulfide-reduced species than from the native species. These observations are illustrated with doubly protonated native and reduced somatosin, the [M + 5H](5+) ion of native bovine insulin and the [M + 4H](4+) and [M + 3H](3+) ions of the B-chain of bovine insulin produced by reduction of the disulfide linkages in insulin, and the [M + 11H](11+) ion of native chicken lysozyme and the [M + 11H](11+) and [M + 14H](14+) ions of reduced lysozyme. In each case, the product ions produced by ion trap collisional activation were subjected to ion/ion proton transfer reactions to facilitate interpretation of the product ion spectra. These studies clearly suggest that the identification of polypeptides with one or more disulfide linkages via application of ion trap collisional activation to the multiply charged parent ions formed directly by electrospray could be problematic. Means for cleaving the disulfide linkage, such as reduction by dithiothreitol prior to electrospray, are therefore desirable in these cases.</AbstractText><CopyrightInformation>Copyright 1999 John Wiley &amp; Sons, Ltd.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6365, USA. stephensonjl@ornl.gov</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cargile</LastName><ForeName>B J</ForeName><Initials>BJ</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>ENGLAND</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004220">Disulfides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="C403144">somatosin</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 3.2.1.17</RegistryNumber><NameOfSubstance UI="D009113">Muramidase</NameOfSubstance></Chemical><Chemical><RegistryNumber>T8ID5YZU6Y</RegistryNumber><NameOfSubstance UI="D004229">Dithiothreitol</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004220">Disulfides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004229">Dithiothreitol</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007328">Insulin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009113">Muramidase</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1999</Year><Month>10</Month><Day>8</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1999</Year><Month>10</Month><Day>8</Day><Hour>9</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">10510418</ArticleId><ArticleId IdType="pii">10.1002/(SICI)1097-0231(19991030)13:20&lt;2040::AID-RCM754&gt;3.0.CO;2-W</ArticleId><ArticleId IdType="doi">10.1002/(SICI)1097-0231(19991030)13:20&lt;2040::AID-RCM754&gt;3.0.CO;2-W</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">10368949</PMID><DateCreated><Year>1999</Year><Month>07</Month><Day>27</Day></DateCreated><DateCompleted><Year>1999</Year><Month>07</Month><Day>27</Day></DateCompleted><DateRevised><Year>2012</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>10</Volume><Issue>6</Issue><PubDate><Year>1999</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Hydroiodic acid attachment kinetics as a chemical probe of gaseous protein ion structure: bovine pancreatic trypsin inhibitor.</ArticleTitle><Pagination><MedlinePgn>552-6</MedlinePgn></Pagination><Abstract><AbstractText>The kinetics of attachment of hydroiodic acid (HI) to the (M + 6H)6+ ions of native and reduced forms of bovine pancreatic trypsin inhibitor (BPTI) in the quadrupole ion trap environment are reported. Distinctly nonlinear (pseudo first-order) reaction kinetics are observed for reaction of the native ions, indicating two or more noninterconverting structures in the parent ion population. The reduced form, on the other hand, shows very nearly linear reaction kinetics. Both forms of the parent ion attach a maximum of five molecules of hydroiodic acid. This number is expected based on the amino acid composition of the protein. There is a total of 11 strongly basic sites in the protein (i.e., six arginines, four lysines, and one N-terminus). An ion with protons occupying six of the basic sites has five available for hydroiodic acid attachment. The kinetics of successive attachment of HI to the native and reduced forms of BPTI also differ, particularly for the addition of the fourth and fifth HI molecules. A very simple kinetic model describes the behavior of the reduced form reasonably well, suggesting that all of the neutral basic sites in the reduced BPTI ions have roughly equal reactivity. However, the behavior of the native ion is not well-described by this simple model. The results are discussed within the context of differences in the three-dimensional structures of the ions that result from the presence or absence of the three disulfide linkages found in native BPTI. The HI reaction kinetics appears to have potential as a chemical probe of protein ion three-dimensional structure in the gas phase. Hydroiodic acid attachment chemistry is significantly different from other chemistries used to probe three-dimensional structure and hence, promises to yield complementary information.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Schaaff</LastName><ForeName>T G</ForeName><Initials>TG</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000143">Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D017613">Iodine Compounds</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014361">Trypsin Inhibitors</NameOfSubstance></Chemical><Chemical><RegistryNumber>694C0EFT9Q</RegistryNumber><NameOfSubstance UI="C010466">hydroiodic acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>9087-70-1</RegistryNumber><NameOfSubstance UI="D007611">Aprotinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000143">Acids</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007611">Aprotinin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017613">Iodine Compounds</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014361">Trypsin Inhibitors</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1999</Year><Month>6</Month><Day>16</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1999</Year><Month>6</Month><Day>16</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">10368949</ArticleId><ArticleId IdType="pii">S1044-0305(99)00026-4</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(99)00026-4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">10360331</PMID><DateCreated><Year>1999</Year><Month>06</Month><Day>22</Day></DateCreated><DateCompleted><Year>1999</Year><Month>06</Month><Day>22</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0277-7037</ISSN><JournalIssue CitedMedium="Print"><Volume>17</Volume><Issue>6</Issue><PubDate><MedlineDate>1998 Nov-Dec</MedlineDate></PubDate></JournalIssue><Title>Mass spectrometry reviews</Title><ISOAbbreviation>Mass Spectrom Rev</ISOAbbreviation></Journal><ArticleTitle>Ion/ion chemistry of high-mass multiply charged ions.</ArticleTitle><Pagination><MedlinePgn>369-407</MedlinePgn></Pagination><Abstract><AbstractText>Electrospray ionization has enabled the establishment of a new area of ion chemistry research based on the study of the reactions of high-mass multiply charged ions with ions of opposite polarity. The multiple-charging phenomenon associated with electrospray makes possible the generation of multiply charged reactant ions that yield charged products as a result of partial neutralization due to ion/ion chemistry. The charged products can be readily studied with mass spectrometric methods, providing useful insights into reaction mechanisms. This review presents the research done in this area, all of which has been performed within the past decade. Ion/ion chemistry has been studied at near-atmospheric pressure in a reaction region that leads to the atmospheric/vacuum interface of a mass spectrometer, and within a quadrupole ion trap operated with a bath gas at a pressure of 1 mtorr. Proton transfer has been the most common reaction type for high-mass ions, but other forms of "charge transfer," such as electron transfer and fluoride transfer, have also been observed. For some ion/ion reactions, attachment of the two reactants has been observed. Multiply charged ion/ion reactions are fast, due to the long-range Coulombic attraction, and they are universal in that any pair of oppositely charged ions is expected to react due to the high exothermicity associated with mutual neutralization. The kinetics of reaction for multiply charged ions, derived from the same molecule with a given singly charged reactant ion, follow a charge-squared dependence, at least under normal quadrupole ion trap conditions. This dependence suggests that reaction rates are determined by the long-range Coulomb attraction, and that the ions react with constant efficiency as a function of charge state. In the case of proton transfer reactions from polypeptides to even-electron perfluorocarbon anions, no fragmentation of the polypeptide product ions has, as yet, been observed. Electron transfer from small oligonucleotide anions to rare gas cations, on the other hand, results in extensive fragmentation of the nucleic acid product ions. The extent of fragmentation decreases as the size of the oligonucleotide anions increases, reflecting a decrease in fragmentation rates associated with an increase in the number of internal degrees of freedom of the oligonucleotide. When ion-cooling rates become competitive with dissociation rates, the initially formed product ions are stabilized and fragmentation is avoided. Collisional cooling, therefore, likely plays an important role in the relative lack of dissociation observed thus far as a result of ion/ion reactions for most high-mass ions. The observed dependence of ion/ion reaction rates on the square of the ion charge, the universal nature of mutual neutralization, and the relative lack of fragmentation that arises from ion/ion reactions, makes ion/ion chemistry a particularly useful means for manipulating charge states. This review emphasizes applications that take advantage of the unique characteristics of ion/ion proton transfer chemistry for manipulating charge states. These applications include mixture analysis by electrospray, precursor ion charge state manipulation for tandem mass spectrometry studies, and simplified interpretation of product ion spectra.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Mass Spectrom Rev</MedlineTA><NlmUniqueID>8219702</NlmUniqueID><ISSNLinking>0277-7037</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="ErratumIn"><RefSource>Mass Spectrom Rev 1999 Jan-Feb;18(1):83-6</RefSource></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName></MeshHeading></MeshHeadingList><NumberOfReferences>107</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1999</Year><Month>6</Month><Day>9</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>8</Month><Day>12</Day><Hour>11</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1999</Year><Month>6</Month><Day>9</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">10360331</ArticleId><ArticleId IdType="pii">10.1002/(SICI)1098-2787(1998)17:6&lt;369::AID-MAS1&gt;3.0.CO;2-J</ArticleId><ArticleId IdType="doi">10.1002/(SICI)1098-2787(1998)17:6&lt;369::AID-MAS1&gt;3.0.CO;2-J</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9926406</PMID><DateCreated><Year>1999</Year><Month>03</Month><Day>03</Day></DateCreated><DateCompleted><Year>1999</Year><Month>03</Month><Day>03</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>10</Volume><Issue>2</Issue><PubDate><Year>1999</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Determination of the dissociation kinetics of a transient intermediate.</ArticleTitle><Pagination><MedlinePgn>119-25</MedlinePgn></Pagination><Abstract><AbstractText>Tandem mass spectrometry provides information on the dissociation pathways of gas-phase ions by providing a link between product ions and parent ions. However, there exists a distinct possibility that a parent ion does not dissociate directly to the observed product ion, but that the reaction proceeds through unobserved reaction intermediates. This work describes the discovery and kinetic analysis of an unobserved reaction intermediate with a quadrupole ion trap. [a4 - NH3] ions formed from [YG beta FL + H] ions dissociate to [(F*YG - NH3) - CO] ions. It is expected, however, from previous results, that [F*YG - NH3] ions should form prior to [(F*YG - NH3) - CO] ions. Double-resonance experiments are used to demonstrate the existence of intermediate [F*YG - NH3] ions. Various kinetic analyses are then performed using traditional collision-induced dissociation kinetics and double-resonance experiments. The phenomenological rates of formation and decay of peptide rearrangement ion dissociation products are determined by curve fitting decay and formation data generated with the kinetics experiments. The data generated predict an observable level of the intermediate in a time frame accessible but previously not monitored. By examining early product-ion formation, the intermediate ions, [F*YG - NH3]+, are observed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Asam</LastName><ForeName>M R</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>University of North Carolina at Chapel Hill, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1999</Year><Month>2</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1999</Year><Month>2</Month><Day>2</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1999</Year><Month>2</Month><Day>2</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9926406</ArticleId><ArticleId IdType="pii">S1044-0305(98)00134-2</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(98)00134-2</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9879372</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>29</Day></DateCreated><DateCompleted><Year>1999</Year><Month>01</Month><Day>29</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>9</Volume><Issue>6</Issue><PubDate><Year>1998</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion/ion reactions for oligopeptide mixture analysis: application to mixtures comprised of 0.5-100 kDa components.</ArticleTitle><Pagination><MedlinePgn>585-96</MedlinePgn></Pagination><Abstract><AbstractText>Oligopeptide mixtures have been subjected to electrospray ionization, accumulated within a quadrupole ion trap, and subjected to ion/ion proton transfer reactions with anions derived from perfluoro-1,3-dimethylcyclohexane. Various mixtures were studied with approximate molecular weight ranges of 0.5-8.5, 12-30, 45-100, and 0.5-100 kDa. Mixtures of known composition were studied to evaluate the mixture complexity amenable to electrospray combined with ion/ion reactions to reduce spectral complexity associated with multiple charging. Mixture analysis with at least 40 components of low and medium molecular weight and roughly comparable solution concentrations appears to be straightforward. No matrix effects upon ionization were implicated in the data for the low and medium molecular weight mixtures but bovine albumin appeared to inhibit signals from bovine transferrin and chicken conalbumin in the high molecular weight mix. Furthermore, the presence of abundant low mass-to-charge ions appeared to inhibit signals from high molecular weight proteins (&gt; 40 kDa) in the 0.5-100 kDa mix. Such an observation is consistent with dynamic range limitations that can arise from discrimination based on ion space charge effects, although an ionization matrix effect could not be precluded from the data reported here. The results reported here indicate that the limitation to mixture complexity amenable to electrospray mass spectrometry imposed by spectral congestion associated with multiple charging can be significantly reduced via ion/ion reactions. The use of ion/ion reactions can therefore facilitate the study of other factors that can impose limitations to mixture analysis, such as matrix effects upon ionization and differences in ion transmission, accumulation, storage, and detection efficiencies.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008970">Molecular Weight</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1999</Year><Month>1</Month><Day>8</Day><Hour>3</Hour><Minute>2</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1999</Year><Month>1</Month><Day>8</Day><Hour>3</Hour><Minute>2</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9879372</ArticleId><ArticleId IdType="pii">S1044030598000257</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(98)00025-7</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9879364</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>29</Day></DateCreated><DateCompleted><Year>1999</Year><Month>01</Month><Day>29</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>9</Volume><Issue>4</Issue><PubDate><Year>1998</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Origin of product ions in the MS/MS spectra of peptides in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>341-4</MedlinePgn></Pagination><Abstract><AbstractText>Stored waveform inverse Fourier transform and double resonance techniques have been used in conjunction with a quadrupole ion trap to study the dissociation patterns of peptide ions. These experiments provide insight into the origin of individual product ions in an MS/MS spectrum. Results show for a series of leucine enkephalin analogues with five amino acid residues that the b4 ion is the main product ion through which many other product ions arise. It was also observed that the percentage of the a4 product ions that are formed directly from the protonated molecule (M + H)+ depends on the nature of the fourth amino acid residue. In addition, it was determined that in the peptides studies here lower series b ions (e.g., b3) arise from direct dissociation of higher series b ions (e.g., b4) only about 50% of the time.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>R W</ForeName><Initials>RW</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ray</LastName><ForeName>K L</ForeName><Initials>KL</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>58822-25-6</RegistryNumber><NameOfSubstance UI="D004743">Enkephalin, Leucine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004743">Enkephalin, Leucine</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000031">analogs &amp; derivatives</QualifierName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005583">Fourier Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007202">Indicators and Reagents</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1999</Year><Month>1</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1999</Year><Month>1</Month><Day>8</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1999</Year><Month>1</Month><Day>8</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9879364</ArticleId><ArticleId IdType="pii">S1044030598000087</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(98)00008-7</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9868913</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>28</Day></DateCreated><DateCompleted><Year>1999</Year><Month>01</Month><Day>28</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>70</Volume><Issue>24</Issue><PubDate><Year>1998</Year><Month>Dec</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>C-terminal peptide sequencing via multistage mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>5162-5</MedlinePgn></Pagination><Abstract><AbstractText>Results are presented showing the ability to obtain C-terminal sequence information from peptides by multiple stages of mass spectrometry. Under typical low-energy collision-induced dissociation conditions of quadrupole ion trap and ion cyclotron resonance mass spectrometers, lithium- and sodium-cationized peptides dissociate predominantly by reaction at the C-terminal peptide bond or an adjacent bond. For the majority of cases studied, the dominant reaction is a rearrangement process that results in the loss of the C-terminal residue and formation of a product ion that is one amino acid shorter than the original peptide ion. Using the multistage MS/MS capabilities of quadrupole ion trap and ion cyclotron resonance mass spectrometers, a subsequent stage of MS/MS can be performed to determine the identity of the new C-terminal residue. Up to eight stage of MS/MS have been performed with both quadrupole ion trap and ion cyclotron resonance mass spectrometers. In general, the same dissociation pathways are observed with both instruments, although occasionally there are significant differences in the branching ratios of competing pathways.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>T</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017421">Sequence Analysis</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>12</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1998</Year><Month>12</Month><Day>30</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>12</Month><Day>30</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9868913</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9737205</PMID><DateCreated><Year>1998</Year><Month>10</Month><Day>09</Day></DateCreated><DateCompleted><Year>1998</Year><Month>10</Month><Day>09</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>70</Volume><Issue>17</Issue><PubDate><Year>1998</Year><Month>Sep</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Simplification of product ion spectra derived from multiply charged parent ions via ion/ion chemistry.</ArticleTitle><Pagination><MedlinePgn>3533-44</MedlinePgn></Pagination><Abstract><AbstractText>High-mass multiply charged ions fragment to yield a mixture of products of varying mass and charge. When the measurement of mass-to-charge ratio is used to determine products ion mass, product ion charge must first be established. To minimize charge-state ambiguity in product ion spectra derived from multiply charged parent ions, product ions have been subjected to proton-transfer reactions with oppositely charged ions to reduce product ion charge states largely to +1. This procedure greatly simplifies the interpretation of product ion spectra derived from multiply charged ions. Illustrative data are presented for the +4 and +3 parent ions derived from electrospray of melittin and the +12 to +4 parent ions of bovine ubiquitin, whereby product ions were formed in a conventional quadrupole ion trap tandem mass spectrometry experiment. Data are also shown for product ion mixtures derived from interface-induced dissociation of multiply charged ions derived from bovine ubiquitin, tuna cytochrome c, bovine cytochrome c, and equine cytochrome c. The use of ion/ion chemistry to simplify product ion spectra derived from multiply charged parent ions significantly extends the size range of macromolecules for which the quadrupole ion trap can derive structural information.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014452">Ubiquitins</NameOfSubstance></Chemical><Chemical><RegistryNumber>20449-79-0</RegistryNumber><NameOfSubstance UI="D008555">Melitten</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D003574">Cytochrome c Group</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008555">Melitten</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014413">Tuna</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014452">Ubiquitins</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>9</Month><Day>16</Day><Hour>2</Hour><Minute>4</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>9</Month><Day>16</Day><Hour>2</Hour><Minute>4</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9737205</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9692249</PMID><DateCreated><Year>1998</Year><Month>09</Month><Day>30</Day></DateCreated><DateCompleted><Year>1998</Year><Month>09</Month><Day>30</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>33</Volume><Issue>7</Issue><PubDate><Year>1998</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Charge manipulation for improved mass determination of high-mass species and mixture components by electrospray mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>664-72</MedlinePgn></Pagination><Abstract><AbstractText>The manipulation of the charge states of high-mass ions can facilitate mass determination in electrospray (ES) mass spectrometry. Specifically, the reduction of charge (which leads to ions of higher mass-to-charge ratios) can significantly reduce peak overlap. Signals associated with various charge states of high-mass ions are more easily resolved at low charge states and chemical noise tends to be significantly lower at high mass-to-charge ratios than in the normal mass-to-charge window typically associated with electrospray. Algorithms that transform ES mass spectra to zero-charge spectra are most likely to yield unambiguous results when charge states are clearly resolved and when signal-to-noise ratios are relatively high. Charge manipulation can enhance the value of the transformation algorithms in cases in which compromises their utility. Such situations include ES mass spectra of high-mass species that yield charge states that are not baseline resolved, mixtures with many components and mixtures in which the signals from major components overwhelm signals from minor components. Examples of improved mass determination are illustrated for proteins using ion-ion chemistry as the means for charge state manipulation and the quadrupole ion trap as the mass analyzer.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>ENGLAND</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D001704">Biopolymers</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001704">Biopolymers</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008970">Molecular Weight</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>8</Month><Day>6</Day><Hour>2</Hour><Minute>3</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>6</Month><Day>22</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>8</Month><Day>6</Day><Hour>2</Hour><Minute>3</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9692249</ArticleId><ArticleId IdType="pii">10.1002/(SICI)1096-9888(199807)33:7&lt;664::AID-JMS663&gt;3.0.CO;2-P</ArticleId><ArticleId IdType="doi">10.1002/(SICI)1096-9888(199807)33:7&lt;664::AID-JMS663&gt;3.0.CO;2-P</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9679597</PMID><DateCreated><Year>1998</Year><Month>08</Month><Day>17</Day></DateCreated><DateCompleted><Year>1998</Year><Month>08</Month><Day>17</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>9</Volume><Issue>2</Issue><PubDate><Year>1998</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>New method to study the effects of peptide sequence on the dissociation energetics of peptide ions.</ArticleTitle><Pagination><MedlinePgn>175-7</MedlinePgn></Pagination><Abstract><AbstractText>A new method has been developed to study the dissociation patterns of singly protonated peptides by using a quadrupole ion trap mass spectrometer. The new approach involves using boundary-activated dissociation to characterize the ease of dissociation of peptide ions. Insight can be gained into the effect of specific peptide sequences on the dissociation energetics of protonated peptides. Increased knowledge of the effects of specific sequences on the dissociation patterns of peptide ions should improve the ability to interpret complex spectra from tandem mass spectrometry (MS/MS) experiments. This method has confirmed the previously observed increase in the energy needed for the dissociation of peptide ions containing basic residues. In addition, this technique has revealed the effect of the location of proline residues on the dissociation energetics of peptides with this amino acid.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>R W</ForeName><Initials>RW</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>7</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1998</Year><Month>7</Month><Day>29</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>7</Month><Day>29</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9679597</ArticleId><ArticleId IdType="pii">S1044-0305(97)00281-X</ArticleId><ArticleId IdType="doi">10.1016/S1044-0305(97)00281-X</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9599582</PMID><DateCreated><Year>1998</Year><Month>06</Month><Day>16</Day></DateCreated><DateCompleted><Year>1998</Year><Month>06</Month><Day>16</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>70</Volume><Issue>9</Issue><PubDate><Year>1998</Year><Month>May</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Collision-induced signal enhancement: a method to increase product ion intensities in MS/MS and MSn experiments.</ArticleTitle><Pagination><MedlinePgn>1831-7</MedlinePgn></Pagination><Abstract><AbstractText>Collision-induced signal enhancement (CISE), a new technique to enhance the MSn capabilities of the quadrupole ion trap, is demonstrated. CISE is based on the chemistry, i.e., the dissociation pathways, of the analyte examined. Polysaccharides up to hexamers are used to demonstrate the capabilities of CISE to enhance signal in two distinct functional modes. Mode 1 CISE is designed to enhance the signal of an ion desired for MSn analysis. Mode 2 CISE is designed to enhance structurally significant product ions in an MS/MS spectrum. Two different approaches can be utilized to effect the two functional modes of CISE. Both approaches use conventional resonant excitation techniques to effect dissociation, which is performed nonanalytically, i.e., without isolation of the ions to be dissociated. The two approaches are (1) single-frequency resonance excitation, and (2) broad-band wave form resonant excitation. Experimental results for Mode 1 CISE analysis demonstrate up to a 17.3-fold signal increase for the single-frequency approach and 5.3-fold using broad-band excitation. Mode 2 CISE analysis shows up to a 16.3-fold increase in signal strength with single-frequency excitation and 3.3-fold using broad-band excitation.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Asam</LastName><ForeName>M R</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ray</LastName><ForeName>K L</ForeName><Initials>KL</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011134">Polysaccharides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>5</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1998</Year><Month>5</Month><Day>26</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>5</Month><Day>26</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9599582</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9530009</PMID><DateCreated><Year>1998</Year><Month>04</Month><Day>15</Day></DateCreated><DateCompleted><Year>1998</Year><Month>04</Month><Day>15</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>70</Volume><Issue>6</Issue><PubDate><Year>1998</Year><Month>Mar</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion/ion proton-transfer kinetics: implications for analysis of ions derived from electrospray of protein mixtures.</ArticleTitle><Pagination><MedlinePgn>1198-202</MedlinePgn></Pagination><Abstract><AbstractText>Protein ions of different mass and charge but similar mass-to-charge ratios are shown to undergo significantly different rates of differential neutralization, defined as the rate of change of charge with time, upon initiation of reactions with oppositely charged ions in the quadrupole ion trap. Overlapping charge state distributions arising from mixtures of ions of dissimilar charge are separated on the mass-to-charge scale at short reactions times. It is also demonstrated that the time frame for near total neutralization, defined as charge reduction to the 1+ ion, is relatively insensitive to initial charge state. It is shown, for example, that the (M + 11H)(11+)-(M + 22H)22+ ions derived from horse skeletal muscle apomyoglobin yield the (M + H)+ ion as the major ion/ion reaction product over the same reaction period that largely converts doubly protonated bradykinin to the singly protonated species. Less than 25% of the bradykinin ions are expected to be totally neutralized when roughly 7% of the myoglobin ions are expected to be totally neutralized. The phenomenon of significantly different initial differential neutralization rates for ions of dissimilar charge, and the relative insensitivity to ion charge for total neutralization, can be used to advantage in strategies for protein ion mixture analysis.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA. mcluckeysa@ornl.gov</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>Asano</LastName><ForeName>K G</ForeName><Initials>KG</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>4</Month><Day>8</Day><Hour>2</Hour><Minute>2</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>4</Month><Day>8</Day><Hour>2</Hour><Minute>2</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9530009</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9450363</PMID><DateCreated><Year>1998</Year><Month>02</Month><Day>24</Day></DateCreated><DateCompleted><Year>1998</Year><Month>02</Month><Day>24</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>70</Volume><Issue>2</Issue><PubDate><Year>1998</Year><Month>Jan</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Boundary-activated dissociation of peptide ions in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>340-6</MedlinePgn></Pagination><Abstract><AbstractText>Boundary-activated dissociation (BAD) of peptides has been investigated as an alternative to the use of resonant excitation to effect collision-induced dissociation in the quadrupole ion trap. BAD's nonresonant excitation mechanism overcomes a major drawback in resonant excitation, namely, the variation of the resonant excitation frequency as a function of ion space charging. As with resonant excitation, the pulsed introduction of heavy gases (argon, xenon) extends the applicability of BAD when tandem mass spectrometry is performed on peptide ions. The presence of heavy gases during ion activation allows greater internal energy deposition and also enables BAD to be performed at much lower trapping field strengths (lower q values) than previously reported for this technique. This extends the mass range over which product ions can be collected.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>R W</ForeName><Initials>RW</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27599, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>3H3U766W84</RegistryNumber><NameOfSubstance UI="D014978">Xenon</NameOfSubstance></Chemical><Chemical><RegistryNumber>67XQY1V3KH</RegistryNumber><NameOfSubstance UI="D001128">Argon</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001128">Argon</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005583">Fourier Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014978">Xenon</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1998</Year><Month>2</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1998</Year><Month>2</Month><Day>5</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1998</Year><Month>2</Month><Day>5</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9450363</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9212711</PMID><DateCreated><Year>1997</Year><Month>08</Month><Day>21</Day></DateCreated><DateCompleted><Year>1997</Year><Month>08</Month><Day>21</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>69</Volume><Issue>13</Issue><PubDate><Year>1997</Year><Month>Jul</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>A MALDI probe for mass spectrometers.</ArticleTitle><Pagination><MedlinePgn>2525-9</MedlinePgn></Pagination><Abstract><AbstractText>A new MALDI probe has been designed that uses transmission geometry. This geometry allows the probe to be fashioned after typical EI/CI solid probes which enables it to be introduced into spatially constrained ion source regions such as encountered in quadrupole ion trap mass spectrometers. In the probe design demonstrated here, light from a fiber optic irradiates the backside of a sample through a small piece of quartz on which the sample has been directly deposited. The performance characteristics exhibited by utilizing this probe for MALDI on a quadrupole ion trap mass spectrometer are similar to those which can be obtained through the traditional methods of implementing MALDI. Spectra have been obtained from 50 fmol of total loading of bombesin, MS/MS has been performed on 5 pmol of des-Arg9-bradykinin, and the analyte ion signal is shown to last for over 2500 laser shots for 2 pmol of bombesin. Optical micrographs showing the crystal distribution of a sample containing 2 pmol of bombesin have been obtained as a function of the number of laser shots for a single sample loading. Although this probe was designed for use with the quadrupole ion trap, it can be adapted for use with all types of mass spectrometers. Thus, with only one laser, one fiber optic, and this probe, MALDI can be performed on multiple instruments in a lab.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Lennon</LastName><ForeName>J D</ForeName><Initials>JD</Initials><Suffix>3rd</Suffix><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>15958-92-6</RegistryNumber><NameOfSubstance UI="C024626">bradykinin, des-Arg(9)-</NameOfSubstance></Chemical><Chemical><RegistryNumber>PX9AZU7QPK</RegistryNumber><NameOfSubstance UI="D001839">Bombesin</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001839">Bombesin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000031">analogs &amp; derivatives</QualifierName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D015336">Molecular Probe Techniques</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1997</Year><Month>7</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1997</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9212711</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9030046</PMID><DateCreated><Year>1997</Year><Month>03</Month><Day>31</Day></DateCreated><DateCompleted><Year>1997</Year><Month>03</Month><Day>31</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>69</Volume><Issue>3</Issue><PubDate><Year>1997</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Counting basic sites in oligopeptides via gas-phase ion chemistry.</ArticleTitle><Pagination><MedlinePgn>281-5</MedlinePgn></Pagination><Abstract><AbstractText>Cations derived from oligopeptides ranging from laminin fragment (5 residues) to beta-lactoglobulin (162 residues) have been subjected to gas-phase ion/molecule reactions with hydroiodic acid. The sum of the ion charge state and the maximum number of molecules of hydroiodic acid that attach to the ion is equal to the total number of lysines, arginines, histidines, and N-termini consisting of a primary amine for ions derived from all 21 oligopeptides studied. These results suggest that ion/molecule reactions can provide useful information regarding oligopeptide basic site number, which might be used as a criterion for searching protein data bases instead of, or in conjunction with, use of proteolytic digestion or gas-phase ion dissociation procedures.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002849">Chromatography, Gas</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D017422">Sequence Analysis, DNA</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1997</Year><Month>2</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1997</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9030046</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9183856</PMID><DateCreated><Year>1997</Year><Month>08</Month><Day>07</Day></DateCreated><DateCompleted><Year>1997</Year><Month>08</Month><Day>07</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0951-4198</ISSN><JournalIssue CitedMedium="Print"><Volume>11</Volume><Issue>8</Issue><PubDate><Year>1997</Year></PubDate></JournalIssue><Title>Rapid communications in mass spectrometry : RCM</Title><ISOAbbreviation>Rapid Commun. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Charge reduction of oligonucleotide anions via gas-phase electron transfer to xenon cations.</ArticleTitle><Pagination><MedlinePgn>875-80</MedlinePgn></Pagination><Abstract><AbstractText>Multiply-charged anions derived from electrospray (ES) ionization of the oligonucleotide 5'-d(GTCTTAGCGCTAAGAC)-3' have been subjected to electron transfer reactions with ionized xenon in a quadrupole ion trap and found to undergo minimal fragmentation. This observation stands in contrast with electron transfer to rare gases from anions of smaller oligonucleotides which have been shown to undergo extensive fragmentation. The present results are attributed to longer anion lifetimes for the larger oligonucleotide anions (following highly exothermic electron transfer) which then allow for collisional cooling by the helium bath gas. Reduction to singly charged anions with minimal fragmentation is noted, indicating that xenon cations can be considered as a reagent for simplifying ES mass spectra of moderately sized oligonucleotides. The relative merits of the use of xenon cations in the quadropole ion trap for this purpose is discussed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM 45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>ENGLAND</Country><MedlineTA>Rapid Commun Mass Spectrom</MedlineTA><NlmUniqueID>8802365</NlmUniqueID><ISSNLinking>0951-4198</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>206GF3GB41</RegistryNumber><NameOfSubstance UI="D006371">Helium</NameOfSubstance></Chemical><Chemical><RegistryNumber>3H3U766W84</RegistryNumber><NameOfSubstance UI="D014978">Xenon</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004583">Electrons</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008401">Gas Chromatography-Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006371">Helium</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014978">Xenon</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1997</Year><Month>1</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1997</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9183856</ArticleId><ArticleId IdType="pii">10.1002/(SICI)1097-0231(199705)11:8&lt;875::AID-RCM934&gt;3.0.CO;2-K</ArticleId><ArticleId IdType="doi">10.1002/(SICI)1097-0231(199705)11:8&lt;875::AID-RCM934&gt;3.0.CO;2-K</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24203151</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>08</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>11</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>7</Volume><Issue>12</Issue><PubDate><Year>1996</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Effects of heavy gases on the tandem mass spectra of peptide ions in the quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1194-202</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/S1044-0305(96)00109-2</ELocationID><Abstract><AbstractText>Heavy gases (xenon, argon, krypton, methane) have been used to improve the performance of the quadrupole ion trap when performing collision-induced dissociation on peptides. MS/MS spectra reveal that increased amounts of internal energy can be deposited into peptide ions and more structural information can be obtained. Specifically, the pulsed introduction of the heavy gases (as reported previously by Doroshenko, V. M.; Cotter, R. J. Anal. Chem. 1996, 68, 463) provides greater energy deposition without the deleterious effects that static pressures of heavy gas have on spectra. Internal energy deposition as indicated by a qualitative evaluation of MS/MS spectra shows pulsed introduction of heavy gases enables ions to obtain more internal energy than possible by using static pressures of the same heavy gases. A linear correlation is observed between the percentage of heavy gas added and the ratio of product ions used to reflect internal energy deposition. Results here also show that upon pulsed introduction of heavy gases, empirical optimization of a single frequency resonant excitation signal is no longer needed to obtain good MS/MS spectrometry efficiency. The presence of many low mass-to-charge ratio ions and the absence of side chain cleavages in the MS/MS spectra of peptides suggests that the propensity for consecutive fragmentations is increased with the pulsed introduction of heavy gases. In addition, by varying the delay time between introduction of the gas and application of the resonant excitation signal, the amount of fragmentation observed in MS/MS spectra can be changed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>R W</ForeName><Initials>RW</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1996</Year><Month>5</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1996</Year><Month>7</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1996</Year><Month>7</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1996</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/S1044-0305(96)00109-2</ArticleId><ArticleId IdType="pubmed">24203151</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">8916454</PMID><DateCreated><Year>1996</Year><Month>12</Month><Day>30</Day></DateCreated><DateCompleted><Year>1996</Year><Month>12</Month><Day>30</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>68</Volume><Issue>22</Issue><PubDate><Year>1996</Year><Month>Nov</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion/ion proton transfer reactions for protein mixture analysis.</ArticleTitle><Pagination><MedlinePgn>4026-32</MedlinePgn></Pagination><Abstract><AbstractText>Ion/ion proton transfer reactions are shown to be an effective means to facilitate the resolution of ions in electrospray mass spectrometry that differ in mass and charge but are similar in mass-to-charge ratio. Examples are shown in which a minor contaminant protein in a ribonuclease B solution is clearly apparent after ion/ion proton transfer but not in the conventional electrospray mass spectrum. A further example involving a mixture of bovine serum albumin and bovine transferrin also showed the identification of previously unnoticed "contaminant" polymer. The latter mixture also illustrated important issues in the use of the quadrupole ion trap as a reaction vessel and mass analyzer for high mass-to-charge ratio ions. The results suggest that the use of ion trap operating parameters specifically tailored for storage, ejection, detection, and mass-to-charge analysis of high mass-to-charge ratio ions can have attractive analytical figures of merit for determining mixtures of relatively high-mass proteins and, by extension, other types of high-mass biopolymers.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>R01GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D004798">Enzymes</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004798">Enzymes</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006736">Horses</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>11</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2001</Year><Month>3</Month><Day>28</Day><Hour>10</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1996</Year><Month>11</Month><Day>15</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">8916454</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">8916418</PMID><DateCreated><Year>1996</Year><Month>12</Month><Day>30</Day></DateCreated><DateCompleted><Year>1996</Year><Month>12</Month><Day>30</Day></DateCompleted><DateRevised><Year>2011</Year><Month>11</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1076-5174</ISSN><JournalIssue CitedMedium="Print"><Volume>31</Volume><Issue>10</Issue><PubDate><Year>1996</Year><Month>Oct</Month></PubDate></JournalIssue><Title>Journal of mass spectrometry : JMS</Title><ISOAbbreviation>J Mass Spectrom</ISOAbbreviation></Journal><ArticleTitle>Cation attachment to multiply charged anions of oxidized bovine insulin A-chain.</ArticleTitle><Pagination><MedlinePgn>1093-100</MedlinePgn></Pagination><Abstract><AbstractText>Multiply charged anions of oxidized bovine insulin A-chain react with protonated quinoline exclusively by proton transfer in a Paul trap operated with helium bath gas at a pressure of 10(-3) Torr. The isomeric [C9H8N]+ ions formed from the reaction of [C4H4]+ with pyridine, on the other hand, react largely by attachment to the multiply charged anions of oxidized bovine insulin A-chain. This observation can be rationalized on the basis of competition between unimolecular decomposition versus cooling of the ion-ion collision complex. In the case of protonated quinoline, no significant barriers are expected along the reaction coordinate for proton transfer. However, the [C9H8N]+ ion-molecule reaction product is not expected to transfer a proton without undergoing rearrangement, as is consistent with ion trap collisional activation results. The rearrangement reaction introduces a significant barrier along the reaction coordinate, thereby increasing the lifetime of the ion-ion collision complex. RRKM modeling for a polypeptide of comparable size suggests that a barrier of 0.6 eV or greater will allow for the observation of cation attachment whereas the lifetimes of collision complexes with well depths less than approximately 0.6 eV are too short for collisional cooling by the bath gas to be effective.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Herron</LastName><ForeName>W J</ForeName><Initials>WJ</Initials></Author><Author ValidYN="Y"><LastName>Stephenson</LastName><ForeName>J L</ForeName><Initials>JL</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>ENGLAND</Country><MedlineTA>J Mass Spectrom</MedlineTA><NlmUniqueID>9504818</NlmUniqueID><ISSNLinking>1076-5174</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000838">Anions</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D002412">Cations</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000838">Anions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002412">Cations</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004579">Electron Transport</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007328">Insulin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010084">Oxidation-Reduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>10</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2000</Year><Month>6</Month><Day>22</Day><Hour>10</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1996</Year><Month>10</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">8916418</ArticleId><ArticleId IdType="pii">10.1002/(SICI)1096-9888(199610)31:10&lt;1093::AID-JMS393&gt;3.0.CO;2-6</ArticleId><ArticleId IdType="doi">10.1002/(SICI)1096-9888(199610)31:10&lt;1093::AID-JMS393&gt;3.0.CO;2-6</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24203607</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>08</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>11</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>7</Volume><Issue>9</Issue><PubDate><Year>1996</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Reaction from isomeric parent ions in the dissociation of dimethylpyrroles.</ArticleTitle><Pagination><MedlinePgn>930-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(96)00021-9</ELocationID><Abstract><AbstractText>The major dissociation pathways of the [M-H](+) (loss of NH3 or CH4) and the [M+H](+) (loss of NH3 or CH3) ions from dimethylpyrroles have been determined to occur from isomeric parent ions. For the [M-H](+) ion (formed by loss of a methyl hydrogen), loss of NH3 leads to the formation of the phenylium ion and is preceded by consecutive carbon ring expansions followed by a ring contraction to form protonated aniline. Loss of CH4 occurs after the first carbon ring expansion, which forms protonated picoline. The relative partitioning between the two dissociation paths depends upon the internal energy content of the parent ion; the highest point on the potential energy surface is the second ring expansion step. The [M+H](+) ion reacts through a similar pathway via dihydro analogs of picoline and aniline. The proposed reaction pathways are supported by results of semiempirical molecular orbital calculations.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Lin</LastName><ForeName>T</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Asam</LastName><ForeName>M R</ForeName><Initials>MR</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>1996</Year><Month>4</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1996</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(96)00021-9</ArticleId><ArticleId IdType="pubmed">24203607</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24203402</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>08</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>11</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>7</Volume><Issue>5</Issue><PubDate><Year>1996</Year><Month>May</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Reactions of the phenylium cation with small oxygen- and nitrogen-containing molecules.</ArticleTitle><Pagination><MedlinePgn>473-81</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(95)00704-0</ELocationID><Abstract><AbstractText>The reactions of phenylium with water and ammonia and their methyl homologs have been investigated using a quadrupole ion trap and semiempirical molecular orbital calculations. The results indicate that both types of molecules react with phenylium through lone pair electrons even though, for methyl-containing compounds, insertion into a C-H bond would lead to more stable products. For the excited adducts formed by reaction with methyl-containing reactant neutrals, the only dissociation observed is loss of a methyl radical. Neutral losses of H2 or CH4, which are more thermodynamically stable, are not observed, which indicates that these reactions are either not kinetically competitive or have high energy transition states due to the fact that the reactions would need to occur via orbital symmetry forbidden 1,2 eliminations.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Ranasinghe</LastName><ForeName>Y A</ForeName><Initials>YA</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, CB 3290, 27599-3290, Chapel Hill, NC.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1995</Year><Month>9</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1995</Year><Month>11</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1995</Year><Month>11</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>5</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1996</Year><Month>5</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(95)00704-0</ArticleId><ArticleId IdType="pubmed">24203402</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">21619181</PMID><DateCreated><Year>2011</Year><Month>05</Month><Day>30</Day></DateCreated><DateCompleted><Year>2012</Year><Month>10</Month><Day>02</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>68</Volume><Issue>5</Issue><PubDate><Year>1996</Year><Month>Mar</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Strategy for pulsed ionization methods on a sector mass spectrometer.</ArticleTitle><Pagination><MedlinePgn>845-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1021/ac950889f</ELocationID><Abstract><AbstractText>A method to help facilitate efficient implementation of pulsed ionization methods on a double-focusing sector mass spectrometer is described here. This method involves the addition of an inductive detector between the electric and magnetic sectors. The inductive detector will allow a crude, but complete time-of-flight mass spectrum to be acquired with as little as a single laser shot, thereby avoiding the necessity of sequentially compiling limited mass ranges as has been done previously. Mass analysis by the complete sector instrument can be performed simultaneously with the time-of-flight analysis.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Lennon</LastName><ForeName>J D</ForeName><Initials>JD</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, and Department of Chemistry, Auburn University, Auburn, Alabama 30597.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shinn</LastName><ForeName>D</ForeName><Initials>D</Initials></Author><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>R W</ForeName><Initials>RW</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2011</Year><Month>5</Month><Day>31</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>3</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1996</Year><Month>3</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1021/ac950889f</ArticleId><ArticleId IdType="pubmed">21619181</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">8712360</PMID><DateCreated><Year>1996</Year><Month>09</Month><Day>09</Day></DateCreated><DateCompleted><Year>1996</Year><Month>09</Month><Day>09</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>68</Volume><Issue>3</Issue><PubDate><Year>1996</Year><Month>Feb</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Correlation of kinetic energy losses in high-energy collision-induced dissociation with observed peptide product ions.</ArticleTitle><Pagination><MedlinePgn>522-6</MedlinePgn></Pagination><Abstract><AbstractText>In collision-induced dissociation, some of an incident parent ion's kinetic energy is converted into internal energy upon collision with a neutral target. The kinetic energy lost is related to the amount of internal energy deposited into any individual ion. To see dissociations of different critical energies on the same time scale, different amounts of internal energy need to be deposited. This should be reflected in the kinetic energy lost by the parent ion in the formation of different product ions. Variable amounts of energy loss in the formation of different peptide product ions are reported here. It is seen that different product ion types (b, y, a) show ordered patterns of energy losses. A greater energy loss is observed for the formation of b-type product ions than for y-type, and even greater energy losses are observed for the formation of a-type product ions. A very good correlation between ion type energy loss and ion mass is observed. Thus, measuring the energy losses in the formation of product ions may provide a means for classifying the product ion type.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Vachet</LastName><ForeName>R W</ForeName><Initials>RW</Initials><AffiliationInfo><Affiliation>Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Winders</LastName><ForeName>A D</ForeName><Initials>AD</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM49852</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D016339">Spectrometry, Mass, Fast Atom Bombardment</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>2</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1996</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1996</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">8712360</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">9027235</PMID><DateCreated><Year>1997</Year><Month>02</Month><Day>19</Day></DateCreated><DateCompleted><Year>1997</Year><Month>02</Month><Day>19</Day></DateCompleted><DateRevised><Year>2011</Year><Month>11</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>68</Volume><Issue>2</Issue><PubDate><Year>1996</Year><Month>Jan</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Product ion charge state determination via ion/ion proton transfer reactions.</ArticleTitle><Pagination><MedlinePgn>257-62</MedlinePgn></Pagination><Abstract><AbstractText>Proton transfer from protonated pyridine to product anions derived from quadrupole ion trap collisional activation of the triply charged anion of the oligonucleotide 5'-d(AAAA)-3' and the 6- charge state of oxidized bovine insulin A-chain is shown to be a rapid and effective way to determine product charge states. The reactions are carried out in a quadrupole ion trap as part of a procedure involving three stages of mass analysis. It is demonstrated that the reactions can be driven at rates sufficiently high to convert 30-80% of the initial product anion population to second generation products in 50-200 ms. The use of ion/ion reactions enjoys significant advantages over the use of ion/molecule proton transfer chemistry. For example, ion/ion reactions are more universal than ion/molecule reactions due to their greater exothermicity, and ion/ion reactions allow for precise control over the timing of introduction and ejection of each reactant. Despite the high exothermicity of the reactions, no significant fragmentation of product ions derived from high-mass multiply charged anions is observed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Herron</LastName><ForeName>W J</ForeName><Initials>WJ</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007328">Insulin</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1996</Year><Month>1</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1996</Year><Month>1</Month><Day>15</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1996</Year><Month>1</Month><Day>15</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9027235</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">7503409</PMID><DateCreated><Year>1996</Year><Month>01</Month><Day>18</Day></DateCreated><DateCompleted><Year>1996</Year><Month>01</Month><Day>18</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2697</ISSN><JournalIssue CitedMedium="Print"><Volume>230</Volume><Issue>2</Issue><PubDate><Year>1995</Year><Month>Sep</Month><Day>20</Day></PubDate></JournalIssue><Title>Analytical biochemistry</Title><ISOAbbreviation>Anal. Biochem.</ISOAbbreviation></Journal><ArticleTitle>Analysis of polymerase chain reaction-amplified DNA products by mass spectrometry using matrix-assisted laser desorption and electrospray: current status.</ArticleTitle><Pagination><MedlinePgn>205-14</MedlinePgn></Pagination><Abstract><AbstractText>Recent advances in molecular biology are making it possible to diagnose genetic diseases and identify pathogens through the analysis of DNA. As clinical applications for molecular diagnosis increase, rapid, reliable methods for determination of DNA size will be needed. Mass spectrometry offers the potential of analyzing amplified DNA quickly and reliably, without the need for gel-based separation and sample labeling steps that are conventionally employed. Both electrospray ionization and matrix-assisted laser desorption/ionization have been evaluated for the size analysis of DNA using both synthetic oligonucleotides and PCR-amplified samples corresponding to bases 1626 to 1701 of the cystic fibrosis transmembrane conductance regulator gene. Both technologies have been demonstrated to have mass range and sensitivity required for the analysis of PCR-amplified DNA in this size range using minimal sample preparation. Steps required to incorporate either ionization technique into a reliable analytical scheme for the rapid, routine analysis of DNA are outlined.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Doktycz</LastName><ForeName>M J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Health Sciences Research Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hurst</LastName><ForeName>G B</ForeName><Initials>GB</Initials></Author><Author ValidYN="Y"><LastName>Habibi-Goudarzi</LastName><ForeName>S</ForeName><Initials>S</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>K</ForeName><Initials>K</Initials></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>C H</ForeName><Initials>CH</Initials></Author><Author ValidYN="Y"><LastName>Uziel</LastName><ForeName>M</ForeName><Initials>M</Initials></Author><Author ValidYN="Y"><LastName>Jacobson</LastName><ForeName>K B</ForeName><Initials>KB</Initials></Author><Author ValidYN="Y"><LastName>Woychik</LastName><ForeName>R P</ForeName><Initials>RP</Initials></Author><Author ValidYN="Y"><LastName>Buchanan</LastName><ForeName>M V</ForeName><Initials>MV</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Biochem</MedlineTA><NlmUniqueID>0370535</NlmUniqueID><ISSNLinking>0003-2697</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D016133">Polymerase Chain Reaction</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D019032">Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1995</Year><Month>9</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1995</Year><Month>9</Month><Day>20</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1995</Year><Month>9</Month><Day>20</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">7503409</ArticleId><ArticleId IdType="pii">S0003269785714650</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">9912468</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>21</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1050-2947</ISSN><JournalIssue CitedMedium="Print"><Volume>52</Volume><Issue>3</Issue><PubDate><Year>1995</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Physical review. A</Title><ISOAbbreviation>Phys. Rev., A</ISOAbbreviation></Journal><ArticleTitle>Chemical selectivity in the dissociative ionization of organic molecules by low-energy positrons.</ArticleTitle><Pagination><MedlinePgn>2088-2094</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xu</LastName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Hulett</LastName><Initials>LD</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>Lewis</LastName><Initials>TA</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><Initials>SA</Initials></Author></AuthorList><Language>ENG</Language><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country/><MedlineTA>Phys Rev A</MedlineTA><NlmUniqueID>9887339</NlmUniqueID><ISSNLinking>1050-2947</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1995</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1999</Year><Month>2</Month><Day>19</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1995</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9912468</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">8686879</PMID><DateCreated><Year>1996</Year><Month>08</Month><Day>21</Day></DateCreated><DateCompleted><Year>1996</Year><Month>08</Month><Day>21</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>67</Volume><Issue>14</Issue><PubDate><Year>1995</Year><Month>Jul</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion/molecule reactions for improved effective mass resolution in electrospray mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>2493-7</MedlinePgn></Pagination><Abstract><AbstractText>Tandem mass spectrometry is shown to improve the effective mass resolution in electrospray mass spectrometry. The technique involves selecting a population of ions within a narrow range of mass-to-charge values and allowing the ions to undergo proton transfer reactions. The shifts in mass-to-charge ratios associated with product ions formed by proton transfer allow for mass and charge assignment. The success of the technique relies on the relative enrichment of ions of a particular charge state that occurs in the mass-to-charge selection step. This approach can be used to extend the polymer mass range amenable to measurement, analyze mixtures that might otherwise be too complex for reliable mass measurements, and improve mass measurement precision when a mixture of cations is present within a given charge state. The technique is illustrated with a quadrupole ion trap using multiply-charged ions of cytochrome c, transfer ribonucleic acid from E. coli, strain W, and a synthetic deoxyribonucleic acid 30-mer.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-6365, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009841">Oligonucleotides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1995</Year><Month>7</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1995</Year><Month>7</Month><Day>15</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1995</Year><Month>7</Month><Day>15</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">8686879</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24214308</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>11</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>13</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>6</Volume><Issue>6</Issue><PubDate><Year>1995</Year><Month>Jun</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion-ion reactions in the gas phase: Proton transfer reactions of protonated pyridine with multiply charged oligonucleotide anions.</ArticleTitle><Pagination><MedlinePgn>529-32</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(95)00199-N</ELocationID><Abstract><AbstractText>Isolated triply and doubly charged anions of the single-stranded deoxynucleotide 5'-d(AAAA)-3' were allowed to undergo ion-ion proton transfer reactions with protonated pyridine cations within a quadrupole ion trap mass spectrometer. Sufficiently high ion number densities and spatial overlap of the oppositely charged ion clouds could be achieved to yield readily measurable rates. Three general observations were made: (1) the ion-ion reaction rate constants were estimated to be 10(- (7 - 8)) cm(3) ion(-1) s(-1); (2) the ion-ion reaction rates were found to be dependent on the reactant ion number density, which could be controlled by both the reactant ion number and the pseudopotential well depth, and (3) very little fragmentation, if any, was observed, as might normally be expected with highly exothermic proton transfer reactions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Herron</LastName><ForeName>W J</ForeName><Initials>WJ</Initials><AffiliationInfo><Affiliation>Oak Ridge National Laboratory, Chemical and Analytical Sciences Division, Oak Ridge, Tennessee, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1995</Year><Month>2</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1995</Year><Month>2</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1995</Year><Month>2</Month><Day>14</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1995</Year><Month>6</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1995</Year><Month>6</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(95)00199-N</ArticleId><ArticleId IdType="pubmed">24214308</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24222072</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>13</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>6</Volume><Issue>2</Issue><PubDate><Year>1995</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion trap collisional activation of the deprotonated deoxymononucleoside and deoxydinucleoside monophosphates.</ArticleTitle><Pagination><MedlinePgn>102-13</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/S1044-0305(94)00108-C</ELocationID><Abstract><AbstractText>Deoxymononucleoside and deoxydinucleoside monophosphate anions formed by electrospray have been subjected to ion trap collisional activation. The threshold for decomposition via loss of base is significantly lower for the deoxymononucleoside 3'-monophosphates than for the corresponding 5'-monophosphates, which indicates that the presence of a charged 3' phosphate group facilitates base loss. The behavior of the bases among each class of isomers shows slight variation in threshold and tandem mass spectrometry efficiency with tile notable exception of 2'-deoxyguanosine 5'-monophosphate. This ion is exceptionally stable toward decomposition via base loss, which reflects a strong hydrogen bonding interaction between the base and the phosphate group. All dinucleotides fragment via similar mechanisms, but the propensity for neutral base loss relative to loss of a charged base is highly dependent on the identities of both the 5' and 3' bases. The behavior of the dinucleotides under collisional activation conditions supports the proposal that base loss proceeds via a proton-bound dimer intermediate in which loss of the charged base directly competes with loss of the neutral base. Application of the kinetic method allows for quantitative predictions of the differences of the gas-phase acidities of the dimer components.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Habibi-Goudarzi</LastName><ForeName>S</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1994</Year><Month>8</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1994</Year><Month>10</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1994</Year><Month>10</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1995</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1995</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/S1044-0305(94)00108-C</ArticleId><ArticleId IdType="pubmed">24222072</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24226510</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>14</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>15</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>5</Volume><Issue>12</Issue><PubDate><Year>1994</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Competition between resonance ejection and ion dissociation during resonant excitation in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>1031-41</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(94)85065-8</ELocationID><Abstract><AbstractText>The competition between ion dissociation and ion ejection during resonant excitation in a quadrupole ion trap is investigated. Ions of similar mass but with a range of critical energies for the onset of dissociation have been examined. The effects of the amplitude and duration of the resonant excitation, the well depth in which the ions are trapped, and the pressure and nature of the collision gas are explored. Once the onset of ion ejection is reached, the rate of ion ejection increases with increased amplitude of the resonant excitation signal. The rate of ejection decreases or stays constant as a function of the duration of the resonant excitation, depending upon the ion species being excited. Increasing the trapping well depth increases the relative amount of dissociation versus ejection as does increasing the pressure of the bath gas. Adding heavier bath gases lowers the onset of ion dissociation and raises the onset of ion ejection.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Charles</LastName><ForeName>M J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Department of Environmental Sciences and Engineering, University of North Carolina at Chapel HilI, 27599-7400, Chapel Hilt, NC, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1994</Year><Month>1</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1994</Year><Month>7</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1994</Year><Month>7</Month><Day>20</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(94)85065-8</ArticleId><ArticleId IdType="pubmed">24226510</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">7978315</PMID><DateCreated><Year>1994</Year><Month>12</Month><Day>22</Day></DateCreated><DateCompleted><Year>1994</Year><Month>12</Month><Day>22</Day></DateCompleted><DateRevised><Year>2008</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>66</Volume><Issue>20</Issue><PubDate><Year>1994</Year><Month>Oct</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Accumulation and storage of ionized duplex DNA molecules in a quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>3416-22</MedlinePgn></Pagination><Abstract><AbstractText>Evidence for the accumulation and storage of ionized duplex DNA molecules in a quadrupole ion trap is presented. Aqueous solutions of complementary single-strand molecules of DNA were annealed to form duplexes in solution and subjected to electrospray ionization. The ions liberated in this process were transported through an atmosphere/vacuum interface and injected into a quadrupole ion trap operated with a bath gas present at a pressure of 1 mTorr. Despite the roughly 2 order of magnitude poorer signal levels noted for electrospray of aqueous solutions relative to those observed for single-strand oligonucleotides in methanol solutions, aqueous solutions were used to avoid denaturing the duplexes. Ion trap mass spectra are reported here for duplexes consisting of two complementary 20-mer single strands and two complementary 10-mers. Tandem mass spectrometry results are also reported for the 10-mer duplex. These results are significant in that they indicate that the ions are kinetically stable under the ion injection, storage, and mass analysis conditions of the quadrupole ion trap operated with a relatively high pressure of bath gas. The tools of ion trap mass spectrometry can therefore be applied to this important class of compounds.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Doktycz</LastName><ForeName>M J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Biology Division, Oak Ridge National Laboratory, Tennessee 37831-6365.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Habibi-Goudarzi</LastName><ForeName>S</ForeName><Initials>S</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007477">Ions</NameOfSubstance></Chemical><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004355">Drug Stability</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004356">Drug Storage</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007477">Ions</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>10</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>10</Month><Day>15</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1994</Year><Month>10</Month><Day>15</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">7978315</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24222001</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>13</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>5</Volume><Issue>8</Issue><PubDate><Year>1994</Year><Month>Aug</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Ion trap tandem mass spectrometry applied to small multiply charged oligonucleotides with a modified base.</ArticleTitle><Pagination><MedlinePgn>740-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(94)80006-5</ELocationID><Abstract><AbstractText>Two isomeric oligodeoxynucleotide hexamers, 5'-d(N-6meATGCAT)-3' and 5'-d(ATGSmeCAT)-3', were subjected to analysis by electrospray and ion trap mass spectrometry. In the case of the isomer with a modified adenine, location of the modified base in the sequence was straightforward and a triple mass spectrometry experiment provided information on the identity of the modification. In contrast, the isomer with the methylated cytosine did not yield definitive information on the location or identity of the modification. Tandem mass spectrometry data in this case could indicate that the modification was present on either the third or fourth nucleoside. The two isomers represent extremes in the facility with which modified bases can be identified and located in a small oligonucleotide via multiple mass spectrometry of multiply charged anions. A preference for loss of particular bases strongly influences which structurally diagnostic ions are formed upon collisional activation. The likelihood for locating and identifying a modified base is dependent, therefore, upon the likelihood that the base is lost directly from the parention.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, P.O. Bow 2008, 37831-6365, Oak Ridge, TN.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Habibi-Goudarzi</LastName><ForeName>S</ForeName><Initials>S</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1993</Year><Month>10</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1994</Year><Month>2</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1994</Year><Month>1</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>8</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>8</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(94)80006-5</ArticleId><ArticleId IdType="pubmed">24222001</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">8080116</PMID><DateCreated><Year>1994</Year><Month>10</Month><Day>05</Day></DateCreated><DateCompleted><Year>1994</Year><Month>10</Month><Day>05</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>66</Volume><Issue>14</Issue><PubDate><Year>1994</Year><Month>Jul</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Ion trap mass spectrometry. Using high-pressure ionization.</ArticleTitle><Pagination><MedlinePgn>737A-743A</MedlinePgn></Pagination><Abstract><AbstractText>The quadrupole ion trap, operated with a relatively high-pressure bath gas, occupies a unique place among mass analyzers. As an ion storage device, it shares many characteristics with the ICR instrument, but the use of a light bath gas and mass-selective instability for mass analysis contrasts with normal ICR operation. The bath gas facilitates the capture of ions injected into the oscillating quadrupole field and cools the ions to the center of the ion trap before mass-selective ejection. The bath gas also provides a conduit for heating ions. Mild collisional activation conditions can dissociate clusters, such as solvated analyte ions, formed by ES. Dissociation of covalently bound ions can be used to obtain structural information as part of a tandem MS experiment or to destroy polyatomic species in elemental analyses. The moderate background pressure requirements of the ion trap using mass-selective instability make it a natural mass analyzer to be coupled with high-pressure ionization methods. The ion trap can provide a significant advantage in efficiency over beam-type mass spectrometers, which translates into lower detection limits. Lower detection limits can be realized from superior duty cycle and MS/MS efficiency, although transmission for single-stage MS is comparable. The greatest advantage in efficiency can be obtained with weak ion beams that require long ion accumulation times and therefore high duty cycles. This, in part, makes the ion trap particularly attractive for ES. Bright ion sources can provide similar advantages if major ion beam components can be ejected during ion accumulation to minimize the deleterious effects caused by ion-ion interactions.(ABSTRACT TRUNCATED AT 250 WORDS)</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Van Berkel</LastName><ForeName>G J</ForeName><Initials>GJ</Initials></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>50</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>7</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>7</Month><Day>15</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1994</Year><Month>7</Month><Day>15</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">8080116</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24221970</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>13</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>5</Volume><Issue>7</Issue><PubDate><Year>1994</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Observation of gas-phase molecular dications formed from neutral organics in solution via qemical electron-transfer reactions by using electrospray Ionization Mass Spectrometry.</ArticleTitle><Pagination><MedlinePgn>689-92</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(94)85009-7</ELocationID><Abstract><AbstractText>The first observation of organic dications formed by multiple electron loss in electrospray mass spectra is reported. The dications of β-carotene, canthaxanthine, cobalt(II) octaethylporphyrin, and nicke(II) octaethylporphyrin were created in solution via chemical electrontransfer reactions and detected in the gas phase by electrospray ionization mass spectrometry (ES-MS) using a flow-injection experiment. The analytes were injected into a flowing solvent-oxidant stream (10 μL/min) composed of dried methylene chloride containing ≈ 0.1% by volume trifluoroacetic acid and 0.1% by volume antimony pentafluoride (SbF5). The dications created in this oxidizing solvent system were preserved for detection by rapidly transferring them from the reactive solvent-oxidant system to the gas phase, where, in the absence of the solvent system, they were "long-lived" and amenable to mass analysis. This work demonstrates means to produce ions novel to ES-MS and means to detect and study by ES-MS species that are short-lived in solution. In addition, this work shows that electrospray ionization can potentially be used to generate gas-phase dications for mass spectrometric study that are difficult to produce directly from gas-phase neutrals by other ionization techniques (e.g., M(2+) from β-carotene).</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Van Berkel</LastName><ForeName>G J</ForeName><Initials>GJ</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008/Bldg. 5510, 37831-6365, Oak Ridge, TN.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Asano</LastName><ForeName>K G</ForeName><Initials>KG</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>1994</Year><Month>3</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1994</Year><Month>2</Month><Day>25</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(94)85009-7</ArticleId><ArticleId IdType="pubmed">24221970</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">9910735</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>21</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1050-2947</ISSN><JournalIssue CitedMedium="Print"><Volume>49</Volume><Issue>5</Issue><PubDate><Year>1994</Year><Month>May</Month></PubDate></JournalIssue><Title>Physical review. A</Title><ISOAbbreviation>Phys. Rev., A</ISOAbbreviation></Journal><ArticleTitle>Internal energy deposition into molecules upon positron-electron annihilation.</ArticleTitle><Pagination><MedlinePgn>R3151-R3154</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xu</LastName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Hulett</LastName><Initials>LD</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>Lewis</LastName><Initials>TA</Initials></Author><Author ValidYN="Y"><LastName>Donohue</LastName><Initials>DL</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Crawford</LastName><Initials>OH</Initials></Author></AuthorList><Language>ENG</Language><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country/><MedlineTA>Phys Rev A</MedlineTA><NlmUniqueID>9887339</NlmUniqueID><ISSNLinking>1050-2947</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>5</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1999</Year><Month>2</Month><Day>19</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1994</Year><Month>5</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9910735</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24222570</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>13</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>5</Volume><Issue>4</Issue><PubDate><Year>1994</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Gaseous myoglobin ions stored at greater than 300 K.</ArticleTitle><Pagination><MedlinePgn>324-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(94)85023-2</ELocationID><Abstract><AbstractText>Multiply-charged myoglobin ions retaining the prosthetic heme group have been formed by electrospray, injected into a quadrupole ion trap, and stored for up to one second prior to mass analysis. Collisional activation experiments indicate that these ions readily fragment into the charged heme group and the complementary apomyoglobin ion. No fragmentation is observed, however, upon ion storage in the presence of a neutral bath gas at 1 × 10(-3) torr for up to one second. The significance of this observation is that these non-covalently-bound ions, in which both the heme group and the polypeptide carry charge, are kinetically stable for over one second at room temperature and, perhaps, at higher temperatures. This suggests that other biologically relevant ions derived using electrospray and bound by non-covalent interactions can be studied using the various tools available with ion storage mass spectrometers and by other techniques that employ relatively high pressure environments for the study of gaseous ions.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, 3783-6365, Oak Ridge, TN, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ramsey</LastName><ForeName>R S</ForeName><Initials>RS</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>1994</Year><Month>2</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1994</Year><Month>2</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(94)85023-2</ArticleId><ArticleId IdType="pubmed">24222570</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24222562</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>13</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>14</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>5</Volume><Issue>4</Issue><PubDate><Year>1994</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Relative dissociation energy measurements using ion trap collisional activation.</ArticleTitle><Pagination><MedlinePgn>250-9</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(94)85015-1</ELocationID><Abstract><AbstractText>The measured minimum resonance excitation amplitudes for decomposition of polyatomic ions in the quadrupole ion trap collisional activation experiment are shown to correlate with literature critical energies. The present article describes how experiments can be performed to derive threshold resonance excitation amplitudes via the kinetics associated with collision-induced dissociation (i.e., dissociation rate constants) in the quadrupole ion trap. The relationship between these threshold values and critical energies is established empirically by using kinetic data acquired for molecular ions with critical energies measured with other techniques. The experiments are complicated by the change in optimum resonance excitation frequency with amplitude, due presumably to contributions from higher order fields. It is proposed that the threshold resonance excitation amplitude is a measure of the change in temperature of the parent ion population required to achieve a measurable rate of decomposition. The present results indicate that the quadrupole ion trap may see new applications as a quantitative tool for the study of gaseous ion chemistry.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hart</LastName><ForeName>K J</ForeName><Initials>KJ</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831-6365, Oak Ridge, TN.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1993</Year><Month>9</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1993</Year><Month>11</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1993</Year><Month>11</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1994</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(94)85015-1</ArticleId><ArticleId IdType="pubmed">24222562</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">9910508</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>21</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1050-2947</ISSN><JournalIssue CitedMedium="Print"><Volume>49</Volume><Issue>4</Issue><PubDate><Year>1994</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Physical review. A</Title><ISOAbbreviation>Phys. Rev., A</ISOAbbreviation></Journal><ArticleTitle>Ion production by positron-molecule resonances.</ArticleTitle><Pagination><MedlinePgn>2389-2393</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Glish</LastName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Greaves</LastName><Initials>RG</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Hulett</LastName><Initials>LD</Initials></Author><Author ValidYN="Y"><LastName>Surko</LastName><Initials>CM</Initials></Author><Author ValidYN="Y"><LastName>Xu</LastName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Donohue</LastName><Initials>DL</Initials></Author></AuthorList><Language>ENG</Language><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country/><MedlineTA>Phys Rev A</MedlineTA><NlmUniqueID>9887339</NlmUniqueID><ISSNLinking>1050-2947</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1994</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1999</Year><Month>2</Month><Day>19</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1994</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9910508</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">8297034</PMID><DateCreated><Year>1994</Year><Month>03</Month><Day>02</Day></DateCreated><DateCompleted><Year>1994</Year><Month>03</Month><Day>02</Day></DateCompleted><DateRevised><Year>2013</Year><Month>11</Month><Day>21</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>65</Volume><Issue>23</Issue><PubDate><Year>1993</Year><Month>Dec</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Active chemical background and noise reduction in capillary electrophoresis/ion trap mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>3521-4</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Ramsey</LastName><ForeName>R S</ForeName><Initials>RS</Initials></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>GM45372</GrantID><Acronym>GM</Acronym><Agency>NIGMS NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016422">Letter</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D029867">Xenopus Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>39379-15-2</RegistryNumber><NameOfSubstance UI="D009496">Neurotensin</NameOfSubstance></Chemical><Chemical><RegistryNumber>51827-01-1</RegistryNumber><NameOfSubstance UI="C016832">xenopsin</NameOfSubstance></Chemical><Chemical><RegistryNumber>S8TIM42R2W</RegistryNumber><NameOfSubstance UI="D001920">Bradykinin</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D001920">Bradykinin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002851">Chromatography, High Pressure Liquid</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004586">Electrophoresis</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009496">Neurotensin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009842">Oligopeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D029867">Xenopus Proteins</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1993</Year><Month>12</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1993</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1993</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">8297034</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">9909024</PMID><DateCreated><Year>1999</Year><Month>01</Month><Day>21</Day></DateCreated><Article PubModel="Print"><Journal><ISSN IssnType="Print">1050-2947</ISSN><JournalIssue CitedMedium="Print"><Volume>47</Volume><Issue>2</Issue><PubDate><Year>1993</Year><Month>Feb</Month></PubDate></JournalIssue><Title>Physical review. A</Title><ISOAbbreviation>Phys. Rev., A</ISOAbbreviation></Journal><ArticleTitle>Positron-induced dissociation of organic molecules.</ArticleTitle><Pagination><MedlinePgn>1023-1030</MedlinePgn></Pagination><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Xu</LastName><Initials>J</Initials></Author><Author ValidYN="Y"><LastName>Hulett</LastName><Initials>LD</Initials><Suffix>Jr</Suffix></Author><Author ValidYN="Y"><LastName>Lewis</LastName><Initials>TA</Initials></Author><Author ValidYN="Y"><LastName>Donohue</LastName><Initials>DL</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><Initials>GL</Initials></Author></AuthorList><Language>ENG</Language><PublicationTypeList><PublicationType UI="">JOURNAL ARTICLE</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country/><MedlineTA>Phys Rev A</MedlineTA><NlmUniqueID>9887339</NlmUniqueID><ISSNLinking>1050-2947</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1993</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1999</Year><Month>2</Month><Day>19</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1993</Year><Month>2</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">9909024</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24234573</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>15</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>18</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>6</Issue><PubDate><Year>1992</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Evidence of isomerization during ion isolation in the quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>680-2</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(92)85010-H</ELocationID><Abstract><AbstractText>Evidence of ion isomerization during isolation in an ion trap mass spectrometer is presented. An ion-molecule reaction that is specific for the tolyl cation was used to monitor the relative abundance of this species. In particular, it has been observed that ion isolation in the ion trap can impart sufficient energy to the tolyl cation to cause it to isomerize to a form (presumably either the benzyl or the tropylium ion) that is not reactive with the neutral reagent. These results are important to consider in ion trap applications involving ion species having activation barriers for isomerization lower than the activation barriers for dissociation.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hart</LastName><ForeName>K J</ForeName><Initials>KJ</Initials><AffiliationInfo><Affiliation>Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1992</Year><Month>4</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1992</Year><Month>5</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1992</Year><Month>5</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1992</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1992</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(92)85010-H</ArticleId><ArticleId IdType="pubmed">24234573</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24234564</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>15</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>18</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>6</Issue><PubDate><Year>1992</Year><Month>Sep</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Principles of collisional activation in analytical mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>599-614</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(92)85001-Z</ELocationID><Abstract><AbstractText>Collisional activation has played an essential role in the development of mass spectrometry/mass spectrometry (MS/MS). It was the first activation method to be employed and continues to be by far the most widely used. As instrumentation for MS/MS has evolved it has been found that collisional activation can be effected under a remarkably wide range of conditions for a wide range of ions. It is fair to conclude from the growth of MS/MS over the past fifteen years that collisional activation has been spectacularly successful. However, it has limitations. As a community, we have learned much over the years regarding these limitations both from empirical and fundamental points of view. This overview provides background on the development of collisional activation and discusses the importance of the interaction potential and timing on mechanisms for energy transfer. Parts of the discussion is devoted to changing reference frames from the laboratory to the center of mass to simplify visualizing what is possible and what is probable in collisional activation.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, 3763-6365, Oak Ridge, TN.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1991</Year><Month>8</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1991</Year><Month>11</Month><Day>27</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1991</Year><Month>11</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1992</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1992</Year><Month>9</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(92)85001-Z</ArticleId><ArticleId IdType="pubmed">24234564</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24234498</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>15</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>18</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>5</Issue><PubDate><Year>1992</Year><Month>Jul</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Reaction of analyte ions with neutral chemical ionization gas.</ArticleTitle><Pagination><MedlinePgn>549-57</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(92)85032-F</ELocationID><Abstract><AbstractText>Analytical Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Ion-molecule reactions of neutral methane with analyte ions under normal methane chemical ionization conditions are discussed. Reactant ions can be generated by direct electron ionization (EI) fragmentation, chemical ionization (CI) fragmentation, or collision-induced dissociation (CID). Examples in which products of such reactions appear in mass spectra in both conventional CI sources in "beam" instruments and low pressure CI in a quadrupole ion trap are presented. Also shown is an example in which MS/MS product ions react with neutral methane used for CI in an ion trap. It is shown that it is relatively straightforward to recognize such reactions in a quadrupole ion trap and in certain cases to minimize or preclude them. Effects of various operating parameters have been investigated and are discussed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Hart</LastName><ForeName>K J</ForeName><Initials>KJ</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, 37831-6365, Oak Ridge, TN.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1991</Year><Month>7</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1992</Year><Month>1</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1991</Year><Month>12</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>16</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1992</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1992</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(92)85032-F</ArticleId><ArticleId IdType="pubmed">24234498</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">1503220</PMID><DateCreated><Year>1992</Year><Month>09</Month><Day>14</Day></DateCreated><DateCompleted><Year>1992</Year><Month>09</Month><Day>14</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>64</Volume><Issue>13</Issue><PubDate><Year>1992</Year><Month>Jul</Month><Day>1</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Collisional activation with random noise in ion trap mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>1455-60</MedlinePgn></Pagination><Abstract><AbstractText>Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly pronated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, Tennessee 37831-6365.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009479">Neuropeptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>117505-80-3</RegistryNumber><NameOfSubstance UI="C056900">neuromedin U</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000595">Amino Acid Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008969">Molecular Sequence Data</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009479">Neuropeptides</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1992</Year><Month>7</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1992</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1992</Year><Month>7</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">1503220</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24242946</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>18</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>19</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>3</Issue><PubDate><Year>1992</Year><Month>Mar</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Unimolecular and collision-induced reactions of doubly charged porphyrins.</ArticleTitle><Pagination><MedlinePgn>235-42</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(92)87007-L</ELocationID><Abstract><AbstractText>Results from a tandem mass spectrometry (MS/MS) study, obtained with a reverse-geometry mass spectrometer, of the unimolecular and collision-induced reactions of doubly charged free-base and metal containing alkyl-substituted porphyrins formed by electron ionization are reported. These doubly charged porphyrin ions dissociate to yield both singly and doubly charged product ions via a number of reactions. This article classifies the major reactions observed, illustrating each with the appropriate spectra. Supplementary data from the same porphyrins, acquired with a tandem quadrupole MS/MS instrument, are also presented. The potential utility of some of these reactions as new methods for porphyrin analysis is discussed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Van Berkel</LastName><ForeName>G J</ForeName><Initials>GJ</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, 37831-6365, Oak Ridge, TN.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1991</Year><Month>5</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1991</Year><Month>8</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1991</Year><Month>7</Month><Day>29</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1992</Year><Month>3</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1992</Year><Month>3</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(92)87007-L</ArticleId><ArticleId IdType="pubmed">24242946</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24242838</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>18</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>19</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>3</Volume><Issue>1</Issue><PubDate><Year>1992</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Tandem mass spectrometry of small, multiply charged oligonucleotides.</ArticleTitle><Pagination><MedlinePgn>60-70</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(92)85019-G</ELocationID><Abstract><AbstractText>Multiply charged anions derived from electrospray ionization of the sodium salts of various small oligonucleotides (n = 4-8) have been subjected to tandem mass spectrometry (MS/MS) in a quadrupole ion trap. All ions were observed to dissociate with high efficiencies even under conditions not ordinarily conducive for the observance of high MS/MS efficiency. Large fractions of the total product ion signal could be attributed to single-cleavage reactions with the parent ion charge shared among the two product ions in various combinations. In every case, the most facile reaction was observed to be the loss of the adenine anion. This reaction was then observed to be followed by cleavage of the 3' C-O bond of phosphodiester linkage of the sugar from which the adenine had been lost.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, P.O. Box 2008, 37831-6365, TN, Oak Ridge.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Van Berkel</LastName><ForeName>G J</ForeName><Initials>GJ</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1991</Year><Month>4</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1991</Year><Month>6</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>1991</Year><Month>5</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1992</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1992</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(92)85019-G</ArticleId><ArticleId IdType="pubmed">24242838</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">1817574</PMID><DateCreated><Year>1992</Year><Month>07</Month><Day>10</Day></DateCreated><DateCompleted><Year>1992</Year><Month>07</Month><Day>10</Day></DateCompleted><DateRevised><Year>2006</Year><Month>11</Month><Day>15</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">1050-3862</ISSN><JournalIssue CitedMedium="Print"><Volume>8</Volume><Issue>8</Issue><PubDate><Year>1991</Year><Month>Dec</Month></PubDate></JournalIssue><Title>Genetic analysis, techniques and applications</Title><ISOAbbreviation>Genet. Anal. Tech. Appl.</ISOAbbreviation></Journal><ArticleTitle>Applications of mass spectrometry to DNA sequencing.</ArticleTitle><Pagination><MedlinePgn>223-9</MedlinePgn></Pagination><Abstract><AbstractText>The ability of the mass spectrometer to analyze collectively the masses of DNA fragments that are produced in the Sanger procedure for sequencing may allow the gel electrophoresis step to be eliminated. On the other hand, if gel electrophoresis is required, the use of resonance ionization spectroscopy coupled to a mass spectrometer may enable much faster analysis of DNA bands labeled with stable isotopes. Other combinations of labeling of the DNA and its mass spectrometric analysis with or without gel electrophoresis are also considered. Recent advances in these areas of mass spectrometry are reviewed.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Jacobson</LastName><ForeName>K B</ForeName><Initials>KB</Initials><AffiliationInfo><Affiliation>Biology Division, Atom Sciences, Inc., Oak Ridge, Tennessee.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Arlinghaus</LastName><ForeName>H F</ForeName><Initials>HF</Initials></Author><Author ValidYN="Y"><LastName>Buchanan</LastName><ForeName>M V</ForeName><Initials>MV</Initials></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>C H</ForeName><Initials>CH</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Hettich</LastName><ForeName>R L</ForeName><Initials>RL</Initials></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Genet Anal Tech Appl</MedlineTA><NlmUniqueID>9004550</NlmUniqueID><ISSNLinking>1050-3862</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>9007-49-2</RegistryNumber><NameOfSubstance UI="D004247">DNA</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D001483">Base Sequence</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004247">DNA</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>35</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1991</Year><Month>12</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1991</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1991</Year><Month>12</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">1817574</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">1661106</PMID><DateCreated><Year>1992</Year><Month>01</Month><Day>22</Day></DateCreated><DateCompleted><Year>1992</Year><Month>01</Month><Day>22</Day></DateCompleted><DateRevised><Year>2011</Year><Month>11</Month><Day>17</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0003-2700</ISSN><JournalIssue CitedMedium="Print"><Volume>63</Volume><Issue>18</Issue><PubDate><Year>1991</Year><Month>Sep</Month><Day>15</Day></PubDate></JournalIssue><Title>Analytical chemistry</Title><ISOAbbreviation>Anal. Chem.</ISOAbbreviation></Journal><ArticleTitle>Charge determination of product ions formed from collision-induced dissociation of multiply protonated molecules via ion/molecule reactions.</ArticleTitle><Pagination><MedlinePgn>1971-8</MedlinePgn></Pagination><Abstract><AbstractText>The use of ion/molecule reactions involving multiply protonated ions derived from electrospray for the determination of the charges of product ions formed from collision-induced dissociation is described. The experiments are carried out with a quadrupole ion trap capable of multiple stages of mass spectrometry. The approach is illustrated with proton transfer from a product ion from quadruply protonated melittin, and from a product ion from the (M + 20H)20+ ion from horse myoglobin, to 1,6-diaminohexane. The major product ion from quadruply protonated bovine insulin is used to illustrate the use of a clustering reaction with 1,6-diaminohexane. The ion trap is shown to be a particularly useful tool for employing both collisional activation and low-energy ion/molecule reactions in the same experiment to determine product ion charge.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, Tennessee 37831-6365.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>Van Berkel</LastName><ForeName>G J</ForeName><Initials>GJ</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Anal Chem</MedlineTA><NlmUniqueID>0370536</NlmUniqueID><ISSNLinking>0003-2700</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D007328">Insulin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D009211">Myoglobin</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011506">Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D011522">Protons</NameOfSubstance></Chemical><Chemical><RegistryNumber>20449-79-0</RegistryNumber><NameOfSubstance UI="D008555">Melitten</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002417">Cattle</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006736">Horses</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007328">Insulin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008555">Melitten</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009132">Muscles</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D009211">Myoglobin</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011506">Proteins</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName><QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D011522">Protons</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1991</Year><Month>9</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1991</Year><Month>9</Month><Day>15</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1991</Year><Month>9</Month><Day>15</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">1661106</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24242084</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>18</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>19</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>2</Volume><Issue>1</Issue><PubDate><Year>1991</Year><Month>Jan</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Selective ion isolation/rejection over a broad mass range in the quadrupole ion trap.</ArticleTitle><Pagination><MedlinePgn>11-21</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(91)80056-D</ELocationID><Abstract><AbstractText>Techniques are presented for mass-selective ion manipulation over a wide mass range in a three-dimensional quadrupole. The methods use an auxiliary, low-amplitude radio-frequency signal applied to the endcap electrodes. This signal is either held at a single frequency as the fundamental radio-frequency trapping amplitude is ramped or swept over a frequency range while the fundamental radio-frequency trapping amplitude is held at a fixed level. Ion isolation and ejection are demonstrated for ions formed within the ion trap using electron ionization and for ions injected into the ion trap formed either by an air-sustained glow discharge or by electrospray. Mass-selective ion ejection is used to reduce matrix-ion-induced space charge during ion injection, thereby producing signal enhancement for the detection of 2, 4, 6-trinitrotoluene in air. Mass-selective isolation of ions with mass-to-charge ratios above the normal operating range (m / z 650) for the ion trap is also demonstrated after injection of myoglobin ions formed via electrospray.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, 37831-6365, Oak Ridge, TN, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goeringer</LastName><ForeName>D E</ForeName><Initials>DE</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1990</Year><Month>4</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1990</Year><Month>7</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1991</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1991</Year><Month>1</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(91)80056-D</ArticleId><ArticleId IdType="pubmed">24242084</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE"><PMID Version="1">24248745</PMID><DateCreated><Year>2013</Year><Month>11</Month><Day>19</Day></DateCreated><DateCompleted><Year>2013</Year><Month>11</Month><Day>22</Day></DateCompleted><Article PubModel="Print"><Journal><ISSN IssnType="Print">1044-0305</ISSN><JournalIssue CitedMedium="Print"><Volume>1</Volume><Issue>2</Issue><PubDate><Year>1990</Year><Month>Apr</Month></PubDate></JournalIssue><Title>Journal of the American Society for Mass Spectrometry</Title><ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation></Journal><ArticleTitle>Determination of daughter ion formulas by multiple stages of mass spectrometry.</ArticleTitle><Pagination><MedlinePgn>166-73</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/1044-0305(90)85053-O</ELocationID><Abstract><AbstractText>The ability to obtain daughter ion formulas via comparison of MS(n) spectra of parent ions containing only (12)C with those of parent ions with one (13)C (from the natural (13)C abundance) is shown for cases in which isobaric interferences with the (13)C-containing ion preclude the use of the conventional tandem mass spectrometric approach. This method allows the presence of isobaric daughter ions to be ascertained, and unexpected, complex dissociation pathways to be identified. A three-dimensional quadrupole ion trap is used for these experiments. Its high tandem mass spectrometry efficiency makes possible this type of experiment.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials><AffiliationInfo><Affiliation>Analytical Chemistry Division, Oak Ridge National Laboratory, 37831-6365, Oak Ridge, Tennessee, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McLuckey</LastName><ForeName>S A</ForeName><Initials>SA</Initials></Author><Author ValidYN="Y"><LastName>Asano</LastName><ForeName>K G</ForeName><Initials>KG</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Am Soc Mass Spectrom</MedlineTA><NlmUniqueID>9010412</NlmUniqueID><ISSNLinking>1044-0305</ISSNLinking></MedlineJournalInfo></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>1989</Year><Month>8</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>1989</Year><Month>10</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2013</Year><Month>11</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>1990</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1990</Year><Month>4</Month><Day>1</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="doi">10.1016/1044-0305(90)85053-O</ArticleId><ArticleId IdType="pubmed">24248745</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">4092051</PMID><DateCreated><Year>1986</Year><Month>04</Month><Day>07</Day></DateCreated><DateCompleted><Year>1986</Year><Month>04</Month><Day>07</Day></DateCompleted><DateRevised><Year>2007</Year><Month>11</Month><Day>14</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0006-2960</ISSN><JournalIssue CitedMedium="Print"><Volume>24</Volume><Issue>27</Issue><PubDate><Year>1985</Year><Month>Dec</Month><Day>31</Day></PubDate></JournalIssue><Title>Biochemistry</Title><ISOAbbreviation>Biochemistry</ISOAbbreviation></Journal><ArticleTitle>Alkyldihydroxyacetonephosphate synthase mechanism: 18O studies of fatty acid release from acyldihydroxyacetone phosphate.</ArticleTitle><Pagination><MedlinePgn>8012-6</MedlinePgn></Pagination><Abstract><AbstractText>Alkyldihydroxyacetonephosphate synthase (alkyl-DHAP synthase) catalyzes the exchange of the ester-linked fatty acid of 1-O-acyldihydroxyacetone phosphate (1-O-acyl-DHAP) for a fatty alcohol that is attached in an ether linkage to form 1-O-alkyldihydroxyacetone phosphate (1-O-alkyl-DHAP). In our continuing investigation of the mechanism of this enzyme, we have examined the fatty acid released during the reaction. In contrast to the reports of others using whole microsomes, we found that the cleavage of fatty acid by purified preparations of alkyl-DHAP synthase was dependent on the presence of the cosubstrate, fatty alcohol. Furthermore, the amount of fatty acid produced was equivalent to the alkyl-DHAP formed. Our previously proposed detailed mechanism for alkyl-DHAP synthase predicted that the fatty acid should retain both of the carboxyl ester oxygens upon cleavage. Reactions carried out with palmitoyl-[18O]DHAP as substrate yielded [18O]palmitic acid as the product in agreement with this scheme.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Brown</LastName><ForeName>A J</ForeName><Initials>AJ</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author><Author ValidYN="Y"><LastName>McBay</LastName><ForeName>E H</ForeName><Initials>EH</Initials></Author><Author ValidYN="Y"><LastName>Snyder</LastName><ForeName>F</ForeName><Initials>F</Initials></Author></AuthorList><Language>eng</Language><GrantList CompleteYN="Y"><Grant><GrantID>CA-11949-14</GrantID><Acronym>CA</Acronym><Agency>NCI NIH HHS</Agency><Country>United States</Country></Grant></GrantList><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Biochemistry</MedlineTA><NlmUniqueID>0370623</NlmUniqueID><ISSNLinking>0006-2960</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010103">Oxygen Isotopes</NameOfSubstance></Chemical><Chemical><RegistryNumber>57-04-5</RegistryNumber><NameOfSubstance UI="D004099">Dihydroxyacetone Phosphate</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.-</RegistryNumber><NameOfSubstance UI="D014166">Transferases</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.5.-</RegistryNumber><NameOfSubstance UI="D019883">Alkyl and Aryl Transferases</NameOfSubstance></Chemical><Chemical><RegistryNumber>EC 2.5.1.26</RegistryNumber><NameOfSubstance UI="C019654">alkylglycerone-phosphate synthase</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000215">Acylation</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="Y" UI="D019883">Alkyl and Aryl Transferases</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D002286">Carcinoma, Ehrlich Tumor</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000201">enzymology</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D004099">Dihydroxyacetone Phosphate</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D007700">Kinetics</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D051379">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010103">Oxygen Isotopes</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013379">Substrate Specificity</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D014166">Transferases</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1985</Year><Month>12</Month><Day>31</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1985</Year><Month>12</Month><Day>31</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1985</Year><Month>12</Month><Day>31</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">4092051</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Owner="NLM" Status="MEDLINE"><PMID Version="1">6353576</PMID><DateCreated><Year>1983</Year><Month>11</Month><Day>23</Day></DateCreated><DateCompleted><Year>1983</Year><Month>11</Month><Day>23</Day></DateCompleted><DateRevised><Year>2007</Year><Month>03</Month><Day>19</Day></DateRevised><Article PubModel="Print"><Journal><ISSN IssnType="Print">0036-8075</ISSN><JournalIssue CitedMedium="Print"><Volume>222</Volume><Issue>4621</Issue><PubDate><Year>1983</Year><Month>Oct</Month><Day>21</Day></PubDate></JournalIssue><Title>Science (New York, N.Y.)</Title><ISOAbbreviation>Science</ISOAbbreviation></Journal><ArticleTitle>Mass spectrometry: analytical capabilities and potentials.</ArticleTitle><Pagination><MedlinePgn>273-91</MedlinePgn></Pagination><Abstract><AbstractText>The mass range of mass spectrometers has been extended by almost an order of magnitude in the past decade, ionization procedures have been introduced which allow ionic, nonvolatile compounds to be examined, and new capabilities have been achieved through the successful integration of separation and analysis techniques. In combination with other techniques, mass spectrometry has been used in biological and environmental research to characterize constituents of mixtures, including those present in trace amounts; in metabolic profiling, where high throughput and large dynamic range are important; and in protein structure determinations. Measurements of stable isotope abundances by mass spectrometry have been used in enzymology, studies of photosynthesis, and carbon dating. Outside the area of chemical analysis, mass spectrometry has been used to study gas-phase acidities and basicities and to study organic reaction mechanisms in the gas phase. Trends in mass spectrometry include multidimensional experiments, use of ionization methods, direct analysis without extensive sample preparation, and the development of advanced instrumentation including an ion trap and an inductively coupled plasma mass spectrometer. It is likely that mass spectrometry will come to be much more widely used and that data will increasingly be other than conventional mass spectra.</AbstractText></Abstract><AuthorList CompleteYN="Y" Type="authors"><Author ValidYN="Y"><LastName>Cooks</LastName><ForeName>R G</ForeName><Initials>RG</Initials></Author><Author ValidYN="Y"><LastName>Busch</LastName><ForeName>K L</ForeName><Initials>KL</Initials></Author><Author ValidYN="Y"><LastName>Glish</LastName><ForeName>G L</ForeName><Initials>GL</Initials></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType><PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>UNITED STATES</Country><MedlineTA>Science</MedlineTA><NlmUniqueID>0404511</NlmUniqueID><ISSNLinking>0036-8075</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D006451">Hemoglobin, Sickle</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D010455">Peptides</NameOfSubstance></Chemical><Chemical><RegistryNumber>9034-51-9</RegistryNumber><NameOfSubstance UI="D006441">Hemoglobin A</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName MajorTopicYN="N" UI="D005583">Fourier Analysis</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008401">Gas Chromatography-Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006441">Hemoglobin A</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D006451">Hemoglobin, Sickle</DescriptorName><QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D013058">Mass Spectrometry</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D008970">Molecular Weight</DescriptorName></MeshHeading><MeshHeading><DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName><QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName></MeshHeading></MeshHeadingList><NumberOfReferences>131</NumberOfReferences></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>1983</Year><Month>10</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>1983</Year><Month>10</Month><Day>21</Day><Hour>0</Hour><Minute>1</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>1983</Year><Month>10</Month><Day>21</Day><Hour>0</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">6353576</ArticleId></ArticleIdList></PubmedData></PubmedArticle></PubmedArticleSet> /PubmedArticleSet/PubmedArticle/MedlineCitation/Article/AuthorList/Author/AffiliationInfo/Affiliation net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Parallelize 1 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.ErrorBouncenet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Failovernet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Retry 1.0 1000 5000 0 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Invokecount_affiliations_by_countryaffiliations1country_code1country_name1count_list11country_list11net.sf.taverna.t2.activitiesbeanshell-activity1.5net.sf.taverna.t2.activities.beanshell.BeanshellActivity affiliations 1 text/plain java.lang.String true country_name 1 text/plain java.lang.String true country_code 1 text/plain java.lang.String true country_list 1 1 count_list 1 1 workflow net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Parallelize 1 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.ErrorBouncenet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Failovernet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Retry 1.0 1000 5000 0 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Invokeimport_country_listfileurl0A11B11net.sf.taverna.t2.activitiesspreadsheet-import-activity1.5net.sf.taverna.t2.activities.spreadsheet.SpreadsheetImportActivity 0 1 0 -1 true false false EMPTY_STRING PORT_PER_COLUMN , net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Parallelize 1 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.ErrorBouncenet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Failovernet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Retry 1.0 1000 5000 0 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Invokemap_former_countriesmeta_count_list1meta_country_list1former_countries_list1current_countries_list1count_list11country_list11net.sf.taverna.t2.activitiesbeanshell-activity1.5net.sf.taverna.t2.activities.beanshell.BeanshellActivity meta_count_list 1 text/plain java.lang.String true meta_country_list 1 text/plain java.lang.String true former_countries_list 1 text/plain java.lang.String true current_countries_list 1 text/plain java.lang.String true count_list 1 1 country_list 1 1 workflow net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Parallelize 1 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.ErrorBouncenet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Failovernet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Retry 1.0 1000 5000 0 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Invokeimport_former_countries_listfileurl0A11B11net.sf.taverna.t2.activitiesspreadsheet-import-activity1.5net.sf.taverna.t2.activities.spreadsheet.SpreadsheetImportActivity 0 1 0 -1 true false false EMPTY_STRING PORT_PER_COLUMN , net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Parallelize 1 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.ErrorBouncenet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Failovernet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Retry 1.0 1000 5000 0 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Invokedraw_world_mapcounts1countries1output00net.sf.taverna.t2.activitiesrshell-activity1.5net.sf.taverna.t2.activities.rshell.RshellActivity countries 1 false counts 1 false output 0 0 false localhost 6311 false false countries STRING_LIST counts INTEGER_LIST output PNG_FILE net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Parallelize 1 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.ErrorBouncenet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Failovernet.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Retry 1.0 1000 5000 0 net.sf.taverna.t2.coreworkflowmodel-impl1.5net.sf.taverna.t2.workflowmodel.processor.dispatch.layers.Invokeget_authors_affiliationsxml_textpubmed_outputcount_affiliations_by_countryaffiliationsget_authors_affiliationsnodelistcount_affiliations_by_countrycountry_codeimport_country_listAcount_affiliations_by_countrycountry_nameimport_country_listBimport_country_listfileurlcountriesmap_former_countriesmeta_count_listcount_affiliations_by_countrycount_listmap_former_countriesmeta_country_listcount_affiliations_by_countrycountry_listmap_former_countriesformer_countries_listimport_former_countries_listAmap_former_countriescurrent_countries_listimport_former_countries_listBimport_former_countries_listfileurlformer_countriesdraw_world_mapcountsmap_former_countriescount_listdraw_world_mapcountriesmap_former_countriescountry_listworld_mapdraw_world_mapoutput f65dc1d1-a84b-4c44-beb6-80053ca3e1c0 2015-03-25 18:38:51.8 UTC 538e30eb-2152-44a4-a23d-8ed5bcbbc0b2 2015-01-15 14:20:51.206 UTC f02f62a0-25a0-41a6-a721-3e24d49117fc 2015-03-23 19:34:16.332 UTC b377b274-3e9a-4133-8e7f-e9835808ef00 2015-01-12 16:26:13.535 UTC 2d03c0c5-8a9d-49d2-bac3-1efab4eaa803 2015-03-23 18:29:12.11 UTC bbff3b1f-4796-4cb7-8beb-52504150bdc5 2015-03-25 17:53:14.921 UTC 173a62f7-ca82-4e93-a0be-54fadcdfa09c 2015-01-19 12:50:01.340 UTC d33bf792-1247-464c-bf2e-d020bc11d0d4 2015-03-25 17:03:20.400 UTC f655c73f-3f56-42bd-9b0f-2b00c410a8fe 2015-01-15 17:48:19.450 UTC 4cf6b5a4-08fd-42d4-8846-e64bb2ddde46 2015-01-13 12:45:12.39 UTC f1b974b7-3b0e-43e0-8908-3460491dc0ba 2015-03-24 10:40:06.20 UTC 4ca8d754-714b-4c92-90cd-99ab0d80d414 2015-03-23 19:28:52.97 UTC c50e2d47-44f3-41ff-a0a0-c4ec3ba216e6 2015-01-12 16:39:05.683 UTC 443b5aaa-017e-4130-a589-f47997a18211 2015-03-27 14:23:07.475 UTC 0f067cf3-9231-4f98-acbb-41687d33b32b 2015-03-25 18:29:03.637 UTC d4d70449-3bfa-4aca-8d7b-995566bc4164 2015-01-19 12:45:09.930 UTC a078f9b3-c8b0-4fd4-8aac-38b84380e30f 2015-03-23 13:29:03.425 UTC fb645d6c-9305-4264-9d45-060f5fff9ec6 2015-01-15 18:20:53.417 UTC c7e1d2a6-16fc-4789-8807-acf225162ff9 2015-03-16 16:56:11.356 UTC ca12368e-ddc4-4994-b346-af76df989f5b 2015-03-24 10:30:38.796 UTC 5a29069e-1786-4c52-af3d-d6c6f571bda9 2015-03-25 17:20:11.568 UTC eaae1486-5036-456d-9b96-c4b97d733bd4 2015-03-24 10:46:41.39 UTC dfbe2761-37d1-4741-861a-5bd18c4d693b 2015-03-24 14:11:21.886 UTC 8057f4be-a56a-4adf-81b2-ab923e3d4dda 2015-03-24 12:28:12.294 UTC ee8d48bf-86fd-46b6-9628-e85a6f142882 2015-03-24 15:07:44.231 UTC c559faee-5f4a-461e-8ab3-c40652ec7ef9 2015-03-27 14:04:49.741 UTC 0609a349-176c-4fa3-a17b-4428daa09256 2015-01-15 16:27:05.989 UTC 0a991de9-8351-4b1e-a6d5-7b7bfcbeed7d 2015-03-24 12:43:08.898 UTC 1b04c1d4-ab2e-41ac-a161-6ef16d8cf691 2015-03-24 10:40:44.130 UTC a476f825-3886-4db9-8dcd-1b346ae69c95 2015-03-25 18:03:43.368 UTC 5894f94f-947e-40ab-8bc3-03e68465db07 2015-03-25 18:39:33.796 UTC 6334a242-6c0d-463d-985d-8a2f7c0dd713 2015-03-24 15:08:31.284 UTC 2112ba9c-a7aa-4bdb-be75-e20b86360d67 2015-01-17 15:28:14.969 UTC 4053ff42-e968-4adb-9a44-7916840fc624 2015-01-19 11:53:23.898 UTC 58e5e981-cb50-4722-9665-6bc76a677df5 2015-01-15 17:15:50.869 UTC f1c8a999-9a4e-4a34-9ba3-3a903d7efd6c 2015-03-24 14:17:33.750 UTC d0d0ea45-485f-4a9b-80f4-ed5c17658d2b 2015-03-23 19:46:20.765 UTC 8b4f5bbc-58f8-4679-bd4c-6ab2f6fac9e9 2015-03-25 17:47:20.133 UTC 75911ae6-a313-43f7-82a5-89215cf11823 2015-03-25 18:05:48.782 UTC 923c6b42-9b5b-4f09-80dc-08fd35d03dc1 2015-01-15 16:53:28.213 UTC fa76c8d5-7dff-4ecb-be7b-480dd0497105 2015-03-24 10:02:11.500 UTC 68b65ea8-20b6-4067-a057-a441ecd120e6 2015-03-25 18:01:15.60 UTC 18a038ce-1636-4d6b-80bf-313dd46e0559 2015-01-15 14:12:28.89 UTC 6a0df7f9-1b6f-4a2d-9ab3-7016ab284c72 2015-03-25 17:43:22.479 UTC 2dcbd534-0e86-4401-a93c-b2806586aaf9 2015-01-17 15:35:18.64 UTC 721ace59-e4b8-40e6-85e4-57df77b7c970 2015-03-16 16:22:25.515 UTC d942fd04-62d7-4cff-9ed7-ecbd407e7848 2015-01-13 15:39:48.458 UTC 5d93a970-08d2-4863-9a7b-c086c50d85a6 2015-01-15 14:21:49.710 UTC d1ce8433-2ae1-4694-bc82-ce7de5540b3c 2015-03-25 18:34:48.167 UTC 0988ccbe-1f0f-4623-8453-33a8b048deec 2015-03-24 10:08:40.350 UTC 876852f5-86b4-4908-afc4-43941ee33ac8 2015-03-24 10:36:21.622 UTC 52191ff1-f63b-4cc1-b9a9-86089405e0f7 2015-03-27 15:36:17.113 UTC efde8597-dff8-41c3-9f8e-0741e41b8f6e 2015-03-24 10:43:15.427 UTC 10385fb4-0e81-4be6-90fa-0913763f9c4b 2015-01-19 14:43:13.127 UTC 7cd72f2a-63f3-4f10-a4a5-8effdb96f9fc 2015-03-25 18:38:05.448 UTC 59391359-ca4c-46b5-a890-4d49889fd944 2015-03-27 12:57:35.933 UTC 762c7ebc-a0f6-4417-9e9b-e72f2a33b0af 2015-03-22 17:02:02.980 UTC 2f43cfde-dbbd-487d-a8e0-39ee6b8d212d 2015-01-17 15:19:04.630 UTC 12033186-811e-47c9-b573-684f569f8304 2015-03-25 14:38:16.242 UTC 00348604-08f9-4f91-8192-44a7c22f8276 2015-03-24 10:35:22.611 UTC 089011dd-bf16-437d-8801-b2571eb2b912 2015-01-13 12:43:29.67 UTC 8f4ca5ce-d8ee-4486-9e66-4e44955da41a 2015-01-17 16:57:25.16 UTC Magnus Palmblad and Arzu Tugce Guler Leiden University Medical Center 2015 2015-01-19 14:39:11.181 UTC 85871541-3c46-4535-9a6c-cb73ac12c8ff 2015-01-13 13:59:25.607 UTC fef31d86-241f-4156-996d-36a32762e78a 2015-03-27 12:23:29.820 UTC 416e978a-73f4-4fab-af9a-83937378a6f6 2015-01-15 14:13:25.169 UTC edb72b09-2dcd-43f1-9e3d-c065d0bc615b 2015-03-27 13:48:01.385 UTC 4ffb1c80-acb2-4f53-9c2a-35fcd33d7ff7 2015-03-27 14:41:05.42 UTC 0f8c83a5-63be-4c3e-8aed-54d1cf3929db 2015-01-17 15:21:45.267 UTC 617e750f-0e39-48e4-be8e-fde277409a1b 2015-03-24 10:50:27.384 UTC f234c575-6feb-4fcf-ab1d-ace02a18db84 2015-01-12 16:39:35.792 UTC 9e578cc4-ba49-49e3-8860-929cb57de8c0 2015-01-20 11:43:02.600 UTC ab238522-b473-4ccb-aa22-a0cf00155670 2015-03-23 19:31:59.420 UTC 12538e91-5be0-4030-90fe-e2a45cfdab9a 2015-01-12 16:23:55.183 UTC 85156f76-a8f5-439a-9be2-5519b920ca37 2015-03-23 19:37:18.584 UTC 5ac40d30-8882-418d-ad8c-39a9342f709e 2015-03-25 16:56:25.258 UTC d7ef02e4-b2ad-48c8-87db-b175bcf95db9 2015-03-25 17:03:54.443 UTC 28e9efcd-5484-428c-937d-8fc8228e2d1d 2015-03-24 14:29:35.59 UTC f39dc922-edf4-405d-b8b8-052451aef4fd 2015-01-12 16:27:31.553 UTC d25887d2-20ac-4387-9728-71ca069a12d4 2015-01-15 14:26:10.12 UTC 15913cbf-a0cd-41a6-9d2f-5d63746f1961 2015-03-24 16:04:23.577 UTC 9a047057-55ed-45a1-959e-7c62d43b3fb6 2015-03-22 15:16:31.745 UTC 81fb67e6-6528-42d3-ae85-37abeee09bd9 2015-01-12 16:40:55.930 UTC fb541dab-ae4e-4cc9-8b41-5b4d6cc6d1e0 2015-03-25 18:20:17.584 UTC 79771061-de0a-47ea-8904-400ecf932a9f 2015-03-22 17:12:12.654 UTC ae1a6c18-16d1-4e14-98e9-3323214d61b9 2015-01-17 17:09:02.386 UTC fdd764f8-cfab-4378-9608-47d51052d638 2015-03-25 18:13:05.592 UTC 67fb0358-94ef-4071-92e9-2a454f13d0c9 2015-01-15 14:06:15.678 UTC 955d1d2c-9092-421f-8323-f04fc8150e22 2015-03-25 17:55:50.98 UTC a63a3a7c-e9d5-47b6-890c-05146d9b824b 2015-03-24 16:08:10.990 UTC 1f977109-9608-46d8-bfe0-81048aae7e66 2015-01-15 17:03:14.531 UTC e8603b9c-ca7a-4196-b403-ae31ce484d2c 2015-03-25 18:18:20.101 UTC b62294c4-b5fe-4b67-b627-d7bc86579cff 2015-03-16 16:39:48.241 UTC 40a3138f-5ae4-4838-bd1a-28d40e946354 2015-04-20 13:14:38.510 UTC dd319003-3558-4bd1-8486-26b747bed5c3 2015-03-23 13:22:57.837 UTC 157c5565-ae59-4375-8078-3b73c278d8be 2015-01-15 18:22:53.453 UTC 266037ca-8805-4784-b051-21f7768dfd69 2015-01-19 14:46:34.262 UTC acacc67a-554b-44df-aa5f-2f2cf512018f 2015-03-27 13:06:39.248 UTC 5af7d610-b270-4f24-b895-a07c60cdca88 2015-04-20 13:18:58.391 UTC bae98424-8c9c-4a4a-b4d0-ec63a32f0b13 2015-01-19 12:04:49.195 UTC a4a30fc9-7ccb-48f8-b05d-b37f9d2660ab 2015-03-27 14:07:22.877 UTC 5d2f5352-0c19-4901-bd4c-82ae7a065aba 2015-03-27 16:42:11.806 UTC e92656ba-4368-4f8e-8073-4b4810332645 2015-03-25 18:31:05.690 UTC e0f62f0f-721d-4a6a-8711-d1c72650d1dc 2015-03-24 12:57:06.472 UTC c3e92c38-2869-4a61-bcdd-3bfaef9393e2 2015-03-25 17:06:03.365 UTC 3707bc11-2f06-4f5e-886a-40335c4e3b1b 2015-01-19 12:00:31.130 UTC 25179c7f-cd82-4e67-b5be-acfdcb2a67d1 2015-03-16 16:24:55.441 UTC 3d56b3a2-3b90-4d8c-a500-da4b5a6866ea 2015-03-22 17:20:58.959 UTC 50535fad-4766-49a7-8a05-af7642e6553f 2015-01-12 16:21:41.333 UTC ab510ba7-81f5-4ceb-9aeb-e7424f9abeef 2015-03-25 16:47:11.787 UTC e0d004e5-2ebd-41f3-af8e-13a08df91500 2015-03-22 17:15:46.926 UTC 2d764ec6-009c-4552-ad31-3eeeab2ff826 2015-03-16 16:20:32.416 UTC 75aff1aa-9021-4b9f-a53e-6af78d543a54 2015-03-24 10:41:22.234 UTC 30c1711d-55da-49c4-9240-fbb12251c567 2015-03-22 15:20:32.828 UTC b14e06a1-5691-4941-8b71-6e29204aa3ea 2015-01-17 17:13:02.312 UTC 6fda8989-95f8-4251-86c6-628b274e13dc 2015-03-25 18:37:20.662 UTC 705a6bd0-d064-43af-a0ef-1c2d7dc34555 2015-03-25 16:45:17.470 UTC b7ca28cb-b127-4b3c-82d5-c03893e79843 2015-03-23 19:18:09.746 UTC 8672f797-396c-4954-bcc0-23ec940c2a46 2015-03-25 18:32:27.870 UTC 5d7b2d4c-15b4-4224-af30-b31db06108b9 2015-03-24 16:07:29.328 UTC This workflow analyzes the scientific output, as documented by PubMed, geographically. The workflow takes as input the PubMed data in XML and the ISO 3166-1 and ISO 3166-3 country lists. The XML file can contain any subset from a specific PubMed search. The XPath components extract author affiliations, and feed these to a series of Beanshell components that match these with countries in the ISO standard. This data is then fed to an Rshell using the rworldmap R package to map the affiliation counts to a world map. 2015-05-05 12:34:43.422 UTC 5262cff6-c31e-44ef-84c2-f699ae21b46a 2015-01-12 16:28:11.927 UTC 768c6b80-3323-437c-a5ad-8d37c8e08a79 2015-01-15 17:35:34.32 UTC afb2fe69-31af-4ea7-809b-2c7844f15101 2015-03-24 12:44:11.918 UTC e8f728d3-1411-4e7a-b1fc-01009b5ed18d 2015-03-23 19:28:17.674 UTC 08efc2a6-3e6c-4341-96b2-cd596f2030fe 2015-03-27 14:48:23.217 UTC 70165bb0-f6c9-4ac5-964a-5736bde1cb61 2015-03-23 19:14:23.306 UTC eb018537-9e9d-4060-99aa-a3d2ec8adfcd 2015-03-23 19:30:10.452 UTC c5e61189-3ca9-48b9-a2ab-1a1fe3b02b3c 2015-03-25 17:52:23.102 UTC 601bc5be-f15b-4c41-9cba-ebcd10afc71d 2015-03-24 12:43:14.289 UTC af721536-62b7-4061-bde8-0bb1ef87a9af 2015-03-24 10:44:52.674 UTC af148f8b-34fb-458a-8b38-777c4321c458 2015-01-12 16:31:26.320 UTC b2077ccc-d781-4939-8b39-0dfeaa42d320 2015-03-25 18:20:55.402 UTC f2d54fca-a6be-47f7-ae7c-d7be5deb185d 2015-03-25 16:08:19.88 UTC c6f2daef-d52f-46d8-9a5b-ddc923b4fa90 2015-01-13 13:59:55.983 UTC 91fb1ab5-a005-402c-ae03-35fad9fe1c51 2015-03-23 19:27:13.511 UTC 4844728d-efbe-4b4d-966d-47138226ddd2 2015-03-24 16:36:42.489 UTC 69220d28-0bbf-4c75-964a-3ed041b6698e 2015-03-24 14:09:50.269 UTC 14bdb730-f561-41ea-97a1-198256d732a0 2015-03-24 14:31:05.216 UTC 95ffd77f-8ee6-4d37-83bd-93b557203095 2015-05-05 12:35:01.964 UTC 4e200848-49ad-41fa-9187-f8d57298935d 2015-01-15 14:14:57.496 UTC 71b85ec4-3d63-41e7-a250-e01aca465675 2015-03-23 19:37:54.854 UTC 2a6e82fd-19b2-462d-bf60-1d99e86ea182 2015-03-24 14:16:14.823 UTC 4f68fab6-b5c1-4b52-aca6-9b327c5bdc94 2015-01-12 16:26:39.713 UTC 07cd6e42-8244-448f-8073-3f6c5896c1de 2015-03-24 10:47:56.126 UTC 1a1a9f16-2c4a-4ff3-ad9f-34f0fa82b0a5 2015-01-15 17:36:15.985 UTC 4772dddd-7c8b-4424-9eaa-8f3689f9fa8d 2015-03-23 19:10:39.267 UTC b5167484-8dbf-4ffa-8e99-289df46649b4 2015-03-22 14:16:50.876 UTC 515ee6dd-243d-4782-9e5b-c31f573a2d22 2015-03-25 17:46:18.193 UTC 451fe75c-29da-49bd-8de7-7d3d3ad9e2d1 2015-03-25 18:06:38.656 UTC d48e8bbc-8c32-4592-a5cf-8c60af58e5b5 2015-01-17 16:49:58.938 UTC c97f42d3-3bf3-4151-853f-8620efa62eaa 2015-03-24 09:59:22.93 UTC 68269985-3442-42f1-8e70-6ef9051f84db 2015-03-24 14:54:24.737 UTC 8882a3c9-d674-4c11-addf-9743f7668d87 2015-03-27 13:44:22.241 UTC 0e709663-5700-402a-bbb3-7437e0b6cae6 2015-03-25 16:48:40.67 UTC ea6fa367-36bc-4105-945d-08bdddfcc42a 2015-03-16 16:29:59.660 UTC ab095442-e9f7-4b23-bae7-805cbe96bd4e 2015-01-17 15:33:15.12 UTC 6c9fdce3-0ebb-4700-8daf-64a58cc15dc9 2015-01-12 15:37:50.375 UTC 6d16d398-ac77-4e20-9ec6-279f3a3f225d 2015-03-24 16:47:21.912 UTC a8bb18c6-3f4b-4642-a32f-9aea331bcc92 2015-03-25 18:08:51.224 UTC c5ce08b0-e0eb-45a3-9fdb-0b3e02325e75 2015-01-17 15:10:47.387 UTC 1db43a83-51e1-4ef9-a99c-f907b27defae 2015-03-16 16:35:35.860 UTC 29b9a90f-931e-4123-b050-8e039283a59e 2015-03-23 19:46:53.635 UTC 6154a246-e584-424d-bf9d-7608df9f5847 2015-01-15 14:07:57.227 UTC ec83d4dc-3520-4580-9d18-e96cfecabaea 2015-01-12 16:36:53.595 UTC b70b25fb-a90e-491d-8ba5-274a2394af3d 2015-03-25 17:55:11.739 UTC 85220925-b03d-41a2-ad74-aa74fea3ade3 2015-01-15 14:42:08.909 UTC 04230249-e09c-427d-8302-2af8ab801e52 2015-03-22 16:15:10.71 UTC 2ea44910-1159-4ca4-aa0c-63a49962929e 2015-03-24 15:04:42.930 UTC 1220b2bd-2257-4cee-8752-d33523b1bd98 2015-01-12 16:08:56.669 UTC 766c72ed-2f95-49a2-b016-f0d955d59884 2015-01-17 15:24:34.769 UTC b91d5cfc-9470-4918-8e74-b009f8ccab6d 2015-01-15 16:34:37.300 UTC 0ac7f3b0-05be-44c7-b7ce-2710e5ccc421 2015-04-20 13:09:10.530 UTC dd0b8030-d819-4770-8919-74e004b3f948 2015-03-24 10:38:55.590 UTC 6f218749-af99-4b23-94a3-6e62cc510218 2015-03-30 13:07:42.331 UTC 319f8a57-4b6a-42a5-98c4-624b295c041e 2015-03-16 16:24:08.320 UTC b581a15a-8ba4-432a-901a-84e687bcada3 2015-01-13 15:50:07.933 UTC a57556b7-0203-4285-91c4-5b7cad5bd86b 2015-01-19 14:41:01.61 UTC 6575b053-b38e-4a4e-a772-52f83a581a2e 2015-01-15 14:14:11.996 UTC bbe96086-b5dc-44e6-a70b-a6e0a769e92b 2015-01-20 11:47:10.367 UTC e62092c1-2c04-4bbb-ba30-79c17a43d881 2015-01-15 14:16:30.596 UTC a8e8a20c-d352-45ee-bf55-a6649233ca7e 2015-03-25 18:01:54.564 UTC 5d535f94-ff0a-4f58-b2cc-2c99de659b88 2015-04-20 13:24:19.333 UTC c933ca48-91c9-4835-8311-1d2e09d760e5 2015-03-25 18:42:42.488 UTC 4069a1c4-4054-4431-8b7c-822a37889a4e 2015-03-27 13:15:08.250 UTC 8b108424-7b3a-40a3-b072-7d3d254e0715 2015-03-22 15:24:44.247 UTC fa9e5c4f-af6c-4b1a-8bfb-91c783874ccb 2015-03-23 19:29:36.149 UTC ccbb60ae-3275-40e7-8b32-ba14026402e4 2015-03-24 14:33:48.991 UTC ae9dd6d0-52cb-4cf6-895b-7f0af62856eb 2015-03-27 13:16:46.862 UTC 5ae3b213-69c5-4fc4-bd70-70daadda0b68 2015-01-15 16:00:19.646 UTC e686275a-2d54-479a-84ae-e4e6d69b6351 2015-03-24 15:01:03.751 UTC 6fbb6d68-92c8-4de4-9b3b-999458ee7288 2015-01-13 15:29:45.516 UTC c3bc0deb-67f5-4266-bb94-e59b3cd96528 2015-03-25 18:16:20.599 UTC c5e7ae8f-5e87-428e-96c8-2949caf1487a 2015-03-23 19:11:54.620 UTC 266b5944-bccf-4765-834d-89b998cae622 2015-01-19 14:50:43.831 UTC c769f200-dde4-4a57-9f82-2c89609d6376 2015-03-22 17:13:11.497 UTC 458f9fd9-db2a-4e5c-a5a7-aa37572dee2b 2015-03-24 10:31:39.596 UTC compare_pubmed_results_geographically 2015-05-05 12:35:01.848 UTC 77fda715-9978-4de7-9b1b-6e99057e1876 2015-03-24 15:02:30.463 UTC 127b827c-0e20-458b-9f46-42e2e64b1c06 2015-03-16 16:37:19.524 UTC edc97797-0189-4f58-af44-a01317380b15 2015-01-19 13:55:51.89 UTC c2bcf7dc-1135-41e4-8178-3af10098c50f 2015-03-25 18:33:27.630 UTC b4c17886-c336-444d-bc4d-6598a82d67fd 2015-01-12 16:44:25.536 UTC e091f97c-9a7c-44f4-8613-57316be47a85 2015-03-23 19:25:10.155 UTC 7097ca44-26ef-4ffe-a297-610debe56f31 2015-03-22 15:19:15.567 UTC 45e5509d-50c8-496a-a566-50bdccd34c37 2015-01-12 16:48:07.169 UTC 45a3493d-3826-4eee-933b-d2434ffd824e 2015-03-24 10:07:46.495 UTC c7e7e0e3-2ffb-4240-82aa-038e3c4de5e8 2015-03-22 16:38:34.848 UTC fecd8646-9830-4b5d-a8b6-44df0ab24ead 2015-03-24 10:39:23.195 UTC 365d2220-1f6e-4280-aa89-0a95b5580e17 2015-03-25 16:53:13.32 UTC 4669d662-2c05-4562-af20-ad33574eadd3 2015-03-23 19:25:54.710 UTC 28ea3f79-cf52-4d28-b196-cfd57f05932b 2015-03-27 16:45:51.326 UTC 825363f2-e3e4-45e3-aad9-4ddd7973510a 2015-03-25 17:14:03.125 UTC ef670409-da6a-45c9-9740-f4c20bf9e409 2015-03-23 19:44:20.261 UTC df1aeed2-720b-41ee-9ebb-758a92815264 2015-01-13 13:01:14.201 UTC 8d37c8fd-0535-416c-bb3f-57450082fefc 2015-03-27 16:43:57.426 UTC 3f5be1a1-846e-4a8c-9c6f-fadd03aae387 2015-03-27 15:25:38.26 UTC c262f440-758c-4c50-8397-08aa62f6b331 2015-01-15 14:24:17.751 UTC cc1b4bf5-c764-4d27-b989-bfc94b49a459 2015-01-12 16:24:51.953 UTC f4620ea8-38fb-4304-a918-e1be6aa8cc6e 2015-03-24 16:41:29.631 UTC 28e16329-b46e-45fd-bf88-25378439e5a3 2015-01-13 12:46:58.847 UTC bf1b5217-8008-43cb-9743-854eec5a29b7 2015-03-23 19:38:38.291 UTC ef39b8f4-de70-4867-bc5b-95d8bde92a08 2015-03-25 18:03:17.49 UTC 28c7a335-a1cf-4a61-aeb7-ced2977a3702 2015-01-15 17:12:25.974 UTC cbb23c6e-c24d-4687-abaf-71d13e14bcab 2015-03-23 19:35:04.489 UTC 52ee1a3b-1d11-4832-b224-09b5795ab358 2015-03-16 16:53:18.854 UTC 173c2f56-d6e4-4c9c-a747-9305dac8dfcc 2015-05-05 12:26:30.911 UTC 0f2367ff-33c1-4fe7-a63e-7821b8be21f7 2015-01-15 18:16:00.18 UTC 89aa70a3-c2ea-4d94-8344-524833b3b6b2 2015-01-12 16:49:11.52 UTC db13e65a-8633-45d5-8f52-ee0545e50303 2015-01-20 08:19:29.617 UTC 923c5679-a64d-4da9-9c68-8024f9a3e938 2015-01-19 11:51:12.846 UTC fd93192f-e3d0-40f3-8ae8-20560d4eca8c 2015-03-24 12:40:24.99 UTC 46189888-0ead-4f6d-8a90-4e5df20d6351 2015-03-24 16:40:12.858 UTC aad2ce13-adff-434a-988c-c774cc7bc6dc 2015-03-25 15:22:26.636 UTC 2489fe50-624f-4450-9465-954bcdea49b9 2015-03-25 18:31:56.11 UTC 524aad4b-f8f8-45e4-a280-4d96bcc3c29b 2015-03-23 19:44:58.43 UTC 05122caf-e56f-4bbf-b7e1-0fd9f7394b36 2015-01-19 12:14:01.774 UTC dd8f37bf-44a9-4366-8c23-84e6b275e538 2015-03-25 18:25:51.946 UTC b72d8b9f-c92e-4b6d-af71-8335d1bf72a8 2015-03-24 14:33:15.188 UTC 7a58ed32-67a9-4cdf-90bf-40581af6d1b9 2015-03-24 10:42:34.957 UTC 049d8d67-a287-43ad-a767-eb41edfd46bb 2015-01-15 16:47:55.226 UTC 9b37318f-fed5-4e93-9537-dfdae436e025 2015-03-23 19:09:23.895 UTC c6086af5-9400-468e-b352-0d1c6c2ecc5b 2015-03-24 10:36:52.178 UTC cae875ab-5c4b-46d4-b108-db81b318e854 2015-03-24 12:39:38.997 UTC 18f32896-a42e-4ca3-911b-41446ab7bbeb 2015-03-25 18:19:34.673 UTC 16365046-12ff-49b8-b0ff-deb5b6db479f 2015-03-25 18:04:08.731 UTC 6812931e-b8ad-4778-babe-6093f89e3e61 2015-03-22 17:11:37.205 UTC a4ed215d-c07f-4c3f-ad9e-a0c7fb45ae0e 2015-04-20 12:53:19.827 UTC 92b576bd-3433-413a-9c23-a3882e3217a1 2015-01-13 12:51:28.652 UTC 3a86818a-498e-4c6f-b877-e845f62dacc8 2015-03-16 16:51:03.545 UTC e743a11c-8cd4-4425-9cbc-1ca2cbc942c2 2015-01-19 14:57:46.46 UTC f16a2aa0-e87c-47c2-860e-159d8192617f 2015-01-12 16:05:29.822 UTC fc2a4e00-e589-4e23-86ea-cb3be2409131 2015-03-16 16:34:33.61 UTC 4f44a607-9f44-4647-a7cc-6eaf0609c12f 2015-01-15 16:23:51.302 UTC 7680182d-2969-41b1-818f-4771074f228d 2015-01-20 08:19:41.576 UTC aa1587cd-7330-406c-a520-15f2be0d1c4f 2015-03-22 17:05:53.519 UTC b11cd6cf-29d7-4718-9eca-db14b68fe9cc 2015-01-19 15:02:23.112 UTC 1756072e-e0d5-4d0b-ac1d-8a98d3d1129d 2015-01-13 15:33:03.142 UTC eea6bf46-7b9b-4341-9ab4-325c6edb4461 2015-03-23 19:22:38.368 UTC 1e4c8b91-41ed-4f17-8509-d96c202ed421 2015-03-24 10:45:24.679 UTC 8445de20-40f5-4f12-a138-8fc70d67cd4e 2015-01-15 14:03:13.409 UTC dfb3b5f9-1674-4252-a4ed-04a477314501 2015-03-25 16:48:05.683 UTC 94c6baeb-3698-4523-9a83-5b4025c8f97a 2015-03-24 16:03:26.59 UTC e2922a91-3f17-4f30-aa62-ffb968db26d8 2015-03-25 16:42:13.587 UTC f17cb5a0-d343-4f07-8e50-5908d29df40b 2015-05-05 12:31:00.344 UTC 976d7c86-596c-47d9-bf19-ac0c93687104 2015-01-17 17:04:15.663 UTC 278fb15e-53b1-46f1-a5b1-c9e0d185c12a 2015-03-16 16:42:30.119 UTC c1f17a5e-8129-4a3d-8e86-49d2e6d8619d 2015-03-25 18:14:19.595 UTC f3c4eebe-15b7-465d-8a1a-959823e0bf00 2015-03-24 10:45:53.687 UTC c7055ad5-5de0-4e84-b057-f85a073f4972 2015-03-22 17:04:15.303 UTC a80bee7c-5d85-41ac-b507-c38f168de347 2015-03-23 19:03:49.87 UTC dd6ead5e-2746-4170-811c-1fbd716b8458 2015-03-22 17:21:42.202 UTC ed1fe4d5-c029-4f5a-8f71-97270b875153 2015-03-25 16:55:01.1 UTC 3629b5b2-c8de-438c-9acd-c06ac625549a 2015-03-25 18:25:20.997 UTC 0f8459c5-7ca8-478c-abac-4ce6cb17837c 2015-01-17 15:51:36.75 UTC 3340b1ca-270f-4f4b-9670-67e35ebff70d 2015-01-12 16:38:29.130 UTC 2874d7d1-2b72-4ce4-8531-115af809400d 2015-01-15 15:25:50.512 UTC c4c12f6d-2de1-41c0-af8e-f480fa1460ab 2015-03-25 18:41:03.578 UTC b148eb37-3380-440d-9cd6-2908e6972a44 2015-01-19 14:39:28.37 UTC 042e4411-2e3d-4e72-a079-ea9891ec0991 2015-03-25 18:22:06.178 UTC 5821f28d-7f20-46ed-bcae-07600d010e2d 2015-03-27 13:03:51.74 UTC e2741b08-f855-4fbe-9f5d-70a895a225cc 2015-01-15 14:15:40.34 UTC 2c502556-0eef-4520-b914-8e9b378d576f 2015-03-25 18:35:50.536 UTC ed1eba24-e002-4543-b63f-51009c147966 2015-01-19 12:10:24.527 UTC fd17ee4b-0cca-49e5-b86d-161683b018f9 2015-03-22 17:02:50.977 UTC b5bf8149-1c4c-4846-be5d-a9fda883a983 2015-05-05 12:29:43.547 UTC 784c45b9-ddf2-4f99-b699-0b50fa283ab1 2015-01-17 15:41:08.516 UTC eb0aea18-e128-429b-9775-34a032acda6c 2015-03-24 10:44:18.56 UTC 8294cde0-b3a0-46a9-9c4d-e10a212a66b9 2015-03-23 13:29:23.36 UTC 27bed8fb-b7ce-4ad9-90f8-8286c105dbf7 2015-03-22 15:33:56.383 UTC b121e72d-cff8-467c-8f86-fa649e003ace 2015-01-15 16:25:23.473 UTC 77bfcfac-7daf-45c1-957e-651de02f785a 2015-01-13 12:46:24.296 UTC 50613bae-6611-4fa2-9734-80be58129a76 2015-03-23 19:21:07.725 UTC de29f2b2-c154-466e-972c-d030b688f2e9 2015-01-15 17:50:45.680 UTC 8b6904e6-bf45-4e57-8a9e-27c48b1bac31 2015-01-19 14:01:55.614 UTC 9e9b0798-513d-4d55-aaf0-08facb0502c6 2015-01-15 14:18:03.185 UTC 00b5538e-167a-4d8f-91d3-abeb30a4e02c 2015-03-23 19:31:24.608 UTC 2aca62ed-0bac-4495-a470-d64986c83f60 2015-03-25 17:04:45.258 UTC c7b553a4-f307-4170-b21a-939a39e08411 2015-03-24 10:34:40.238 UTC 67fdea13-374b-42e7-ae95-065755e893c7 2015-03-25 16:37:23.567 UTC 94e9ee1d-b2f3-4705-819e-69b9c45d438a 2015-03-27 12:25:35.960 UTC 4bb69112-b6c6-4431-a64b-1e2aab20cc77 2015-03-27 14:00:49.564 UTC f3b71e34-6a8a-4556-aa77-c7697170a5ac 2015-03-24 10:48:59.54 UTC 0b642d7c-c8d0-4266-9854-c2dddd4a31bc 2015-03-22 17:10:49.323 UTC 9c12b552-93af-48c4-82ff-faf60b043c9e 2015-03-25 18:28:34.748 UTC 7b127bd5-2642-45d3-a539-966e0d6c8142 2015-03-25 17:50:23.466 UTC 6e85312c-621d-42df-9540-58074f2dfdae 2015-03-25 18:29:40.502 UTC e737f437-212c-43a3-a3ab-a87cadb0a861 2015-03-25 18:34:01.427 UTC d9e38835-359d-4462-945d-aa157bcefa90 2015-03-25 17:41:54.39 UTC a9b98dfb-3169-430f-965d-b0dec6249e92 2015-03-25 17:05:24.882 UTC 39d80522-c25d-4afa-a4f8-ca4af2838453 2015-03-27 13:51:22.760 UTC 8861a6fb-8f72-4cdf-9858-de8ae8173c16 2015-03-24 10:43:56.310 UTC 74f6c1f1-90ad-492e-9b4b-e51850e548d2 2015-03-22 15:31:43.510 UTC 11ec9446-ea99-4f2d-9595-04ca4a5cdc17 2015-03-18 11:28:58.591 UTC b8f1259d-dd75-4243-9f18-9916e534e282 2015-03-24 14:15:33.601 UTC 674e82e5-6a2b-4c8a-85af-7c04b90b5cf6 2015-03-25 14:39:44.911 UTC 253d8aa1-93f0-4418-a3ce-c8c306bc83ad 2015-03-16 16:27:41.15 UTC 3a83340d-7f39-4ee6-9ed8-07e6f1795daf 2015-03-23 14:29:02.121 UTC 6fd798ba-5871-4fd1-8f01-fd011dc30b56 2015-01-17 15:31:46.449 UTC 072caa31-0cb4-419a-b552-e53ecad81298 2015-03-22 15:32:59.521 UTC 72ee5367-4bf2-4810-a5e7-2c583d42c0e6 2015-03-22 17:03:50.549 UTC d9cff659-cb42-4938-bf65-8297636c5cfb 2015-03-24 10:35:54.777 UTC 772e7b48-43e9-43f9-ab75-588d421deda9 2015-03-23 19:15:53.741 UTC ba999126-6713-414e-acc1-49c12611f83d 2015-01-19 14:59:40.354 UTC 42f895a0-bf36-465d-b6fe-63fe38caaa9d 2015-03-25 18:23:19.973 UTC 7c8f05d2-ea67-42d9-9a78-45be8cff0132 2015-01-19 14:52:13.90 UTC d089add5-d76c-46a4-9830-7528b677df8f 2015-03-25 18:10:49.936 UTC 97ac1f7f-7f3a-4c4e-998b-42b3ac76cfa8 2015-01-15 14:50:50.245 UTC 596c47a6-bdf4-41e3-878c-7bf67032f404 2015-03-27 12:23:50.428 UTC de394188-8f37-416d-8c3b-bffe033cdf8e 2015-03-24 10:32:06.834 UTC a42fcb2f-b0e7-435b-924b-bb07db684580 2015-01-15 16:34:26.916 UTC 7bd8b0da-f80f-4457-a0fa-9294c6158a7c 2015-03-22 17:00:36.4 UTC 6e221149-6100-499b-a3f1-080792cae91c 2015-03-27 13:27:20.684 UTC 17cea310-221e-4100-86a8-9fedda8c05fd 2015-01-12 16:44:28.883 UTC 87a9fdbb-7f53-4f9f-8e4a-1824309549aa 2015-01-12 16:46:45.469 UTC 4936126a-70e7-4804-87d1-ab6d29f27e18 2015-01-15 16:43:08.153 UTC 7547487d-39ab-4429-8065-5a0cfc8571fc 2015-03-23 19:26:33.404 UTC a579f14f-f4cf-481e-97fe-edddc24a6dc4 2015-03-22 17:12:48.917 UTC 8ebba644-5ee4-467b-b456-ae1562354823 2015-03-27 14:38:10.859 UTC 18535372-c69e-4f5c-ad09-723f2ed1bcca 2015-03-25 16:26:56.931 UTC be5733e1-4025-4203-9ff8-620b177d2a51 2015-03-25 17:44:50.931 UTC 49f274d8-58b3-4dc2-b3ba-27a5f3837350 2015-01-12 16:06:55.561 UTC b6c263e9-fdd9-483a-9263-acaa0b1709f2 2015-03-16 16:28:06.527 UTC fbf7f2ff-28c6-49b7-a924-ae5312a6313c 2015-01-17 16:51:52.829 UTC e274c0b7-6735-4503-afa0-6a46702cf406 2015-01-19 14:04:23.757 UTC 71244618-0c23-4a75-bdfa-b379f926d207 2015-03-25 17:35:57.2 UTC c8314b17-e1f0-4480-b8bf-52f61005aa14 2015-01-17 16:39:02.937 UTC 09d7178f-d94e-4c7c-a7f3-ec28b4570c3e 2015-01-15 14:09:52.849 UTC d2cbbf18-05d6-4ef1-a70f-7ed9909b0d1b 2015-01-19 12:06:37.212 UTC 44009b6f-2d29-4bc0-baba-feda6119b05f 2015-03-25 18:02:42.186 UTC 7efcb4e1-2cdb-4973-a21a-0a47a0fd5000 2015-03-23 19:09:37.616 UTC 4def3349-c185-4ded-8f51-d9c3dbcff4f3 2015-03-24 14:35:23.409 UTC 96a914ea-0a72-4ab7-850e-bd2c495988d8 2015-03-25 18:30:04.309 UTC bf674d92-269e-4f97-bc73-d19f3cdde993 2015-03-23 19:21:50.663 UTC 0f71a624-e8a2-4d0d-a4fc-2586c087ff4b 2015-03-23 19:17:37.193 UTC 5f69d4cc-ed61-4c0f-838f-081034740d14 2015-01-12 16:57:52.43 UTC 8b098a0c-3efc-423a-8e0d-2bfec556e8d8 2015-03-22 16:14:35.611 UTC 088b6c6d-a5b5-4f3e-b4f1-f9a34701bd2c 2015-01-20 08:17:46.127 UTC 16f30119-df06-48aa-99d8-bdce0c83703e 2015-03-25 16:52:31.226 UTC 3a744b34-de4c-40e7-bef4-4c1c7f71fe4a 2015-03-23 19:16:08.741 UTC 1ac04bd7-8ab3-4df6-8fc4-c40afe803eb6 2015-03-24 16:34:25.300 UTC ad3c0afd-7500-4205-b1fb-abfa43e283ab 2015-03-24 10:29:45.583 UTC 9e4dd2a7-f18b-46bb-8da9-aedd6db6fde5 2015-01-12 16:45:11.377 UTC bc238e53-8a3a-4032-91a6-ee5a5e5a637b 2015-03-23 19:47:54.991 UTC 0dfec7bf-f22b-406b-8bd9-a2c337259afc 2015-03-25 17:01:18.213 UTC 7d5823e1-c9f6-401f-a581-9262b9f2d442 2015-03-25 18:27:14.47 UTC 4728f9d0-4936-4646-8f48-335a1df5e7f5 2015-01-12 15:57:50.506 UTC 391e027e-d09a-4522-93e0-971378ac55ee 2015-03-25 16:40:15.808 UTC