

BioVeL – Biodiversity Virtual e-Laboratory

Workflow Documentation

Simulate stochastic growth from a sequence of matrices Workflow for local execution

July 2014

Capacities Programme of Framework 7: EC e-Infrastructure Programme – e-Science Environments - INFRA-2011-1.2.1

Grant Agreement No: Project Co-ordinator: Project Homepage: Duration of Project:

283359 Mr Alex Hardisty <u>http://www.biovel.eu</u> 36 months

1 Description

The Simulate stochastic growth from a sequence of matrices Workflow provides an environment to simulate stochastic growth by projection using whole matrix selection techniques in an independently and identically distributed (iid) environment from a set of 2 or more projection matrices.

This workflow is based on the popbio package (script: stoch.projection - Simulate stochastic growth from a sequence of matrices, Stubben, Milligan and Nantel, 2013) based on the The MATLAB code in Box 7.3 (Morris and Doak 2002). For more details of the analysis see: Exploring population growth in a variable environment with computer simulations (Morris and Doak 2002, page: 229-233 and Caswell 2001, Chapter 14).

Outputs:

- Equal selection data
- Stochastic projection graph
- Unequal selection data

We use *Gentiana pneumonanthe* collected in Terschelling, The Netherlands as example how to run this workflow, besides that this data was not taken in a stochastic environment.

2 General

2.1 Name of the workflow in myExperiment.

Name: Simulate stochastic growth from a sequence of matrices.

Download: The workflow pack can be downloaded at myExperiment under the following address:http://www.myexperiment.org/packs/645.htmloronlytheworkflow:http://www.myexperiment.org/workflows/4349.htmloronlytheworkflow:

2.2 Date, version and licensing

Last updated: 30Th July 2014

Version: 1

Licensing: CC-BY-SA

2.3 How to cite this workflow

To report work that has made use of this workflow, please add the following credit acknowledgement to your research publication:

The input data and results reported in this publication (tutorial) come from data (Dr. Gerard Oostermeijer unpublished results and publication: Oostermeijer, J.G.B. M.L. Brugman, E.R. de Boer; H.C.M. Den Nijs. 1996. Temporal and Spatial Variation in the Demography of *Gentiana pneumonanthe*, a Rare Perennial Herb. *The Journal of Ecology*, 84: 153-166.) using BioVeL workflows and services (www.biovel.eu). Simulate stochastic growth from a sequence of matrices workflow was run on *<date of the workflow run>*. BioVeL is funded by the EU's Seventh Framework Program, grant no. 283359.

3. Scientific specifications

3.1 Keywords

BioVeL, demography, *Gentiana pneumonanthe*, independently and identically distributed (iid), matrix population models, matrix, model, package 'popbio' in r, population, stage matrix, stochastic environment, stochastic growth, stochastic projection, Morris and Doak 2002.

3.2 Scientific workflow description

The aim of the Simulate stochastic growth from a sequence of matrices workflow provides an environment to simulate stochastic growth by projection using whole matrix selection techniques in an independently and identically distributed (iid) environment from a set of 2 or more projection matrices. The workflow accepts input data (matrices) in a .txt format (decimal numbers indicated by dots e.g.: 0.578). The output is provided as a set of R results and graphic plots.

Figure 1. A) Graph of the Simulate stochastic growth from a sequence of matrices workflow in Taverna workbench.

For more detailed description of the functions, please visit the Tutorial section.

4 Technical specifications

4.1 Execution environment and installation requirements

The Workflow requires a Taverna Engine including the Interaction Service plugin. The simplest way to install a Taverna Engine is to install Taverna Workbench, and then install the Interaction Service plugin.

The workflow also requires an Rserve installation with the *popbio* package installed. It is possible to setup the workflow to use a remote Rserve. However, instructions for installing a local Rserve are provided below.

4.2 Taverna installation, including updates and plugins

4.2.1 Taverna installations

• Taverna Workbench: Version 2.4 or 2.5. For installation files and instructions, please go to http://www.taverna.org.uk/download/workbench

4.2.2 Taverna Plug-ins

• Please install the Interaction plugin: version 1.0.2+

4.2.3 Taverna Dependencies

- Install R software in your computer. See: <u>http://www.r-project.org/</u>
- Start R, and install package Rserve:
 - install.packages("Rserve")
- Install package popbio
 - install.packages("popbio")
- Local R Server: (Rserve) running at port 6311. See <u>https://wiki.biovel.eu/x/3ICD</u> for additional information.

4.2.4 How it works

First, open R, once R is opened, type library(Rserve) and press enter; then type Rserve() and press enter again. You will see then the following message: Starting Rserve...
 "C:\PROGRA~1\R\R-30~1.1\library\Rserve\libs\x64\Rserve.exe"

After this operation you can open Taverna and run the workflow.

5 Tutorial

5.1 Introduction

This tutorial requires 6 input files or matrices of 6 consecutive years (from 87-88 to 92-93) of the same place (Terschelling, The Netherlands, Oostermeijer *et al.*, 1996).

5.2 Input data.

5.2.1 Data preparation/format

The workflow accepts input data (matrices) in a .txt format, all decimal numbers in each matrix must be indicated by dots e.g.: 0.578. All examples matrices for the tutorial are available in the PACK: http://www.myexperiment.org/packs/645.html or here below.

5.2.2 Input data

The input files are in a .txt format: to download click here in each file:

- Terschelling matrices
 - <u>MTers87_88.txt</u>
 - <u>MTers88_89.txt</u>
 - <u>MTers89_90.txt</u>
 - <u>MTers90_91.txt</u>
 - <u>MTers91_92.txt</u>
 - <u>MTers92_93.txt</u>

5.3 Select input data dialogue boxes.

The first step is to fill out the input ports:

5.3.1 INPUTPORTS

1) <u>Graph title</u>: Is the main title to be display in the stochastic projection graph. Clicks in add value and then write the text in the right space. Please do not use a title longer than the suggest it, 11 word or 83 characters with spaces (Fig. 2)

e.g.: Projection of stochastic growth for Gentiana using equal and unequal probabilities.

Figure 2. Stochastic projection graph title to be filled in (example).

2) <u>Intervals</u>: This value is the number of time steps or projection intervals to predict future population size or in other words the time to predict future population size. Click in add value and write the number in the right space (Fig. 3).

Figure 3. The number of intervals to be filled in.

3) **Iterations**: It is the number of iterations or the number of realizations of population growth to simulate. Click in add value and write the number in the right space (Fig. 4).

e.g.: 1000

Diagram	graph_title intervals iterations nmax probabilities stages sumweight years
	Port description It is the number of iterations or the number of realizations of population growth to simulate. Click in add value and write the number in the right space.
	Example value
Workflow description	
The Simulate stochastic growth from a sequence of matrices Workflow provides an	V Delete and Set value Set file location
environment to simulate stochastic growth by projection using whole matrix selection techniques in an independently and identically distributed (id) environment from a set of 2 or more projection matrices.	berete al: Set value Set the location bl: 1000
This workflow is based on the popbio package workflow author	
Jonathan Giddy and Gerard Oostermijer .	
	Added new value. Edit value on right.
	↔ Load previous values ↔ Save values (1) Help 🐗 Use examples 🕨 Run workflow 💢 Cancel

Figure 4. Number of iterations to be filled in.

4) *mmax:* it is a maximum number of individuals beyond which population projections cannot exceed.

No density dependence:

To use *no density dependence*: first, click in add value, then in the left window a List is added with a [] element in the right window. Delete the []. After deletion, the "List" has no elements in the right window. When running the workflow, Rshell script will assign NULL to the input. (Fig 5 - 7).

This tutorial uses No density dependence (see results).

Simulate stochastic growth from a sequence of matrices Workflow

Diagram	graph_title intervals iterations nmax probabilities stages sumweight years	
Workflow description The Simulate stochastic growth from a	Port description It is a maximum number of individuals beyond which population projections cannot exceed. No density dependence: If the user wants to use no density dependence, this is established by. First, click in add value, then in the left Example value I	
sequence of matrices Workflow provides an environment to simulate stochastic growth by projection using whole matrix selection techniques in an independently and identically distributed (iid) environment from a set of 2 or more projection matrices.	X Delete 🕸 Add value 📄 Add file location 🎱 Add URL No selection	
This workflow is based on the popbio package Workflow author Maria Paula Balcazar-Vargas, Mikolaj Krzyzanowski, Jonathan Giddy, Francisco Quevedo and Gerard Oostermijer .		
	Deleted node	
	↔ Load previous values ↔ Save values (1) Help 🕷 Use examples 🕨 Run workflow 💥 Can	cel

Figure 5. No density dependence: First, click in add value.

Figure 6. No density dependence: then in the left window a List is added with a [] element in the right window.

Simulate stochastic growth from a sequence of matrices Workflow

Figure 7. No density dependence: Delete the []. After deletion of [] the "List" has no elements in the right window.

Density dependence:

If the user wants to introduce density dependence: Click in add value and write the number in the right space (Fig. 8).

e.g. 500

Figure 8. Density dependence: Click in add value and write the number in the right window (e.g. 500).

5) <u>Probabilities</u>: it is a vector of probability weights used by sample for selecting the projection matrices. In the following example, 6 matrices of 6 consecutive years are used, therefore will be 6 probabilities weights, all sum up 1.

No probability weights:

To use *no density dependence*: first, click in add value, then in the left window a List is added with a [] element in the right window. Delete the []. After deletion, the "List" has no elements in the right window. When running the workflow, Rshell script will assign NULL to the input (Fig 5 - 7).

Probability weights:

The respective probabilities must be filled one by one and they must sum up 1. First, press add value (see arrow in Fig. 9), fill a probability number and press enter; then press add value and fill once again the next probability, repeat the action until you have filled the probabilities for all matrices. The order of the probabilities must follow the order of the years input. Each year represent a matrix. The users can change the frequencies with which the different matrices are chosen. *In this example not all the 6 matrices is equally likely to occur.*

e.g. [0.1, 0.1, 0.1, 0.1, 0.2, 0.4] (all the probabilities must sum up 1)

Diagram	graph_title intervals iterations nmax probabilities stages sumweight years	
Workflow description The Simulate stochastic growth from a sequence of matrices Workflow projection using whole matrix selection techniques in an independently and identically distributed (iid) environment from a set of 2 or more projection matrices. This workflow is based on the popbio package Workflow author Maria Paula Balcazar-Vargas, Mikolaj Krzyzanowski, Jonathan Giddy, Francisco Quevedo and Gerard Oostermijer .	Port description It is a vector of probability weights used by sample for selecting the projection matrices. In the following example, we use 6 matrices of 6 consecutive years, so if the user selects probabilities weights, the user must fill in 6 probability weights. No probability weights: Example value [0,1, 0.1, 0.1, 0.2, 0.4] It is 0.1 It is 0.1 It is 0.1 It is 0.1 It 0.2 It 0.1	
	Added new value. Edit value on right.	
	<> Load previous values <> Save values (i) Help all Use examples >> Run workflow × Cance	el

Figure 9. Probability weights: Click in add value and write the number in the right window.

6) **Stages:** the names of the stages or categories of the input matrix. In the following example, the matrix has 5 stages or categories. The respective name stages must be filled one by one. First press add value (see arrow in Fig 10), fill a stage name (not longer than 8 characters) and press enter; then press add value and fill once again the next stage name, repeat the action until you have fill all the stages names.

In the following example, the matrix has 5 stages or categories:

The stages of this matrix are called:

1) Seedlings	S
2) Juveniles	J
3) Vegetative	V
4) Reproductive individuals	G
5) Dormant plants	D

Figure 10. Inputs stages names to be filled in (example).

7) *Sumweight*: A vector of ones and zeroes used to omit stage classes when checking density threshold.

The respective sumweights must be filled one by one, the values must be 1 if the stage is included or 0 if is absent. First, press add value (see arrow in Fig. 11), fill a sumweights number and press enter; then press add value and fill once again the next sumweight, repeat the action until you have filled the sumweights for all stages. The order of the sumweights must follow the order of the stage input.

e.g. [1, 1, 1, 1, 1] (all the stages are included), this is the values used in this tutorial.

e.g. [0, 1, 1, 0, 1] (stage S and G are omit)

Figure 11. Sumweights to be filled in.

8) <u>Years</u>: Years in which the data of the matrices were collected. The years must be added one by one as list. First click in add value, fill the first year and press enter, then press add value and fill once again the next year, repeat the action until you have fill all the years (Fig 12).

The years can be display as follow:

```
e.g.
• 1987 or 1987-1988
```

lagram	•	graph_title intervals iterations nmax probabilities stages sumweight years	
	• III	Port description Years in which the data of the matrices were collected. The years must be added one by one as list. First click in add value, fill the first year and press enter, then press add value and fill once again the next year, repeat the action until you have fill all the years. The years can be display as follow: Example value [1087 1088 1088 1098 109 1092]	4 III >
Vorkflow description he Simulate stochastic growth from a equence of matrices Workflow provides an invironment to simulate stochastic growth by rojection using whole matrix selection chniques in an independently and identically istributed (iid) environment from a set of 2 or nore projection matrices. his workflow is based on the popblo package Vorkflow author aria Paula Balcazar-Vargas, Mikolaj Krzyzanows onathan Giddy and Gerard Oostermijer.	ski,	Image: Second secon	
		Drag to re-arrange, or drag files, URLs, or text to add	

Figure 12. Inputs years to be filled in (example).

After the user has filled out the input ports and has clicked the **Run Workflow button**, a dialogue pages appear in the user's internet browser. See the next section:

5.3.2 INTERACTION

1) <u>Years:</u> Please be shore that all the files are saved in the same directory. This interaction page will show the submitted years. When the dialogue appears (Fig 13), click Browse for the first year (1987-88). A file dialog appears. Select the file (a stage matrix) and click Open (Fig 14). The selected matrix appears in the browser (Fig 15). Repeat the procedure for each year (Fig 16). Once all the matrices are submitted, click the Confirm button (Fig 16). After clicking Confirm, the confirmation "Matrices submitted" appears (Fig 17). When the analyses are completed, they appear on different windows under results in Taverna, the user can save each output separately.

In the following example, there are 6 years or 6 matrices:

1) 1987-88 2) 1988-89 3) 1989-90 4) 1990-91 5) 1991-92 6) 1992-93

Iccalhost8080/interaction/	rteraction928e4334a02e4	4e60b38did545d02073b8.html	🐨 🖱 🛛 - Google	P 💠 👘 -	* * =	=
Aost Visited 💵 Brasil 2014 - Go	Carac 🖂 Taverna inte	raction 🗢 Index of /-gross/eeb5 👁 Lou Gross - Home Pag 💈 Dispe	sal Ecology and 🗌 Taverna interaction 🎬 From Forest Floor To T 🗌 Tale	ent Scheme Inform		
lact matrix file						
siect matrix me						
lect a matrix for ea	ch year, then cl	lick the Confirm button.				
Year		Files	Matrices			
87-88	Browse_	No file selected.				
88-89	Browse	No file selected.				
89-90	Browse_	No file selected.				
90-91	Browse_	No file selected.				
91-92	Browse	No file selected.				
92-93	Browse	No file selected.				
Confirm						

Figure 13. Places dialogue appears.

Simulate stochastic growth from a sequence of matrices Workflow

Aost Weited 127 Brasil 2014 - Gol Car elect matrix files	rac 🗋 Taverna inte	raction 🗢 Index of /~gross/erb5 👁 Lou Gross -	Home Pag 🧐 Dispensal Ecology and 🗌 Tave	erna interaction 🔛 From Forest Floor To T.,. [Talent Scheme I	form_ 🗌 Getting St	arted		
elect matrix files									
elect matrix files									
2 22 P									
ect a matrix for each	year, then cl	ick the Confirm button.							
			😻 File Upload					×	
Year	- A	Files	Matrix models (poppio, diago	ram, p., • WF16-Simulate stochastic growth from	a sequence of matric	s • • • 50	arch WF16-Sim	ulate 🖇	5
87-88	Browse_	No file selected.					-		-
99.90	Browne	No file selected	Organize * New folder	*			· ·	0	
100-09	DIOWSE	No me selected.	🛓 Favorites	Name	Date modified	Type	Size		
189-90	Browse_	No file selected.	bownloads 1	Command in R_WF16_prueba_2014-05-15	15-5-2014 14:03	R File	6 KB		
90-91	Browse_	No file selected.	Dropbox	Figure Figure	25-5-2012 12:50	JPEG image	61 KB		
01-07	Browne	No file selected	So Recent Places	Matrices	25-5-2012 14:49	Microsoft Word D	14 KB		
91-92	Diowse	No me selected.	Deskip	Matrix modelling workflow16	25-5-2012 13:49	Adobe Acrobat D	453 KB		
92-93	Browse	No file selected.	Cibraries	MTers87.88	15-6-2012 14:57	Text Document	1 KB		1
Confirm			Documents	MTers88_89	15-6-2012 14:55	Text Document	1 KB		
commin			🜛 Music	MTers89_90	15-6-2012 14:55	Text Document	1 KB		
				MTers90_91	26-4-2012 12:21	Text Document	1 KB		
			JUI Videos	MTers91_92	26-4-2012 12:22	Text Document	1 KB		
				MTers92_93	26-4-2012 12:23	Text Document	1 KB	8	18
			Computer	WF 16_POP - Support Process	19-2-2014 13:43	PNG image	106 KB		
			by System (C)	Wf16_Morris & Doak	10-7-2014 16:49	Adobe Acrobat D	564 KB		
			mbaicazi (\(uva.ni\dts\triwi-nome) (F)	Workflow 16 Stochasticity projection	25-5-2012 13:26	Microsoft Word D	103 KB		
			applicatieshare (\(dob2).dva.nl) (P.)	Workflow 16 Stochasticity projection	23-3-2012 13:24	Microsoft Word D	260 KB		
				worknow to stochasticity projection_co	31-1-2014 10/20	WILLOSOIL WOLD D.	100 KD		
			File name: MTers87_88			AIPPITE			
						00	en C	ancel	

Figure 14. Years dialogue browse. Click in browse (1987-88), and select the file and then click the Open button.

🔄 🕲 localhost 8	080/interaction/interaction928e4334a02e4e60b38did545d	02073b6.html	v C 🔡 • Google	P 💠 👰 -	÷ #	* 1	=
Most Visited	Brasil 2014 - Gol Carac 🗌 Taverna interaction 👁 Ind	ex of /~gross/eeb5 👁 Lou Gross - Home Pag 🧯	Dispensal Ecology and 🗌 Taverna interaction 🎬 From Forest Floor To T	Talent Scheme Inform	d		- ,
select ma	atrix files						
elect a ma	trix for each year, then click the Co	onfirm button.					
Year	Files		Matrices				
1987-88	Browse MTers87_88.txt	0 0 0 7.6 0.05797101 0.01 0 0.46376012 0.03 0.5 0 0.04 0.009009005 0 0.03 0.018019018	6666667 0 9.257143 0 900000001 0.257143 0.06046512 9 0.6190476 0.11627907 8 0 0.02325561				
988-89	Browse No file selected.						
989-90	Browse No file selected.						
1990-91	Browse. No file selected.						
1991-92	Browse No file selected.						
1992-93	Browse No file selected.						
Confirm							
		The interaction service wa	as developed in the BioVeL project				

Figure 15. Year's dialogue. The selected matrix appears. Repeat the procedure for each year.

	2	2011 Statement								 -
e 🧐 localhost i	8080/interaction/interaction928e4334a02e4e60b38dd34	5d02073b8.html			v	C Socgie		2 4 4	- 11	=
Most Visited E	Browse MIErs88_89.txt	hdex of /~gross/erb5 0.2/950311 0.0.0167 0.0.0055	Lou Gross - Home Pag. 0.754189944 59777 0.100 86592 0.019	 Dispersal Ecology ar 0.81782946 77519 0.913 37984 0 	d. Tavena interact 0.08655652 04348 0.25 0.125	ion 留 From Forest Floor To T. UL 020	. 🔲 Talent Scheme Inform	Getting S	tarted	35
989-90	Browse., MTers89_90.txt	0.008547009 0.051282051 0.188034188 0 0.0158 0 0.0211	0 0 0.52380952 7302 0.010 6402 0.052	0.30769231 1.48076923 0.69095477 05025 0.346 76382 0.057	0 0.51923077 15385 0.14 69231 0.14	0.7142857 28571 28571				
990-91	Browse. MTers90_91.txt	0.00000000 0.05882353 0.00000000 0.00000000 0.00000000	0.00000000 0.01204819 0.38554217 0.00000000 0.01204819	0.00000000 0.00000000 0.68925234 0.01401869 0.02102804	0.3461538 0.3461538 0.6538462 0.2692308 0.0000000	0.000000 0.000000 0.862069 0.000000 0.137931			Ĩ	
991-92	Browse MTers91_92.txt	0.0000000 0.0000000 0.111111 0.0000000 0.0000000	0.0000000 0.0000000 0.3636364 0.0000000 0.0000000	0.000000000 0.000000000 0.559782609 0.016304348 0.009152174	0.0000000 0.3846154 0.6153846 0.3076923 0.0000000	0.00000000 0.00000000 0.92857143 0.07142857 0.00000000				
992-93	Browse MTers92_93.txt	0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0	0.0 0.0 0.00000000 0.63362069 0.0000000 0.07327586	0.0 1.90909091 0.63636364 0.27272727 0.09090909	0.0 1.0 0.0 0.0					
Confirm									*	
		Tb	e interaction service	was developed in the	BioVeL project					

Figure 16. Year's dialogue. Once all the matrices are submitted, click in Confirm.

Taverna interaction 4	in teres for son for son for the forme forme forme forme for the forme for the form form for the form form for the form form for the f		-	0	×	
Iocalhost 8080/interaction/interaction928e4334e02e4e60b38ds545d02073bEhtml		🐨 C 🛛 🔂 - Google	P 💠 👰 -	# #	â	-
Most Wisited 💋 Brasil 2014 - Gol Carac 🗌 Taverna interaction 🝩 Index of /~gross/eeb5	5 🐵 Lou Gross - Home Pag 💈 Dispersal Ecology and	💷 🗔 Taverna interaction 🎬 From Forest Floor To T	Talent Scheme Inform	1		
imed results						
	The interaction service was developed in the Bi	ovel project				
	The instantion section was developed in the BI	CONTRACTOR .				_

Figure 17. Year's dialogue. After the user clicks Confirm, the confirmation "Returned results" appears.

2) **Initial population vector:** In this dialogue appear the fields with the initial abundance per stage observed in the field in the first year (Fig 18 - 20). As an example *Gentiana pneumonanthe* has 5 stages with its respective abundance. Abundances of the first year, 1987:

Stage abundance	
S (seedlings)	69
J (Juveniles)	100
V (vegetative)	111
G (reproductive individuals)	21
D (dormant plants)	43
1	

Figure 18. Initial population vector dialogue. Fill in the abundance per stage appears.

Cealheattiot/presention/pres	action442347c033c4c0832e77	7144act66e7d.htmi	Lou Cross - Home Pag	6 Dispersal Ecology and.	 ♥ C ■ Google □ Tavena interaction	Floor To T., 💭 Talent Scheme In	form_ []	Gettin	कु Started	ft '	20	=
ect initial popul 7-88 90 11	ac. Tavena interaction *	Index of /~gross/eeb5 •	🚭 Lou Gross - Home Pag., - I	6 Dispensal Ecology and	- 🛄 Tavena interaction 🔛 From Forest	Floor To T 🛄 Talent Scheme In	iform_	Gettin	g Started			30
ect initial popul 7-88 59 .00 .11 21	ation vector											
7-88 59 00 11 11												
59 .00 .11 21												
00 11 21												
11												
21												
3												
onfirm												
			The interaction service w	ras developed in the Bi	ioVeL project							

Figure 19. Initial population vector dialogue. Once the abundances values were submitted. The user confirms the field.

Incalhost 8080/interaction/interaction4412547e035c4c0852e77144ac186e7d.html	v C Stope	Q	+ 10 -	*	1	Ê	=
Most Visited 💋 Brasil 2014 - Gol Carac 🗌 Tavema interaction 👁 Index of /-gross/eeb5 👁 Lou Gross - Home Pag ち Dispensil Ecc	ology and	heme Inform_	Getting Started		-	700	30
med results							H H

Figure 20. After the user clicks Confirm, the confirmation "Returned results" appears. Refer back to Taverna workbench.

After the user confirms the fields, the workflow performs the analysis. To complete all the analysis may take several minutes, depend on the iterations and number of matrices.

5.4 Save data/results

5.4.1 OUTPUTS

When the analyses are completed, they appear on different windows under results in Taverna. First, click in the selected result window e.g. *Equal selection* (Fig 21, red oval). Second, click in the left window on value 1 (Fig 21, blue oval) and you will see the *Equal selection* results in the right window (Fig 21). Third, on the right window click on save value (Fig 21, green oval). Fourth, name the file and determinate the extension file. For a text file: e.g. .csv or .txt. For images: .jpg or .png (Fig 22). Finally, save the file in the chosen map (Fig 22).

Figure 21. Taverna workbench results. When the analyses are completed, they appear on different windows under results in Taverna. Click on *Equal selection* window (red oval). Do click on Value 1 on the left window of the *Equal selection* output results (blue oval). Save value on the right window of the *Equal selection* output results (blue oval).

Figure 22. Name the file and add the extension, for a text file: e.g. .csv or .txt. For images: e.g.: .jpg or png. Click on Save.

Each simulated realization of population growth begins with an *Initial population vector* with entries equal to the numbers of marked plants in each size class over all study plots in the first year of Oostermijer's demographic study, and runs for 25 years (*Intervals*). The initial total population density (the sum of the initial population vector) is 344 (see sum of *Initial population vector*). The distribution of total population density at year 25 for 1000 independent realizations is shown in *Stochastic projection* (Fig 25). Please refer to Morris and Doak 2002, pages:229-233.

1) *Equal selection:* (Fig 23).

194.	- 2 2	-	E	qual selection	on - Micros	oft Exce			'osts	-	-		-	-	1000		-		- 0	×
БЙ H	one lisert	Page Layo	ut Formula	es Data	Review	Vev	Add-Ins Acrob	at Pe	ns										6 🕜 🗆	9 8
A CO		albri	· 11 ·	A		æ	👺 Wrap Teit	Gen	eral			1	Normal	Bad		2	*	I AutoSum	57	A
a co	py •		100.10			-	Westware & Cost	248			Conditional	Format as	Good	Mastra	i	Insert De	lete Format	🗿 Fil +	Sort & F	Enda
🗸 For	rmat Painter		-			14.14	an werge a Len	ar		38.43	Formatting	Table *	0000	TYCUD E	•	y y	* *	2 Clear -	Filter * 5	ielect -
Clipboar	d ra		Font	-74		Alignm	erit	12	Number			1.102.00	Styles			0	ds.	E	dting	
AS		e 1	k [4,]							_		_								
A	B	C	D	E	F.	G	н	- E	J		ĸ	6	M	0 V	p	Q	R	5	T	
	5	1	۷	G	D															
[1,]	1,465+01	1,59E+01	159,3459	4,55E+00	3,43E+00)														
[2,]	5,06E-02	\$ 5,52E-02	0,492583	1,54E-02	1,07E-03	2														
[3,]	0,00E+00	9,60E-01	35,80814	1,76E+00	4,83E-0	1														
[4,]	1,11E+00	1,57E+00	7,305803	1,05E+00	1,79E-0	1														
[5,]	9,52E-01	4,60E+00	48,61667	2,38E+00	3,95E+0)														
[6,]	1,27E+01	1,39E+01	46,95311	2,23E+00	1,11E+0)														
[7,]	0,00E+00	0 1,34E+00	40,5191	1,73E+00	2,99E-0	1														
[8,]	4,24E+00	0 4,58E+00	12,68925	4,89E-01	2,54E-0	1														
[9,]	8,91E+00	0 4,50E+01	357,6048	1,52E+01	2,09E+0	1														
[10,]	2,12E+01	1 2,31E+01	82,37666	3,38E+00	1,74E+00)														
[11,]	1,63E+00	2,89E+00	6,335847	6,89E-01	9,00E-03	2														
[12,]	1,35E+00	0 1,45E+00	3,558501	1,538-01	7,34E-0.	2														
[13,]	2,75E-01	1 2,99E-01	2,867121	8,61E-02	6,20E-03	2														
[14,]	1,06E+00	1,08E+00	48,12512	1,74E+00	1,48E+00	>														
[15,]	2,31E-01	1,11E+00	6,991744	3,74E-01	5,42E-03	1														
[16,]	3,11E+00	3,38E+00	6,691423	3,52E-01	1,36E-0	1														
[17,]	1,25E-02	2 1,45E-02	0,706407	2,278-02	2,48E-03	2														
[18,]	0,00±+00	5,63E-02	9,267335	3,61E-01	1,10E-0	1														
[19,]	5,13E-01	1 5,36E-01	8,506358	5,45E-01	2,73E-0	1														
[20,]	1,04E-01	1,29E-01	3,57415	1,37E-01	1,36E-0	1														
[21,]	1,11E+00	1,20E+00	4,420792	1,76E-01	9,03E-02	2														
[22,]	0,00E+00	2,89E-02	1,481058	7,068-02	1,76E-0	2														
[23,]	0,000000000	4,386-01	3,168744	6,266 02	3,52E 0	1														
[24,]	1,19E-02	2 5,74E-02	2,35335	8,79E-02	2,01E-0	1														
[25,]	0,00E+00	6,58E-01	64,25824	2,68E+00	7,24E-0	1														
[26,]	2,745+00	3,12E+00	13,13746	4,488-01	2,75E-0															
[27,]	0,00E+00	1,35E-02	0,64098	3,11E-02	7,56E-0	3														
[28,]	0,00E+00	6,12E-01	86,82922	3,32E+00	1,06E+00	0														
[29,]	8,88E-01	1,18E+00	14,29234	9,018-01	4,28E-0	1														
1201	a ont in	1 1 97ELM	120 2796	1.925100	A 375.00							7								100
the second se	short activity											-					funders one			-54

Figure 23. Equal selection data(.txt or .csv).

2) Unequal selection: (Fig 24).

-	Home		-	U-	qual select	Contract Contract	soft Exce	Addam Area	in in	Torts	-	-	_	-	-	-	_	-	-	_			a 1
81	X CLE		raje cajo	an Portinge		_							1841	1966		-	1.00		-	4. 1025	X AutoSum	Ar	(1)
- Li	La Copy -	- E			A .			We see also see		41041.00		-	125	1	NOTITIAL		Bad	-			🖬 Fil +	X.	uru
asta.	Format	Panter 1		1 1 - 1 3	· <u>A</u> · 1	E # 3	律律	Merge & Cer	ter - B	9 . %	· 34	4	Conditional Ecomotion 1	Format as	Good		Neutral	1	Insert E	elete Format	2 Clear -	Sort & 1	Find &
C	pboard	15		Font	6		Alignma	nt	5	Nu	mber	-12		0.845	St/le	15				Cells	E	itieg	
	81	+(- 1	5							0.0001120												
4	A	8	C	D	E	- F -	G	н	E	1	3	,	с I	3	M	N	0	p	Q	R	s	т	111
		5	1	V	G	D	1																
[1,]		0,00E+00	2,25E-02	0,598203	3,216-03	8 0,05259	1																
[2,]	1	0,00E+00	7,85E-02	2,922085	1,466-01	0,03971	1																
[3,]	1	1,22E-03	5,86E-03	0,582908	1,888-02	0,04990	2																
[4,]	1	5,79E-01	6,26E-01	1,461261	6,47E-02	0,02944	5																
[5,]	1	6,47E-01	8,42E-01	7,394277	1,08E+00	0,23963	1																
[6,]	1	0,005+00	9,77E-02	0,937408	1,40E-02	0,10698	7																
[7,]	1	2,27E-03	2,82E-03	1,242512	2,40E-02	0,05433)																
[8,]	3	0,00E+00	2,07E-02	0,185462	2,968-03	8 0,04209	6																
[9,]	1	8,78E-03	1,09E-02	3,269363	6,53E-02	0,13958	5																
[10	0,1	9,82E-02	1,22E-01	13,6163	3,18E-01	0,51458	7																
[11	L]	1,40E-02	1,74E-02	5,735636	1,14E-01	0,24599	5																
[12	1	0,00E+00	2,39E-01	8,465851	3,418-02	0,78327	9																
[13	1.1	6,87E-02	9,21E-02	1,099188	6,94E-02	0,03287	7																
[14	L.	0,00E+00	1,90E+00	12,71081	2,718-01	1,40380																	
[15	1	8,79E-03	1,14E-02	0,366976	5,238-02	0,01262	1																
/ [16	5.1	0,00E+00	1,09E-01	1,171435	1,568-02	0,11854	7																
[17	[.]	1,53E-02	7,43E-02	0,28395	2,17E-02	0,02009	5																
[18	5.]	0,00E+00	5,24E-02	0,565459	5,568-02	0,0061	5																
[19	0.1	7,188-04	3,46E-03	0,372757	1,206-02	0,03197	1																
[20	0,1	0,00E+00	7,95E-03	0,107952	1,146-00	0,0117	5																
2 [21	L.I	0,00E+00	2,87E+00	25,18484	4,10E-01	2,43656	2																
1 [22	1.1	2,80E-03	3,64E-03	1,293748	1,858-01	0,04666	2																
1 [23	J.	1,820-03	8,766-03	3,383684	1,098-01	0,29599	3																
[24	L.	0,00E+00	7,40E-02	3,764467	1,61E-01	0,04654	2																
5 [25	1	6,37E-03	3,08E-02	0,484783	1,768-02	0,03932	5																
[26	a.l	0,00E+00	9,59E-04	0,748194	2,73E-02	0,00928	2																
1 [27	L.	7,40E-04	3,56E-03	0,313629	1,02E-02	0,02676	7																
[28	1	0,00E+00	5,61E-03	1,083364	8,01E-04	0,10699	7																
[29	1.	8,86E-01	1,15E+00	3,908923	6,48E-01	0,09834	5																
120	u	0.005.00	2 04E.02	0.314306	0./15.00	0.00377	2												4			-	0.0
• •	* Unq	uai select	ion 🖓											114					-	- bookers one		-	
My.			_		_	_													Count: 5	1000 La 223	100.0	0	-

Figure 24. Unequal selection (.csv or text files).

3) **Stochastic projection** (Fig 25). Results of simulating a population of Gentiana in an iid stochastic environment. The initial population size was 344 (see *Initial population vector*).

Figure 25. Stochastic projection (.jpg or .png files).

6 Support

For questions with using the workflow, please write support @biovel.eu

For definitions of technical and biological terms, please visit the BioVeL glossary page: <u>https://wiki.biovel.eu/display/BioVeL/Glossary</u>

7 Bibliography

This workflow was created using and based on Package 'popbio' in R. (Stubben & Milligan 2007; Stubben, Milligan & Nantel 2011).

Caswell, H. 2001. Matrix population models: Construction, analysis and interpretation, 2nd Edition. Sinauer Associates, Sunderland, Massachusetts.

Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology: Theory and practice of population viability analysis. Sinauer, Sunderland, Massachusetts, USA. 480 pages

- **Oostermeijer J.G.B., M.L. Brugman, E.R. de Boer; H.C.M. Den Nijs.** 1996. Temporal and Spatial Variation in the Demography of *Gentiana pneumonanthe*, a Rare Perennial Herb. The Journal of Ecology, Vol. 84(2): 153-166.
- **Stubben, C & B. Milligan.** 2007. Estimating and Analysing Demographic Models Using the *popbio* Package in R. Journal of Statistical Software 22 (11): 1-23
- **Stubben, C., B. Milligan, P. Nantel.** 2011. Package 'popbio'. Construction and analysis of matrix population models. Version 2.3.1

7.1 Acknowledgements

7.1.1 Authors

- 1. *Maria Paula Balcázar-Vargas* Instituut voor Biodiversiteit en Ecosysteem Dynamica (IBED), Universiteit van Amsterdam.
- 2. *Mikolaj Krzyzanowski*, Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom.
- 3. Jonathan Giddy Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom.
- 4. *Francisco Quevedo*, Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom.

5. *J. Gerard B. Oostermeijer* Instituut voor Biodiversiteit en Ecosysteem Dynamica (IBED), Universiteit van Amsterdam.

7.1.2 Project funding

The workflow described in this documentation has been designed and implemented as part of the BioVeL project.

BioVeL is funded by the European Commission 7th Framework Programme (FP7) as part of its e-Infrastructures activity. Under FP7, the e-Infrastructures activity is part of the Research Infrastructures programme, funded under the FP7 'Capacities' Specific Programme. It focuses on the further development and evolution of the high-capacity and high-performance communication network (GÉANT), distributed computing infrastructures (grids and clouds), supercomputer infrastructures, simulation software, scientific data infrastructures, e-Science services as well as on the adoption of e-Infrastructures by user communities.

7.2 Publications