BioVeL – Biodiversity Virtual e-Laboratory

Workflow Documentation

Calculate mean matrix Workflow for local execution

Augustus 2014

Capacities Programme of Framework 7: EC e-Infrastructure Programme –
e-Science Environments - INFRA-2011-1.2.1

Grant Agreement No: 283359
Project Co-ordinator: Mr Alex Hardisty
Project Homepage: http://www.biovel.eu
Duration of Project: 36 months
Calculate mean matrix Workflow
1 Description

This workflow estimates the mean matrix from a list of matrices.

2 General

2.1 Name of the workflow in myExperiment.

Name: Calculate mean matrix workflow

Download: The workflow pack can be downloaded at myExperiment under the following address: http://www.myexperiment.org/packs/655.html or only the workflow: http://www.myexperiment.org/workflows/4436.html

2.2 Date, version and licensing

Last updated: 14th Augustus 2014

Version: 1

Licensing: CC-BY-SA

2.3 How to cite this workflow

To report work that has made use of this workflow, please add the following credit acknowledgement to your research publication:

The input data and results reported in this publication (tutorial) come from data (Dr. Gerard Oostermeijer unpublished results and publication: Oostermeijer, J.G.B. M.L. Brugman, E.R. de Boer; H.C.M. Den Nijs. 1996. Temporal and Spatial Variation in the Demography of Gentiana pneumonanthe, a Rare Perennial Herb. The Journal of Ecology, 84: 153-166.) using BioVeL workflows and services (www.biovel.eu). Calculate mean matrix workflow was run on <date of the workflow run>. BioVeL is funded by the EU’s Seventh Framework Program, grant no. 283359.
3. Scientific specifications

3.1 Keywords

3.2 Scientific workflow description

The aim of this workflow is to provide a connected environment to calculate the mean matrix. The workflow accepts input data (matrices) in a .txt format (decimal numbers indicated by dots e.g.: 0.578). The output is provided as a set of R results.

Figure 1. A) Graph of the mean matrix Workflow in Taverna workbench.

For more detailed description of the functions, please visit the Tutorial section.
The Workflow requires a Taverna Engine including the Interaction Service plugin. The simplest way to install a Taverna Engine is to install Taverna Workbench, and then install the Interaction Service plugin.

The workflow also requires an Rserve installation with the *popbio* package installed. It is possible to setup the workflow to use a remote Rserve. However, instructions for installing a local Rserve are provided below.

4.2.1 Taverna installations

- Taverna Workbench: Version 2.4 or 2.5. For installation files and instructions, please go to http://www.taverna.org.uk/download/workbench

4.2.2 Taverna Plug-ins

- Please install the [Interaction](http://www.taverna.org.uk/) plugin: version 1.0.2+

4.2.3 Taverna Dependencies

- Install R software in your computer. See: http://www.r-project.org/
- Start R, and install package Rserve:
 - `install.packages("Rserve")`
- Install package popbio
 - `install.packages("popbio")`
- Local R Server: (Rserve) running at port 6311. See https://wiki.biovel.eu/x/3ICD for additional information.

4.2.4 How it works

- First, open R, once R is opened, type `library(Rserve)` and press enter; then type `Rserve()` and press enter again. You will see then the following message: Starting Rserve.
 "C:\PROGRA~1\R\R-30~1.1\library\Rserve\libs\x64\Rserve.exe"

After this operation you can open Taverna and run the workflow.
5 Tutorial

5.1 Introduction

This tutorial requires 6 input files or matrices of 6 consecutive years (from 87-88 to 92-93) of the same place (Terschelling, The Netherlands, Oostermeijer et al., 1996).

5.2 Input data.

5.2.1 Data preparation/format

The workflow accepts input data (matrices) in a .txt format, all decimal numbers in each matrix must be indicated by dots e.g.: 0.578. All examples matrices for the tutorial are available in the PACK: http://www.myexperiment.org/packs/655.html or here below. All the files must be saved in the same directory.

5.2.2 Input data

The input files are in a .txt format: to download click here in each file:

- MTers87_88.txt
- MTers88_89.txt
- MTers89_90.txt
- MTers90_91.txt
- MTers91_92.txt
- MTers92_93.txt

5.3 Select input data dialogue boxes.

The first step is to fill out the input ports:

5.3.1 INPUTPORTS

1) Stages: the names of the stages or categories of the input matrix. The respective name stages must be filled one by one. First press add value (see arrow in Fig 2), fill a stage name and press enter; then press add value and fill once again the next stage name, repeat the action until you have fill all the stages names.
In the following example, the matrix has 5 stages or categories:

The stages of this matrix are called:

1) Seedlings S
2) Juveniles J
3) Vegetative V
4) Reproductive individuals G
5) Dormant plants D

e.g. [S, J, V, G, D]

Figure 2. Inputs stages names to be filled in (example).

2) **Years**: each year represents a matrix and therefore characterizes a period of transition (Fig. 12). The respective years must be filled one by one. First press add value (see arrow in Fig 12), fill a year (e.g. 1987) and press enter; then press add value and fill once again the next year (1988), repeat the action until you have fill all the years, the year must be filled out in a consecutive order.

In this tutorial, we have 6 matrices (see 5.2.2 Input data) that represent 6 years e.g.: **1987** = data interval between 1987 and 1988; **1988** = data interval between 1988 and 1989 etc.

Years:

1) 1987 3) 1989 5) 1991
2) 1988 4) 1990 6) 1992
Figure 3. Inputs years to be filled in (example).

After the user has filled out the input ports, click **Run Workflow** button, a dialogue pages appear in the user’s internet browser.

5.3.2 INTERACTION

1. **Select a matrix for each year:** all the matrices must be in the same folder. The interaction page will show the submitted years. When the dialogue appears (Fig 4), click Browse for the first year (e.g. 1987). A file dialog appears. Select the file (one matrix that belong to that year) and clicks Open (Fig 5). Then the selected matrix appears in the browser (Fig 6). Repeat the procedure for each year (Fig 7). Once all the matrices are submitted, click the Confirm button (Fig 7). After clicking Confirm, the confirmation “Returned Results” appears (Fig 8). The workflow controls whether each location have submitted 1 matrix.

In the following example, there are 6 years:

1) 1987
2) 1988
3) 1989
4) 1990
5) 1991
6) 1992
Calculate mean matrix Workflow

Figure 4. Select a matrix for each year dialogue appears.

Figure 5. Select a matrix for each year dialogue browse. Click in browse (1987), and select one file (e.g. MTer87-88.txt) and then click in Open button.
Figure 6. Select a matrix for each year dialogue. The selected matrix appears. Repeat the procedure for each year.

Figure 7. Select a matrix for each year dialogue. Once all the matrices are submitted, click in Confirm.
Figure 8. Select a matrix for each year dialogue. After the user clicks Confirm, the confirmation “Returned Results” appears. Refer back to Taverna workbench.

When the analyses are completed, they appear on different windows under results in Taverna, the user have to save each output separately.

5.4.1 OUTPUTS

First, click in the selected result window e.g. mean (Fig 9, red oval). Second, click in the left window on value 1 (Fig 9, blue oval) and you will see the numerical results. Third, on the right window click on save value (Fig 9, green oval). Fourth, name the file and determinate the extension file, e.g. .csv or .txt. Finally, save the file in the chosen map (Fig 10).
Figure 19. Taverna workbench results. When the analysis is completed, they appear on different windows under results in Taverna.

Figure 10. Name the file, click on Save value, name the file and add the extension for the file. For a text file: e.g. .csv or .txt.
1) Mean matrix

The mean matrix of 6 Gentiana matrices (1987-1992). The csv file after apply text to columns (Fig 11).

Figure 11. Mean matrix numeric results (.csv or text files).
Calculate mean matrix Workflow

6 Support

For questions with using the workflow, please write support@biovel.eu

For definitions of technical and biological terms, please visit the BioVeL glossary page: https://wiki.biovel.eu/display/BioVeL/Glossary

7 Bibliography

This workflow was created using and based on Package ‘popbio’ in R. (Stubben & Milligan 2007; Stubben, Milligan & Nantel 2011).

7.1 Acknowledgements

7.1.1 Authors

1) Maria Paula Balcázar-Vargas Institutu voor Biodiversiteit en Ecosysteem Dynamica (IBED), Universiteit van Amsterdam.
2) Mikołaj Krzyżanowski Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom.
3) Jonathan Giddy Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom.
4) Francisco Quevedo Cardiff School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom.
5) J. Gerard B. Oostermeijer Institutu voor Biodiversiteit en Ecosysteem Dynamica (IBED), Universiteit van Amsterdam.
7.1.2 Project funding

The workflow described in this documentation has been designed and implemented as part of the BioVeL project.

BioVeL is funded by the European Commission 7th Framework Programme (FP7) as part of its e-Infrastructures activity. Under FP7, the e-Infrastructures activity is part of the Research Infrastructures programme, funded under the FP7 'Capacities' Specific Programme. It focuses on the further development and evolution of the high-capacity and high-performance communication network (GÉANT), distributed computing infrastructures (grids and clouds), supercomputer infrastructures, simulation software, scientific data infrastructures, e-Science services as well as on the adoption of e-Infrastructures by user communities.

7.2 Publications