
An Introduction to

Taverna Components

Stian Soiland-Reyes and Christian Brenninkmeijer

University of Manchester
materials by Aleksandra Pawlik

http://orcid.org/0000-0001-9842-9718

http://orcid.org/0000-0002-2937-7819

http://orcid.org/0000-0002-1279-5133

http://orcid.org/0000-0001-8418-6735

Bonn University, 2014-09-01

http://www.taverna.org.uk/

This work is licensed under a

Creative Commons Attribution 3.0 Unported License

http://orcid.org/0000-0001-9842-9718
http://orcid.org/0000-0002-2937-7819
http://orcid.org/0000-0002-1279-5133
http://orcid.org/0000-0001-8418-6735
http://www.taverna.org.uk/
http://creativecommons.org/licenses/by/3.0/deed.en_GB

• Something that can be put into a workflow

• Well described - what the component does

• Behaves “well” - conforms to agreed good practice

• Curated - someone looks after it

• Produces and consumes data in agreed formats

• Fails in described ways - meaningful error messages

• Produces agreed type of provenance

• Documentation

• Example usage

• Hide complexity

• Predictable good behaviour

• Guaranteed to work together

• Can (in theory) check that data in a run

conforms to the component specification

• The agreement is a condition of being in a
“component family”

• Different domains, or even different uses within
a domain, have different agreements

• Astronomical data is not in the same formats as
biodiversity data

• Digital library components do not do the same tasks
as biodiversity components

• Agreement is formalized as a “component
profile”

• A component family is

• a pack on myExperiment, or

• a directory on your local machine

• A component is defined by a workflow (in a pack)
in a component family pack

• Components are versioned by the
myExperiment’s versioning

• Semantic annotations are stored in RDF as part
of the workflow definition

• Collated semantics, including workflow structure,
are combined on myExperiment.

• Contains:

• Workflow ‘realizing’ the component

• Example data

• Documentation

• Dependency specification

• A component family is shown in the service

panel of Taverna workbench

• Components can be included within a

Taverna workflow

• Components are not simply the same as

nested workflows

• You could think of them as nested workflows that

obey a set of rules and where you cannot see what

is nested (and should not care)

• Components are created by annotating a workflow

• Choice of a component family and so profile

• Semantic annotation from the specified ontologies

• Validation against the profile

• Component saved into the component family

• Can annotate:

• Workflow

• Input/Output ports

• Services inside workflow

• Extensions to myExperiment for
• Pack snapshots

• Semantic collation

• Semantic searching

• Use of components will allow
• Component developers to work on the component

• Component users to upgrade (or revert) the
component versions

• A workflow to remain ‘unchanged’ (if the component
interfaces remain the same)
• Powerful and dangerous

• Proxies for components (re-run and re-play)

• Components are “black boxes” in the
workflow and workflow runs

EBI InterproScan

 The workflow to call EBI InterproScan was quite

complex.

 It would be nice to be able to package that workflow up

and be able to use it as a single service in other

workflows

 That is exactly what components allow

Importing a component family

 Components are grouped into component families

 Component families are held in a component registry

 myExperiment is a component registry

 You can import a component family into the Service Panel

 Click Import new services and then

 Component service…

Selecting a component family

 In the dialog

 Select myExperiment component registry, and

 Test components family

 Click OK

Added component family

 In the Service panel you can now expand and

see the Test components family

Adding a component to a workflow

 Create a new workflow

 Add the EBI_InterproScan component into the

workflow

 Create input and output workflow ports and

connect them to the ports of the component

EBI InterproScan component

Running the workflow

 You can now run the workflow

 The value for the sequence should be

something like:
>sp|Q9BTV4|TMM43_HUMAN Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1

SV=1

MAANYSSTSTRREHVKVKTSSQPGFLERLSETSGGMFVGLMAFLLSFYLIFTNEGRALKT

ATSLAEGLSLVVSPDSIHSVAPENEGRLVHIIGALRTSKLLSDPNYGVHLPAVKLRRHVE

MYQWVETEESREYTEDGQVKKETRYSYNTEWRSEIINSKNFDREIGHKNPSAMAVESFMA

TAPFVQIGRFFLSSGLIDKVDNFKSLSLSKLEDPHVDIIRRGDFFYHSENPKYPEVGDLR

VSFSYAGLSGDDPDLGPAHVVTVIARQRGDQLVPFSTKSGDTLLLLHHGDFSAEEVFHRE

LRSNSMKTWGLRAAGWMAMFMGLNLMTRILYTLVDWFPVFRDLVNIGLKAFAFCVATSLT

LLTVAAGWLFYRPLWALLIAGLALVPILVARTRVPAKKLE

Connecting components

 The workflow just contains the single service, we need

to connect the component with other services

 In the Design view, delete the sequence workflow input

port

 Right click and select Delete workflow input port

 Add Local Services -> ncbi -> Get Protein FASTA to

the workflow

 Connect the outputText of Get Protein FASTA to the

sequence port of the EBI_InterproScan

 Connect the id port of Get Protein FASTA to a workflow

input port

Connected component

Your workflow should

now look like:

Running the workflow - 2

 Run the workflow again

 You can use Q9BTV4 as the value for id

Is it really the complex workflow?

 In the Results view

you can click on

Progress report

 Expand

EBI_InterproScan

 You can see all the

services “hidden”

inside the

component

 The menu has a “Components” option

 Select “Create family”

 In the pop-up window set the registry to local

 Select a Profile (or see next slide if no profile available)

 Enter the family name (“ProcessString”)

 Find your local registry directory

 Hint: Components/ Manage Registries

 Registry Location

 In MyExperiment find the Empty profile

 Hint: http://www.myexperiment.org/files/1027.html

 Down File into the local registry directory

http://www.myexperiment.org/files/1027.html

 Add a local service “Split string into string list by regular

expression” (from ‘text’)

 Add the input port and set the regular expression to space

 Add a local service “Remove string duplicates” (from ‘list’)

 Connect the output from “Split string into string list by regular

expression” with the input of “Remove string duplicates”

 Add a local service “Merge String List to a String” and

connect its input with the “Remove string duplicates” output

and set the separator to be a space

 Select “Create component” from the “Components” menu

 Provide a name for the component (Remove duplicates)

 You should see a pink ribbon at the top

 Save the component. You will see a warning message – it

pops up because the component is not annotated. We can

annotate it in the component details.

 Close any open workflows

 Add the component(s) to the service panel

 Hint: Import Service/ Component Family

 Component registry: Local registry

 Component family: ProcessString

 Add the component to the workflow

 Hint: Available services/ Components …

 Add input and output ports

 Run

