Introduction to Workflows with Taverna and myExperiment

Stian Soiland-Reyes and Christian Brenninkmeijer
University of Manchester

materials by Dr Katy Wolstencroft and Dr Aleksandra Pawlik

http://orcid.org/0000-0001-9842-9718
http://orcid.org/0000-0002-2937-7819
http://orcid.org/0000-0002-1279-5133
http://orcid.org/0000-0001-8418-6735

Bonn University, 2014-09-01
http://www.taverna.org.uk/
- ‘Omics data
- Next Gen Sequencing
- eGovernment
- World bank data
- Climate change data
- Large scale physics
 - Large Hadron collider
 - Astronomy
Lots of Resources

NAR 2014: 1552 databases
Genbank 2014-04: 172 million sequences, 162 billion basepairs
WGS 2014-04: 774 billion basepairs
Next Generation Sequencing

- 2008-2012: 1000 Genome Project
 - A Deep Catalog of Human Genetic Variation
- 2009-: Genome 10k project
 - A genomic zoo—DNA sequences of 10,000 vertebrate species, approximately one for every vertebrate genus.
- 2012-: Human Microbiome Project
 - Characterise the microbial communities found at several different sites on the human body
Where is the data?

- Repositories run by major service providers (e.g. NCBI, EBI)
- Local project stores
- Static web pages
- Dynamic web applications
- FTP servers (!)
- Inside PDFs 😞
- Web Services 😊
The implicit workflow

Bioinformatics research combines:

- Data resources (public and private)
- Computational power (standard and custom)
- Researchers and collaborators
What that means for Bioinformatics

- Sequential use of distributed tools
- Incompatible input and output formats
- Challenging to record/reproduce/tweak
 - parameter selections
 - service selection
 - results of each step
- OK for one gene or one protein, but what about 10,000?
 - Analysing large data sets requires programmatic help
Workflow as a Solution

- Sophisticated analysis **pipeline**
- **Graphical** representation of executable analysis
- Combine a set of **services** to analyse or manage data (local or remote)
- Data **flow** from one service (boxes) to the next (connected with arrows)
- **Iteration** – process multiple data items
- Automation – **rerun** workflow
Example Taverna Workflow

Workflow: Get the weather forecast of the day given the city and the country.

Green box is a **Web Service**

Purple boxes are local **XML** services to assemble/extract XML.

Blue boxes are workflow **input** and **output** ports.

Arrows define the direction of **data flow**.
Workflows as a solution

- **Flow of data** from one tool to the next is automatic – just connect inputs and outputs.
- Incompatibilities overcome in the workflow with helper services (*shims*) – allowing new tool combinations.
- Workflow engine records parameter values and algorithms – **provenance**.
- Workflows can include data **integration** and **visualization**.
- **Iteration** over large data sets automatic – ideal for high throughput analysis (e.g. omics).
Preventing non-reproducible research

- An array of errors

http://www.economist.com/node/21528593

- Duke University, 2006 - Prediction of the course of a patient’s lung cancer using expression arrays and recommendations on different chemotherapies from cell cultures – reported in *Nature Medicine*

- 3 different groups could not reproduce the results and uncovered mistakes in the original work
If the Analyses were done using Workflows.....

- Reviewers could re-run the *in-silico* experiments and see results for themselves
- Methods could be properly examined and criticized by inspecting the workflow
- Mistakes and opportunities could be pinpointed earlier
Different Workflow Systems

- VisTrails
- Kepler
- Triana
- Taverna
- BPEL
- Ptolemy II
- Galaxy
- Pipeline Pilot
Taverna Workflow System

History:
- 2003: Taverna 0.1 (300 downloads)
- 2014: Taverna 2.5.0 (5100 downloads)

Products:
- Taverna Workbench
- Taverna Server
- Taverna Command line
- Taverna Online
- Taverna Player

Plugins and integrations

http://www.taverna.org.uk
Taverna editions and extensibility

Taverna is a generic workflow system that can be extended by **plugins** and customized for use in different domains.

The Taverna **editions** are pre-built downloads of Taverna with plugins for the most popular domains.

- Core
- Astronomy
- **Bioinformatics**
- Biodiversity
- Digital Preservation
- Enterprise

http://www.taverna.org.uk/download/workbench/2-5/
Taverna Workbench

List of services

Workflow engine to run workflows

Construct and visualise workflows

Web Services
 e.g. KEGG

Scripts
 e.g. beanshell, R

Programming libraries
 e.g. libSBML
Using Tools and Services from Taverna workflows

- Web Services
 - WSDL
 - REST
- Data services
 - BioMart
- Local scripts:
 - R
 - Beanshell
 - Command line (e.g. Python, Perl)
- Other workflows
- And more..... Add your own!
What are Web Services?

Web Services: HTTP-based programmatic access (API).

Instead of “GET me the web page http://example.com/cat-pics”,

Web Services allow “GET me a genome sequence http://example.com/gene/WAP_RAT”

Connect to and use remote services from your computer in an automated way

NOT the same as services on the web (i.e. forms that shows results as a web page)
Open domain services and resources

- Taverna accesses thousands of services
- Third party – we don’t own them – we didn’t build them
- All the major providers
 - NCBI, DDBJ, EBI …
- Enforce NO common data model.
How do you use the services?

Simple WSDL services

BioMoby Semantic Services

Asynchronous services (Submit, Wait, Fetch)
The BioCatalogue: providing a curated catalogue of Life Science Web Services

The BioCatalogue currently has 1730 services, 130 service providers and 445 members.

DISCOVER
- Find the right Web Service
- Powerful search and filtering
- Information from providers and community

REGISTER
- Easily register Web Services
- Instantly available to everyone
- Providers can advertise, describe and monitor their Services

ANNOTATE
- Anyone can describe and annotate
- Ongoing expert curation
- Social curation by the community

MONITOR
- Services change and get outdated
- BioCatalogue monitors Services
- Monitors availability and reliability

Web Services are hard to find
Web Services are not visible
Web Services are poorly described
Web Services are volatile

Our Partners

The EMBO/EMBL-EBI and The Bioinformatics Resource Annotation Service (BRAS) have now been merged.
What do Scientists use Taverna for?

Systems biology model building
Sequence analysis Protein structure prediction
Gene/protein annotation Microarray data analysis
Phylogeny Model simulations sweeps
High throughput screening Proteomics
Phenotypical studies Text mining
Public Health care epidemiology
Medical image analysis QTL studies
QSAR studies Genome Wide Association Studies
Lymphoma Prediction Workflow

Use gene-expression patterns associated with two lymphoma types to predict the type of an unknown sample.

Ack. Juli Klemm, Xiaopeng Bian, Rashmi Srinivasa (NCI)
Jared Nedzel (MIT)
Systems Biology Data Integration

- Read enzyme names from SBML
- Query maxd database using enzyme names
- Calculate colours based on gene expn level
- Create new SBML model with new colour nodes

Mapping transcriptomics data onto SBML models

Peter Li, Doug Kell, U Manchester
Workflows are ...

... records and protocols (i.e. your *in silico* experimental method)
... know-how and intellectual property
... hard work to develop and get right
.....re-usable methods (i.e. you can build on the work of others)

So why not share and re-use them
Workflow Repository

Search filter terms

Filter by type
- Taverna 2 (863)
- Taverna 1 (645)
- RapidMiner (171)
- Kepler (43)
- Bioclipse Scri... (34)
- GWorkflowDL (24)
- LONI Pipeline (22)
- BioExtract Server (16)
- Trident (Packa... (10)
- LabTrove Tem... (9)

Filter by tag

Showing 1905 results. Use the filters on the left and the search box below to refine the results.

Pathways and Gene annotations for QTL region

Created: 19/11/09 @ 18:18:52 | Last updated: 02/09/11 @ 11:44:57

Credits: Paul Fisher

License: Creative Commons Attribution-Share Alike 3.0 Unported License

This workflow searches for genes which reside in a QTL (Quantitative Trait Loci) region in the mouse, Mus musculus. The workflow requires an input of: a chromosome name or number; a QTL start base pair position; QTL end base pair position. Data is then extracted from BioMart to annotate each of the genes found in this region. The Entrez and UniProt databases are used to extract relevant information from the genes.
Just Enough Sharing….

- myExperiment can provide a central location for workflows from one community/group
- myExperiment allows you to say
 - Who can look at your workflow
 - Who can download your workflow
 - Who can modify your workflow
 - Who can run your workflow
- Ownership and attribution
Trypanosomiasis (Sleeping Sickness) in sub-Saharan Africa
Microarray data
QTL data

http://www.genomics.liv.ac.uk/tryps/
Reuse, Recycle, Repurpose

Workflows

Identify QTg and pathways implicated in resistance to Trypanosomiasis in cattle

Dr Paul Fisher

Identify the QTg and pathways of colitis and helminth infections in the mouse model

Dr Jo Pennock

PubMed ID: 20687192
Another Host, Another Parasite...but the SAME Method

- Mouse whipworm infection - parasite model of the human parasite - *Trichuris trichuria*

Understanding Phenotype
- Comparing resistant vs susceptible strains – Microarrays

Understanding Genotype
- Mapping quantitative traits – Classical genetics QTL

Joanne Pennock, Richard Grencis
University of Manchester
Workflow Results

- Identified the biological pathways involved in sex dependence in the mouse model, previously believed to be involved in the ability of mice to expel the parasite.
- Manual experimentation: Two year study of candidate genes, processes unidentified
- Workflow experimentation: Two weeks study – identified candidate genes

Joanne Pennock, Richard Grencis
University of Manchester
Workflow Success

- Workflow analysed each piece of data systematically
 - Eliminated user bias and premature filtering of datasets
- The size of the QTL and amount of the microarray data made a manual approach impractical
- Workflows capture exactly where data came from and how it was analysed
- Workflow output produced a manageable amount of data for the biologists to interpret and verify
 - “make sense of this data” -> “does this make sense?”
Spectrum of Users

Advanced users design and build workflows (informaticians)

Intermediate users reuse and modify existing workflows or components

Others “replay” workflows through web page
A Collection of Tools

Workflow Repository

Workflow GUI Workbench and 3rd party plug-ins

Client User Interfaces

Web Portals

E-Laboratories

Programming and APIs

Provenance Store

Workflow Server

Secure Service Access, and Programming APIs

Taverna

Workflow Repository

myexperiment

BioCatalogue

"The Life Science Web Service Registry"

Activity and Service Plug-in Manager

SoapLab

KnowARC

biotools

moby

Secure Service Access, and Programming APIs

myGrid

Client User Interfaces

Web Portals

E-Laboratories

Programming and APIs
Summary – Workflow Advantages

- Informatics often relies on **data integration** and large-scale **data analysis**
- Workflows are a mechanism for **linking** together resources and analyses
- Promote **reproducible** research
- Find and use successful analysis methods *developed by others* with myExperiment
More Information

- Taverna
 - http://www.taverna.org.uk

- myExperiment
 - http://www.myexperiment.org

- BioCatalogue
 - http://www.biocatalogue.org
Tutorials

- Using Taverna to design and build workflows
- Reusing workflows from myExperiment
- Finding and using different services: REST, Xpath, Beanshell, R, ...
- Exploring the workflow engine: iteration, looping, retries, parallel invocation
- Web: Taverna Online, Taverna Player
- Interactions
- Components