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EXECUTIVE SUMMARY 

Two distinct populations of resident killer whales (Orcinus orca) in the northeastern 

Pacific Ocean have been listed in Canada and the U.S. as of conservation concern. The 

Southern Resident Killer Whale (SRKW) population is currently listed as endangered in 

both countries. The Northern Resident Killer Whale (NRKW) population has been listed as 

threatened in Canada. The major threats recognized for these two populations are 

nutritional stress associated to prey abundance levels and availability, pollution and 

contaminants, and disturbances from vessels and sound. An important difference in the 

population dynamics of these two populations is that, in spite of their home range overlap 

and potential access to similar resources, SRKW has remained at a population size of less 

than 100 individuals for the last four decades with an average of 85 individuals in the last 

decade whereas NRKW’s population size has been generally increasing for the last 4 

decades with 268 individuals at the end of 2011. 

The predominance of Chinook salmon (Oncorhynchus tshawytscha) in the summer 

diets of both killer whale populations has been evidenced by recent studies, and there is 

also indication that the frequency of occurrence of Chum salmon (O. keta) increases in both 

populations at the end of the summer, surpassing Chinook salmon frequency of occurrence 

by early fall. Other studies have identified correlations between indices of Chinook salmon 

abundance and killer whale survival and fecundity rates and hypothesized strong linkages 

between Chinook salmon abundance and the population dynamics of resident killer whales. 

Additional effort is now required to quantify these linkages and their influence on the 

population viability of these two populations. 

This study uses demographic models and population viability analysis (PVA) of 

endangered SRKW and threatened NRKW that incorporate linkages between killer whale 

vital rates (i.e., sex- and stage-specific survival probability and fecundity rates) and 

Chinook salmon abundance to address some of the pressing questions that have recently 

engaged the efforts of scientists and managers interested in: (1) the factors limiting 

population growth of SRKW; (2) explanations for the marked differences in the observed 

population trajectories of SRKW and NRKW in spite of their large home range overlap; (3) 

the role of Chinook salmon on the population dynamics of both killer whale populations; 

and, (4) the potential benefits for killer whale population viability expected from reductions 

in Chinook fishing mortality and changes in Chinook fishery regimes. Significant linkages 

between Chinook abundance and killer whale population viability were based not only on 

statistical significance but also on their influence on observed and expected population 

growth rates as quantified by retrospective and prospective perturbation analyses. In 

addition, we have provided a hypothesis framework designed to assist in the interpretation 

of results as they pertain to linkages between killer whale demographic rates and Chinook 

stock aggregates exhibiting different degrees of evidence based on diet-composition 
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studies. Moreover, the relevance of Chum salmon as a covariate of killer whale vital rates 

was also included in the study given the importance this species seems to have in both 

killer whale populations diet during the summer-fall transition. 

Our results showed that, based on their demographic rates during the last killer 

whale generation (25 y), expected population growth is 0.91% annual decline (λstochastic = 

0.9909; 95% CI: 0.9719-1.0081) for SRKW and 1.58% annual increase (λstochastic = 1.0158; 

95% CI: 1.0027-1.0285) for NRKW.  If the observed range of variation and covariation in 

its vital rates remain the same and mean vital rate values remain unchanged (i.e., status quo 

conditions), SRKW’s extinction risk in 100 years is projected to be approximately 50%. In 

demographic terms, SRKW’s lower expected population growth is mainly due to this 

population’s lower production and survival of viable calves. In addition, greater variation 

in vital rates and a strong influence of demographic stochasticity on future population 

dynamics, both associated to a small population size, contribute to the lower population 

viability in SRKW. Based on the information used and produced in this study, we found no 

evidence that differences in demographic rates between killer whale populations are due to 

differential levels of access to common Chinook resources, to declines in Chinook 

abundance, or to increases in fishing mortality rates of relevant stocks. Although indices of 

Chinook abundance used in this investigation do not necessarily represent the Chinook 

salmon available for killer whales, they represent the best available information to address 

these questions.  

 

Numerous interactions between Chinook abundance aggregates and killer whale 

vital rates were found. Although we found no evidence that current levels of Chinook 

abundance are limiting SRKW’s population growth, the numerous significant relationships 

between Chinook abundance and the vital rates of both SRKW and NRKW are deemed as 

resulting from predator-prey dynamics. However, other factors (genetic, environmental 

and/or anthropogenic) must be at play limiting SRKW’s population growth and possibly 

masking and confounding the detection of stronger interactions between killer whale vital 

rates and Chinook abundance. Moreover, the influence of cumulative effects of Chinook 

abundance levels on killer whale vital rates was also evident in this study. Thus, it seems 

important to develop alternative methods to quantify these effects while enabling pragmatic 

monitoring and tracking of benefits to killer whales generated by potential management 

actions. 

Perturbation analyses showed there is a low sensitivity of killer whale population 

growth rates to changes in the Chinook abundance of multiple stock aggregates. Hence, the 

exploration of fishing scenarios focused on either the maximization of Chinook abundance 

or the maximization of vital rates for SRKW, depending upon which one occurred first. 

Given the clearly positive population growth in NRKW, population responses focused on 

either halting population growth or maximizing fishing mortality, depending upon which 
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one occurred first. The selection of scenarios for SRKW was justified by the implicit need 

to recover this population in terms of population size and population growth. The selection 

of scenarios for NRKW did not respond to a management objective per se but to our 

research objective of evaluating this population’s response to changes in Chinook fishing 

mortality while gaining insights into the potential effects of large increases in harvest rates. 

 

Although interactions were weak on both statistical and demographic grounds, 

some had support for causation given the weight-of-evidence regarding the importance of 

specific Chinook stocks in the killer whale diet. Chiefly, Fraser River (Fraser Early and 

Fraser Late) and Puget Sound Chinook emerged as important covariates of demographic 

rates of both killer whale populations. The size of Chinook terminal runs from the Fraser 

River and Puget Sound stock aggregates exhibited a low interaction with SRKW’s 

fecundity. Nevertheless, PVA results showed that these low interaction levels could still 

produce slightly positive population growth rates approximately 50% of the time under 

extreme reductions to fishing mortality such as those resulting from the closure of ocean 

fisheries targeting these stocks. In the case of NRKW, it was the ocean abundance of the 

Fraser Early and Puget Sound aggregates that interacted with this population’s fecundity 

and juvenile survival, respectively, and showed some potential to influence its expected 

population growth.  In spite of the importance of Fraser River and Puget Sound Chinook 

salmon stocks to influence the population dynamics of both killer whale populations, it 

may not be pragmatic to precisely manage mixed-stock fisheries around few stocks. 

Furthermore, if new studies confirm the prevalent and critical importance (as resulting from 

killer whale’s limitation to switch to other prey during winter and spring or when Chinook 

density is low) of Chinook salmon in the killer whale’s year-round diet, pragmatic 

management could consider adjustments to coastwide Chinook ocean abundance. This 

combination of stock aggregate and abundance type was among the Chinook covariates 

with the largest influence on population growth rates of both killer whale populations. 

 

Our analyses showed some support for Chum salmon as a covariate for killer whale 

vital rates and unlike relevant Chinook salmon aggregates, the declining trend in Chum 

salmon terminal run from the Northern/Central BC aggregate could be affecting prey 

availability for NRKW. These results point to the need for additional efforts to quantify the 

importance of Chum salmon on killer whale diet, and to identify the contributions of 

different Chum salmon stocks to killer whale diet during the fall and year-round. 

Future research efforts are needed to identify the causes of depressed production 

and survival of viable calves in SRKW. Similarly, the continuance of studies of killer 

whale diet composition in fall, winter, and spring is deemed as essential to substantiate 

relevant interactions uncovered under some of the hypotheses in this study. This 

information is critical to move away from potentially spurious correlations and it is 

required to support causation.   
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The modelling components of most analyses conducted and described in this report 

have been compiled into a single programming platform using R software and provided in 

Appendix 8 to facilitate additional explorations of fishing scenarios and to enable future 

revision and development of the themes making up the present study.  
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1. INTRODUCTION 

 

Two distinct populations of resident killer whales (Orcinus orca) in the northeastern 

Pacific Ocean have been listed in Canada and the U.S. as of conservation concern. The 

Southern Resident Killer Whale (SRKW) population is currently listed as endangered 

under the U.S. Endangered Species Act mainly due to its small population size and 

vulnerability to demographic stochasticity and catastrophic events such as oil spills (NMFS 

2008). In Canada, SRKW is listed as endangered due to its small and declining population 

size while the Northern Resident Killer Whale (NRKW) population is listed as threatened 

due to its small population size under the Species At Risk Act (COSEWIC 2008). The 

major threats identified for these two populations are nutritional stress associated with prey 

abundance levels and availability, pollution and contaminants, and disturbances from 

vessels and sound (COSEWIC 2008, NMFS 2008). An important difference in the 

population dynamics of these two populations is that, in spite of their home range overlap 

and potential access to similar resources (see Ford 2006), SRKW has remained at a 

population size of less than 100 individuals for the last four decades with an average of 85 

individuals in the last decade whereas NRKW population size has been generally 

increasing for the last four decades with 268 individuals at the end of 2011. Average 

population growth rates of 2.3 percent per year for 14 years for downlisting and 28 years 

for delisting, respectively, were specified as recovery goals in the U.S. recovery plan for 

SRKW (NMFS 2008). In Canada, specific viability criteria are not provided in the recovery 

strategy and the recovery goals for these two killer whale populations (RKW; hereafter 

used to refer to both SRKW and NRKW) are to ensure their long-term viability (DFO 

2008). 

 

 The availability of Chinook salmon (Oncorhynchus tshawytscha) has been 

identified as a potential limiting factor to the population dynamics of both SRKW and 

NRKW (COSEWIC 2008, Ford et al. 2010a, 2010b) and recent studies indicate the 

majority of the Chinook salmon stocks eaten by these two killer whale populations in their 

summer ranges and critical habitats originate mainly from the Fraser River and Puget 

Sound in the case of SRKW (Hanson et al. 2010) and Fraser River in the case of NRKW 
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(Ford and Ellis 2006, Ford et al. 2010a). Chinook stocks from Northern British Columbia 

(BC), Central BC, West Coast Vancouver Island (WCVI), Upper Georgia Strait, Puget 

Sound, and Upper Columbia River have also being identified as important in the summer 

diet of NRKW (Ford and Ellis 2006, Ford et al. 2010a). These studies also indicate that the 

frequency of occurrence of Chum salmon (O. keta) increases in both populations at the end 

of the summer and surpasses Chinook salmon frequency of occurrence by early fall (Ford 

and Ellis 2006, Ford et al. 2010a). Chum salmon in NRKW’s diet originate mainly from 

Fraser, east coast Vancouver Island, and Southern British Columbia coast stocks (Ford and 

Ellis 2006, Ford et al. 2010a) whereas Puget Sound Chum salmon is believed to be the 

prevalent Chum salmon source in  SRKW’s fall diet (B. Hanson, pers. comm.). Recent 

studies have recognized correlations between indices of Chinook salmon abundance and 

RKW survival rates (Ford et al. 2010b) and fecundity (Ward et al. 2009) and hypothesized 

strong linkages between Chinook salmon abundance and RKW population dynamics. 

Additional effort is now required to quantify these potential linkages and their influence on 

RKW population viability. 

 

 This study uses demographic models of endangered SRKW and threatened NRKW 

that incorporate linkages between RKW vital rates rates (i.e., stage- and sex-specific 

survival probabilities and fecundity rates) and prey levels, specifically including Chinook 

salmon abundance. These models are used to address the following objectives: (i) to 

quantify the differences in demographic rates between SRKW and NRKW; (ii) to 

determine the relative influence of RKW’s vital rates on observed and expected population 

growth; (iii) to assess the sensitivity of RKW’s population dynamics to Chinook 

abundance; and, (iv) to quantify the necessary changes in Chinook fishing mortality 

required to attain recovery targets or to maximize benefits to population growth. In 

addition, and as a logical extension of this modeling framework, population viability 

analysis (PVA) is conducted to assess SRKW and NRKW extinction risk and probabilities 

of falling below abundance thresholds as well as recovery probabilities given alternative 

levels of Chinook abundance resulting from selected  fishing scenarios.  

 

  

2. METHODS 

 

2.1 An overview of the approach 

 

Extensive work has been conducted compiling and structuring life history data for SRKW 

and NRKW (Bigg et al. 1990, Olesiuk et al. 1990, Olesiuk et al. 2005, NWFSC 2008, The 

Center for Whale Research 2012), identifying prey in general (Ford et al. 1998, Ford and 

Ellis 2006) and Chinook salmon stocks in particular eaten by RKW (Ford et al. 2010a, 

Hanson et al. 2010), and posing hypotheses on the role Chinook salmon availability plays 

at limiting RKW’s vital rates and population dynamics (Ford et al. 2010b, Ward et al. 
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2009). This investigation builds on these previous efforts by conducting perturbation 

analyses of RKW stochastic matrix models constructed with up-to-date RKW demographic 

data representing SRKW and NRKW population dynamics in detail while facilitating the 

incorporation of vital rates as random variables in some cases and as a function of stock-

specific (or stock aggregates) Chinook abundance in others and test hypotheses regarding 

RKW-Chinook salmon interactions. Chinook stocks from northern California to southeast 

Alaska were included in the analysis of interactions. 

 

Rarely is one line of evidence sufficient to demonstrate causation, and assembling 

information from various sources is useful to determine the weight-of-evidence (Burkhardt-

Holm and Scheurer 2007).  Box 1 details two hypotheses for each RKW population, where 

hypotheses 1a for SRKW and 1b for NRKW correspond to RKW-Chinook salmon 

interactions supported by additional evidence in the form of diet-composition studies. 

Statistical significance in these interactions will provide stronger weight-of-evidence for 

causation than the remaining hypotheses 2a (SRKW) and 2b (NRKW). Statistical 

significance of the latter hypotheses would provide weaker weight-of-evidence for 

causation because they rest on the assumption that Chinook salmon remains a determinant 

diet component year-round in the RKW’s diet and outside their critical (summer) habitats.  

 

The probability of RKW encountering and preying on specific Chinook stocks 

would directly depend on the size of the stock or stock aggregate (i.e., the larger the stock 

the greater the probability of encounter), its ocean (pre-terminal) distribution, and its 

terminal run timing and distribution. Hence, the selection of stocks encompassed in 

hypotheses 2a and 2b were based on three criteria: stock size, and both temporal and spatial 

overlap with RKW. The final selection of stocks and stock aggregates to be considered 

under each hypothesis was determined via expert opinion, based on those criteria, in a 2-

day workshop at the Pacific Biological Station, Nanaimo BC, on November 14-15, 2012. 
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Box 1. Hypotheses addressed in this investigation regarding RKW-Chinook salmon 

interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Hypothesis 1a (based on current evidence): 

there is a strong link between SRKW population growth and the terminal run size
1
 of Fraser 

Early, Fraser Late, and Puget Sound Chinook stocks
2 

 

• Hypothesis 1b (based on current evidence): 

there is a strong link between NRKW population growth and the terminal run size
1
 of Northern 

BC, Central BC, WCVI, Upper Georgia Strait, and Lower Georgia Strait Chinook salmon stocks 

as well as the ocean (pre-terminal) abundance of Fraser Early, Puget Sound, and Upper 

Columbia Chinook stocks
2
 

 

• Hypothesis 2a (assuming Chinook salmon remains an important diet component year-round and 

outside identified critical habitats): 

there is a strong link between SRKW population growth and the terminal run size of large stocks 

such as Sacramento Fall, Klamath Fall, Columbia Upriver Brights, Columbia 

Spring/Summer/Fall, Oregon Coastal, WCVI, or coastwide (excluding Northern BC, Central BC, 

and Southeast Alaska
3
), as well as the ocean (pre-terminal) abundance of ocean-type

4
 stocks with 

large contributions to ocean fisheries such as WCVI, Columbia Upriver Brights, Fraser Late, 

Oregon Coastal, Puget Sound, or coastwide (excluding Southeast Alaska
5
)  

 

• Hypothesis 2b (assuming Chinook salmon remains an important diet component year-round and 

outside identified critical habitats): 

there is a strong link between NRKW population growth and the terminal run size of Fraser 

Early and Puget Sound
6
, and large stocks such as Columbia Upriver Brights, Columbia 

Spring/Summer/Fall, Fraser Late, Oregon Coastal, or coastwide (excluding Sacramento Fall, 

Klamath Fall
7
 but including Southeast Alaska

8
), as well as the ocean (pre-terminal) abundance of 

ocean-type 
3
 stocks with large contributions to ocean fisheries such as WCVI, Fraser Late, 

Oregon Coastal, or coastwide (excluding Southeast Alaska
5
)  

 

 
1      The terminal run includes terminal catch, which occurs after fish are available for killer whales,  

        and therefore represents the Chinook available for RKW in their summer ranges. 

 

2 Based on diet composition studies  

 

3 Out of the known preferred geographic range of SRKW 

 

4 Ocean-type Chinook stocks spend most of their ocean life in coastal waters and are therefore within 

known RKW geographic range 

 

5 South East Alaska Chinook salmon stocks exhibit a stream-type life history and perform extensive 

offshore oceanic migrations, and it is unlikely they are available for RKW. These stocks contribute on 

average less than 1% to the Chinook salmon available for PST ocean  (pre-terminal) fisheries 

 

6 Although Fraser Early is not among the larger stocks, NRKW encounters with both Puget Sound and 

Fraser Early terminal runs could be greater than determined by current observations 

 

7 Out of the known preferred geographic range of NRKW 

 

8 Within the known geographic range of NRKW 
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Figure 1 depicts the flow of data and analytical steps towards the execution of 

demographic perturbation analyses (Caswell 2000). Prospective evaluations (Brault and 

Caswell 1993, Fujiwara and Caswell 2001, Vélez-Espino and Koops 2009a) were 

conducted to quantify the relative effects in SRKW and NRKW population dynamics 

associated with interactions between RKW vital rates and the abundance of Chinook 

salmon stocks in an hypothesis-driven framework (see Box 1). A retrospective evaluation 

(i.e., life table response experiments (LTRE; Cooch et al. 2001, Bruna and Oli 2005) was 

conducted to identify those demographic factors underpinning the observed variation in 

RKW abundance and population growth. Perturbation analyses, when combined with 

recovery goals and fishing scenarios, were used to quantify the sensitivity of SRKW and 

NRKW population growth and viability to changes in Chinook abundance.  

 

Perturbation analyses are based on the analysis of asymptotic dynamics and stable 

stage distributions (SSD), and many risk assessments of endangered species ignore the 

importance of transient dynamics caused by deviations from the SSD (Wiedenmann et al. 

2009). Transient dynamics of long-lived, slow reproducing species (e.g., killer whales) are 

more responsive to population state than short-lived, fast reproducing species (Koons et al. 

2005). This could be important for RKW since population growth rates derived from SSD 

can be a biased estimate of short-term population growth rate when population structure is 

unstable. For these reasons we studied transient dynamics in SRKW and NRKW to inform 

the minimum length of time horizons recommended for PVAs. 

 

Future population dynamics, including probability of recovery and extinction risk, 

ideally require demographic models because they are the only framework that can integrate 

the vital rates that determine expected change in population size (Caswell 2001). The 

second research component, population viability analysis (PVA), was based on 

demographic simulations with linkages to changing levels of Chinook salmon abundance 

defined by specific fishing scenarios. Figure 2 shows how input data for relevant fishing 

scenarios is combined with the results of the analysis of transient dynamics and the 

incorporation of demographic and environmental stochasticity, to run PVAs allowing the 

exploration of the influence of Chinook abundance on RKW extinction probabilities. In 

addition, this framework was also used to evaluate probabilities of recovery for SRKW on 

the basis of their identified U.S. recovery goal of an average growth of 2.3 percent per year 

for 14 years for downlisting and 28 years for delisting (NMFS 2008).  
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Figure 1. Flow diagram showing data components and major analytical steps towards the execution 

of retrospective and prospective demographic analyses, including the sensitivity of SRKW and 

NRKW viability to the abundance of Chinook salmon (CS) stocks within the hypothesis framework 

in Box 1. 
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PerturbationPerturbation

AnalysisAnalysis
Identification of relevantIdentification of relevant

fishing scenariosfishing scenarios
Transient dynamicsTransient dynamics
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EnvironmentalEnvironmental
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stochasticitystochasticity

Influence of CS abundanceInfluence of CS abundance

on SRKW and NRKW on SRKW and NRKW 

extinction and recoveryextinction and recovery

probabilitiesprobabilities

KW Recovery Goals

 
Figure 2. Flow diagram showing the elements of the PVA for SRKW and NRKW, including the 

role of prospective perturbation analysis, to assess the relationship between extinction and recovery 

probabilities and Chinook salmon (CS) abundance.  

 

  

 

2.2 Killer whale matrix population modeling  

 

Matrix models constitute a demographic approach to the quantitative analysis of population 

responses to perturbations that has proven to be robust to many parameter uncertainties (de 

Kroon et al. 2000, Heppell 2007). These models have also proved to be valuable and 

efficient tools to address relevant management questions related to conservation and 

recovery of aquatic populations (Getz and Haight 1989, Vélez-Espino and Koops 2009b), 

mammals in general (Heppell et al. 2000, Oli and Dobson 2003) and cetaceans in particular 

(e.g., Brault and Caswell 1993, Caswell et al. 1998; Fujiwara and Caswell 2001). The life 

cycle of SRKW and NRKW was represented by two separate stage-structured matrix 

models because these two populations are demographically isolated with no interchange of 

individuals between them (Bigg et al. 1990). There is no evidence of NRKW males 

fathering SRKW offspring, or viceversa, therefore reinforcing the demographically isolated 

nature of these two populations (Ford et al. 2011). SRKW and NRKW populations are also 
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acoustically, genetically, and culturally distinct (Ford et al. 1998, Ford et al. 2000, Barrett-

Lennard and Ellis 2001, Ford et al. 2011).  

 

 The life cycles of these two populations were modeled as two-sex stage-structure 

models with seven life stages: (1) calves (individuals in the first year of life); (2) juveniles 

(past one year but no mature [ages 1-9]; mostly undetermined sex); (3) young reproductive 

females (ages 10-30); (4) old reproductive females (ages 31-50); (5) post-reproductive 

females (51 year old and older); (6) young mature males (ages 10-21); and, (7) old mature 

males (22 year old and older). Note that, for practical reasons, some figures and tables use 

“Female 1”, “Female 2”, and “Female 3” to refer to model stages 3, 4 and 5, and “Male 1” 

and “Male 2” to refer to model stages 6 and 7. Although most matrix models portray only 

female demography, significant differences in life history traits between female and male 

killer whales (Olesiuk et al. 1990, Olesiuk et al. 2005) would be better represented by two-

sex models. Age intervals are similar to those in Krahn et al. (2004), but we decided to split 

the reproductive females stage into two stages (young and old) to account for differences in 

reproductive potential associated to reproductive senescence (Ward et al. 2010) and, based 

on current data, updated the age at maturity (10) and maximum reproductive age (50) of 

females. Similarly, mature males were split into two stages because there is evidence for a 

clear increase in male reproductive success with age (Ford et al. 2011). The latter study 

found no evidence for male reproductive senescence. 

 

 The life cycle and its corresponding population matrix are shown in Figure 3 and 

Figure 4, where Pi is the probability of surviving and remaining in stage i, Gi is the 

probability of surviving and moving to the next stage, and Fi is the fertility rate of stage i. 

In Figure 4, P1 = 0, because the length of the calf stage is equal to the projection interval (1 

year). The term F2 for reproductive output of juveniles represents those individuals that 

mature and reproduce during the projection interval (Crouse et al. 1987, Brault and Caswell 

1993). A stage-structured model requires defining three lower-level parameters, namely 

vital rates: σi as the annual survival probability of an individual in stage i, γi as the 

probability of moving from stage i to stage j given σi, and µ i as the mean offspring 

production by females in stage i (hereafter referred also as “fecundity” to differentiate from 

the “fertility” matrix element Fi). Then, the matrix elements Pi and Gi are defined as σi (1- 

γi) and σi γi, respectively, where the term γi is the reciprocal of the stage duration. Only G2 

included an additional parameter to represent the proportions of juveniles transitioning into 

young reproductive females (φf) or young mature males (φm) as G2f = σ2 γ2 φf and G2m = σ2 

γ2 φm. These proportions were computed from the total number of 10-year old males or 

females during the study period (1987-2011); age-10 is the first age class within the young-

reproductive-female and young-mature-male stages. Since births occur year-round, a birth-

flow matrix variant (Caswell 2001) was used, with ( )( )0.5

1 1F σ 1 P G / 2i i i i iµ µ += + +  and G1 

= σ1
0.5

, where σ1
0.5

 is the probability of a viable calf individual surviving the first half of the 



9 

 

first age interval, at which time it will be counted in t+1. We did not base these 

computations on newborn individuals because not all killer whale births are observed, 

which means that pregnancy rates and birth rates are expected to be higher than the 

recruitment of viable calves (see Olesiuk et al. 1990). Thus, viable calves are defined as 

those individuals that survived to at least 0.5 years of age. For convenience, we refer to this 

stage simply as calves in most of the remaining sections.  

 

 Since most births seem to occur between fall and spring (Bigg et al. 1990, Olesiuk 

1990) and most encounters (RKW sightings) occur during the summer months (Ford 2006), 

individuals encountered in the summer are assumed to be censused at the midpoint between 

birthdays. Thus, January 1
st
 was used to determine stage affiliations in a given year and as 

the beginning of the projection interval. Vital rates were computed following a horizontal 

life table approach where the fate of particular cohorts was followed through time as it 

aged, thus eliminating the bias introduced by violations to the stationarity assumption 

embedded in vertical life tables (Wunsch et al. 2002). Vital rates σi and µ i were therefore 

computed as: 

 

    
, 1

,

,

i t

i t

i t

n

n
σ +=                                                                                          (1) 

and 

 

  ,

# viable calves by females in stage  at year  

# females in stage  at year 
i t

i t

i t
µ =                                      (2) 

 

 

Notice that although neonate mortality is unknown, it is absorbed into the fecundity rate in 

Equation 2 (see also Olesiuk et al. 1990). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



10 

 

 

 

 

 
 

Figure 3. Stage-structured life cycle of resident killer whales with seven life stages: (1) calves; (2) 

juveniles; (3) young reproductive females; (4) old reproductive females; (5) post-reproductive 

females; (6) young mature males; and (7) old mature males. Fi represent fertility; Gi represent stage 

transition probabilities, with female and male juvenile-to-adult transitions indicated as G2f and G2m, 

respectively; and, Pi represent the probability of surviving and remaining in stage i. 

 

 

 

 

 

 
 

Figure 4.  Stage-structured projection matrix corresponding to the resident killer whale life cycle in 

Figure 3. Upper left sub-matrix describes the production of juveniles and mature females by 

females, the lower left sub-matrix the production of mature males by females, the lower right sub-

matrix the production of mature males by males, and the upper right sub-matrix the production of 

females by males.  
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  Alternative killer whale matrix population models were used for some aspects of 

this investigation and included a model with gender identification at birth and a truncated 

female-only model that excluded post-reproductive females (Appendix 1). 

 

 

2.3 Data sources 

 

2.3.1 Killer whale demographic data 

 

Demographic data for resident killer whale were obtained from long-term registries 

maintained by the Cetacean Research Program, Pacific Biological Station, CDFO (for 

NRKW), and the Center for Whale Research, Friday Harbor, WA (for SRKW). These 

registries are based on annual population surveys using photo-identification of individual 

whales from natural markings. Surveys have occurred annually without interruption since 

1973 for NRKW and 1974 for SRKW.  Each year, all observed animals in the populations 

are photo-identified to establish the status of individuals (e.g., reproductive state) and to 

document new births and deaths.  Since these field studies began, 734 whales have been 

documented, 350 of which were alive in 2010. Of these, about 85% were born since the 

study began. These precise demographic data have been used successfully in the past to 

develop detailed population dynamics models and related analyses (Olesiuk et al. 1990, 

2005, Ford et al. 2005, 2010, Ward et al. 2009, 2010).  

 

 Although encounter data go back to the early 1970’s, thisstudy focuses on 

demographic data derived from a horizontal life table encompassing the last 25 years 

(1987-2011), which represents approximately one generation time in both populations 

(Olesiuk et al. 1990, Olesiuk et al. 2005). This step was considered important not only to 

remove from the analyses the effect on stage structures caused by the large live-capture 

fisheries in the 1960’s and 1970’s but also to include mostly census data generated by 

direct observations rather than reconstructed life table data as for the early years of RKW 

demographic studies. Life history and demographic data for the earlier years of the full 

time series were thoroughly reconstructed to fill age information gaps (see Olesiuk et al. 

1990). The procedures for reconstruction relied on numerous assumptions such as (i) 

female age at first birth remained constant, (ii) genealogical trees by Bigg et al. (1990) 

were accurate, (iii) calving intervals remained constant, (iv) survival rates remained 

constant. For a count-based model some of these assumptions may have a small weight but 

they matter for demographic modelling. The quality of demographic and life history data 

improved with the years of study to the point that today both populations are censused with 

high standards. The first criterion influencing our time-period selection was to base our 

analyses on the best data possible (the data set with the least uncertainty). Another factor 

contributing to the quality and attributes of the demographic data for the earlier years of the 

full time series is that it begins right after the end of the killer whale live-capture fishery, 
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which for resident killer whales lasted from 1962 to 1973 (Bigg 1975, Olesiuk et al. 1990). 

This fishery was heavily biased towards juveniles and young males and impacted more 

heavily the SRKW. Consequently, this fishery affected not only population size but also the 

structure of the population (Appendix 2). The purging of this perturbation on population 

structure can take several years. Thus, a second criterion in our decision was to base our 

analyses on years with RKW population structures more representative of current 

conditions while trying to minimize the effect of the live-capture fishery on demographic 

rates. This is crucial for population projections since the population structure observed in 

the first years of the time series of encounter data is radically different from that of the 

present (Appendix 2). Lastly, generation time is relatively stable in long-lived, late 

maturing populations. We estimated a generation time of ~25 years in both SRKW and 

NRKW, similar to those estimated by Olesiuk et al. (1990, 2005) and Caswell (2001), and 

decided to use a time series long enough to represent at least one generation. Given these 

three criteria, we based our analyses on the last 25 years of the time series (1987-2011), 

equivalent to one RKW generation time. This period includes high quality data with ~75% 

of the RKW individuals alive in 2011 born during the selected 1987-2011 period.  

 

 In addition, one limitation with using early times series for the analysis of 

interactions between RKW and Chinook salmon is the uncertainty of the pre-terminal 

exploitation rates for Chinook salmon, since fewer stocks were represented by coded wire 

tags compared to the recent period (PSC 2011a).  In the 1970s, coded wire tags (CWT) 

were being explored as a new technique for Chinook salmon assessments in BC and by 

1980, three of the 11 Canadian stock groups had CWT-based estimates of pre-terminal 

fishing rates. However, during the next decade the CWT program flourished in BC and by 

1991, 10 of the 11 stock groups had CWT-based estimates of pre-terminal fishing rates. 

 

 

2.3.2 RKW life table uncertainties 

 

For animals of uncertain year of death, amortized partial values were used. For instance, an 

animal with probable death over a span of two years was counted as 0.5 for the first year 

and 0.0 for the second year. There were few age 10-14 NRKW individuals of unknown sex 

between 1996 and 2011. The sex ratio of NRKW’s known-sex individuals of age 10-14 for 

this period was used to assign sex for annual counts.  

 

 

2.3.3 Chinook salmon abundance (terminal run and ocean abundance)  

 

Two sources of Chinook salmon abundance data were used: (1) time series of vulnerable 

cohort abundance reported by the Pacific Salmon Commission’s Chinook Technical 

Committee (CTC) model were used as ocean abundance metrics for subsequent analyses 
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(these cohort abundances vulnerable to ocean fisheries are the stock components of 

AABM
1
 fishery indices); and, (2) terminal run reconstruction indices (age-3 and older fish) 

derived from time series assembled by R. Kope and C. Parken (Appendix 3) were used as 

terminal run metrics for subsequent analyses. Indices of terminal run were based on direct 

run reconstruction using coded wire tag recoveries for stocks from Canada, spring-runs in 

the Upper Columbia River, and stocks originating south of Cape Blanco, and using the 

CTC model estimates for others (PSC 2011a).  

 

 For the exploration of fishing scenarios where changes in terminal run size occur as 

a result of changes in ocean (i.e., pre-terminal) harvest rates, terminal run equivalents 

(TRE) were used to account for the fact that only a portion of the fish not caught in ocean 

fisheries in a given year is expected to become part of the terminal run according to their 

maturation rates (MR), which are time-variant and stock specific. Using up-to-date catch 

and MR data by age (a) from CTC exploitation rate analyses (data required to generate 

TREs for Sacramento Fall and Klamath Fall were obtained from PFMC 2012), TRE for an 

indicator stock by calendar year (y) were computed as: 

 

 

                                                                                                                   (3) 

 

 

TREs were then used to compute both proportional increases in terminal run size in the 

absence of pre-terminal fishing and the terminal run scalars resulting from a specified 

change in ocean harvest rates in CTC exploitation rate indicator stocks. These scalars were 

then used to calculate changes in terminal run of a stock of interest following procedures 

detailed in Appendix 4. This data was then used for the exploration of fishing scenarios 

(Section 2.7). 

 

 

2.3.4 Other covariates 

 

In addition to Chinook salmon abundance, there are several other covariates that might 

contribute to fluctuations in RKW population dynamics, namely, non-Chinook prey, 

environmental indices, and intrinsic population effects such as density dependence. Trying 

to minimize covariate confounding effects and focusing on covariates that could be 

influenced by management actions, it was decided to include Chum salmon abundance as 

an additional covariate. While Chinook salmon represent the majority of RKW diet in 

                                                 
1
 Aggregate Abundance-Based Management (AABM) fisheries encompass all mixed-stock ocean fisheries under the 

Pacific Salmon Treaty and include southeast Alaska sport, net, and troll (SEAK), northern British Columbia troll and 

Queen Charlotte Islands sport (NBC), and west coast Vancouver Island troll and outside sport (WCVI). 

 

6
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summer months (Ford et al. 2010a, Hanson et al. 2010), less is known about the seasonal 

importance of other fish species in non-summer months. Recently, Chum salmon runs have 

been recognized as an important component of the fall diet (Ford et al. 2010a, Hanson et al. 

2010). Terminal run reconstructions of BC Chum salmon for years 1980-2010 compiled by 

CDFO (David Peacock, Prince Rupert BC; Pieter Van Will, Port Hardy BC) were stratified 

as Northern/Central BC (areas 1-13) and Southern BC (areas 14-29, including Fraser 

River). While Northern/Central BC Chum included both summer and fall run types, 

Southern BC Chum included only fall run type; summer Chum comprise only a small 

portion of the aggregated Southern BC terminal run. Chum terminal run data from 

Washington for years 2000-2009, compiled by the PSC Chum Technical Committee (PSC 

1987 to 2011b), was stratified as Washington Fall (by far the largest component) and 

Washington Summer/Fall/Winter.  

 

 

2.4 Functional relationships between RKW vital rates and Chinook salmon  

      abundance  

 

Associations between RKW vital rates (fecundity and survival) and Chinook abundance 

were evaluated in light of the four hypotheses in Box 1. Beta regressions (Cribari-Neto and 

Zeileis 2010) with abundance lags 0 and 1 were used to examine relationships with survival 

rates whereas abundance lags 0, 1, and 2 were used to examine relationships with 

fecundity. Beta regressions incorporate features such as heteroscedasticity or skewness 

which are commonly observed in data taking values in the standard unit interval, such as 

rates or proportions. The rationale for the use of lag-1 models for survival is that the effects 

of nutritional stress can be capitalized on mortalities the next year after food shortage 

occurred. The study of Ford et al. (2005) revealed that mortality deviations were most 

highly correlated to changes in Chinook abundance after a lag of one year. Following the 

same rationale, lag-2 models were used for fecundity to account for malnutrition or 

starvation effects on pregnancy as well. Pregnancy lasts about a year in RKW. In addition, 

and in order to account for cumulative effects of Chinook abundance on RKW vital rates, a 

5-year running average (Chinook abundance from t-4 to t) was also used for regression 

analyses. 

 

 Likelihood based model selection tools (AIC; Burnham and Anderson 2002) were 

used for model selection between simple beta-regression models with Chinook salmon 

abundance as only predictor and multiple beta-regression models including both Chinook 

and Chum salmon abundance as predictors. Beta-regression models were fit to the data and 

a stepwise approach was used to identify the best subsets of predictors (combinations of 

abundance type and time lags for both Chinook and Chum). The existence of marginal 

increases in Chinook regression coefficients was used as a second criterion for model 

selection. Thus, a multiple beta regression with Chinook and Chum as independent 
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variables was considered superior to a simple beta regression with Chinook only when two 

criteria were met: (i) a lower AIC value, and (2) a marginal increase in its Chinook 

regression coefficient. This model-selection process was structured by hypothesis (Box 1) 

and vital rate. In addition, variance inflation factors (VIFs) were calculated to quantify 

collinearity levels (Hair et al. 2006) in the multiple beta-regression models. Multiple beta-

regression models were discarded when VIF values were greater than 5, indicating 

collinearity problems with the predictors in a given model. 

  

 

2.5 Perturbation analysis  

 

Demographic perturbation analysis asks how population statistics respond to changes in the 

vital rates that determine matrix entries (Caswell 2001). Important population performance 

statistics derived from this analysis are the asymptotic population growth (λ), the stable 

stage distribution (SSD), and the reproductive values (RV). The term λ is represented by 

the largest eigenvalue of a projection matrix. Notice that λ represents the expected 

population growth rate (assuming vital rates means and variances are going to remain 

stable in the long term) and not the observed or realized population growth, which is the 

rate of change computed from counts of total population size. A population is projected to 

be at equilibrium when λ = 1.0, declining when λ < 1.0, and growing when λ > 1.0. The 

SSD is represented by the right eigenvector (w) of a projection matrix, which indicates the 

proportion of the population in each stage once enough time has passed to dampen 

fluctuations due to initial conditions, while RV is described by the left eigenvector (v) of 

individuals in each stage (de Kroon et al., 1986). Perturbation analysis is used in two 

distinct ways. Prospective analyses (sensitivity and elasticity) explore the functional 

dependence of λ on the vital rates. They predict the changes in λ that would result from any 

specified change in the vital rates and are independent of previous patterns of variability of 

the vital rates. Retrospective analyses (e.g., life table response experiments LTRE) express 

observed variation in λ as a function of observed covariation in the vital rates. Those results 

are specific to the observed pattern of variation. Sensitivity and elasticity analysis can be 

used to identify potential management targets because changes in vital rates with high 

sensitivity or elasticity will produce large changes in λ (Vélez-Espino et al. 2006). 

Retrospective analyses cannot identify potential management targets because they compare 

the contributions of past changes in vital rates, not the effects of future changes (Caswell 

2000). However, past fluctuations in vital rates or their covariates (e.g., Chinook 

abundance) could inform management actions if these fluctuations can be predicted with 

low levels of uncertainty.  

 

 Demographic modelling of SRKW and NRKW was conducted to inform 

prospective and retrospective perturbation analyses, and make inferences about the 

demographic components of these two populations responsible for the observed differences 
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in population growth and stage structure as well as their relative dependence on stock-

specific Chinook salmon abundance. Although life history and population dynamics of 

SRKW and NRKW have been studied in the past (Olesiuk et al. 1990, Brault and Caswell 

1993, Krahn et al. 2002, 2004, Olesiuk et al. 2005), perturbation analyses within the 

context of Chinook salmon linkages are a novel contribution to our understanding of 

SRKW and NRKW population dynamics that could be used in the future to inform 

conservation and management decisions. Moreover, the identification of factors driving 

past and present population dynamics of SRKW and NRKW is expected to bring new light 

to explain observed SRKW’s small population size and limited population growth. 

 

 

2.5.1 Prospective 

 

The influence of vital rates on the population growth rate is indicated by the partial 

derivatives of λ with respect to akl, the individual elements of the matrix. Elasticities (εkl) 

scale these derivatives to adjust for the magnitude of the vital rates (i.e. reproductive rates 

in some species can be several orders of magnitude larger than survival probabilities), and 

they are calculated as: 

 

 ( )ε log λ/ logkl kla a= ∂ ∂                                 (4) 

 

 Elasticities of matrix elements are additive and sum to one. Multiplying the 

elasticities by λ produces a set of contributions which sum to λ, and the εij themselves give 

the relative contribution of each transition to λ (de Kroon et al. 1986). Equation 1 calculates 

the elasticities of matrix elements, not vital rates (
i

v ), which usually contribute to more 

than one matrix element (see Section 2.2). Thus, the chain rule for differentiation was used 

as a first order computation of vital rate elasticities: 

 

 ( )
λ λ

ε
λ λ

i i kl
i

i kl i

v v a
v

v a v

∂∂ ∂
= =

∂ ∂ ∂
∑                            (5) 

 

 These analytical solutions are robust for perturbations up to 30% and occasionally 

up to 50% (Caswell 2001). Nonlinearities, often exhibited between vital rates and λ (see 

Mills et al. 1999; de Kroon et al. 2000), reduce the accuracy of projections using elasticities 

for larger perturbations. Hence, we also conducted prospective perturbation analysis by 

directly perturbing the projection matrices (Ehrlén and van Groenendael 1998). Direct 

perturbations can involve an iterative process, altering the magnitude of the vital rate in 

question while keeping all other matrix elements unchanged.  

 

 



17 

 

2.5.2 Sensitivity of RKW population growth to Chinook salmon abundance   

 

This component of the analysis is the core of the demographic analysis and deals with the 

linkage between Chinook salmon abundance and RKW population dynamics. Mean 

elasticities of interactions between individual vital rates and Chinook salmon abundance 

were computed through direct perturbations and the chain rule of differentiation (e.g., 

Nichols and Hines 2002): 

 

( ) loglog λ
ε

logi

kl i
Chinook v

i kl i Chinook

a v
x

a v x
→

∂ ∂∂
=

∂ ∂ ∂
∑                       (6) 

 

where xChinook denotes Chinook abundance from specific stocks or stock aggregates, 

and ( )ε
iChinook v

x →  denotes the proportional change in λ resulting from a small change in 

xChinook. Notice that the effects of xChinook on more than one vital rate are additive. 

 

Stochastic elasticities were generated through simulations with vital rates 

represented as random variables. Vital rate annual values from 1987 to 2011 were used to 

generate their mean and variances for each of the killer whale populations. Simulations 

generated 5000 random matrices with vital rates drawn from defined probability 

distributions. The beta distribution was used to simulate variation in stage-specific survival 

(σi). This distribution is appropriate for binary events (such as survival) and produces 

random variables confined to the interval 0 to 1. The lognormal distribution was used to 

simulate fecundity values (µ i). This distribution produces only positive random variables 

bounded by zero and infinity. Population growth rates and vital rate elasticities were 

calculated for each of the 5000 matrices, and a parametric bootstrap was used to estimate 

mean stochastic elasticities and their 95% confidence intervals.  

 

Deterministically, changes in SRKW and NRKW population growth rates (λ) 
associated to observed and/or projected stock-specific Chinook salmon abundance were 

determined on the basis of linkages with one or more vital rates. These computations used 

elasticities because the consequences of simultaneous perturbations affecting multiple rates 

can be promptly assessed by adding elasticities (Mills et al. 1999). The effect of single or 

multiple perturbations can be approximated using the formula of Caswell (2001): 

 

   ( ) ( )( )λ λ 1 ε δ
new i i

v v= + ⋅∑                    (7) 

  

where λnew is the population growth rate after exerted perturbations, ( )δ iv  are the simulated 

perturbations (i.e., proportional changes in vital rates corresponding to observed and/or 

projected Chinook salmon abundance). This λnew can be then compared to a recovery 
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population growth rate target. For instance, the U.S. recovery plan for SRKW recommends 

an average growth of 2.3 percent per year (i.e., λ = 1.023). If λnew is smaller than the 

recovery target, then the calculations can be inverted to obtain the necessary increase in 

Chinook salmon abundance that achieves a target population growth rate: 

 

( )
( )

targetλ λ1
δ

ε λ
new

Chinook

Chinook i new

x
x →

  − 
=    

  ∑
                (8) 

 

However, ( )δ iv which depends on the ability to increase λ by improving individual 

vital rates, will depend not only on the elasticities of survival or fecundity rates but also on 

the capacity to improve each vital rate (Morris and Doak 2002). This consideration should 

be particularly important for RKW since annual survival has been greater than 80% in all 

life stages and both sexes in SRKW (Krahn et al. 2004) and greater than 90% in NRKW 

(Olesiuk et al. 2005), thus leaving little room for improvement. Consequently, we also 

calculated the maximum proportional change in λ due to maximization of vital rates 

(∆λmax/λ) as: 

 

( )( ),λ λ ε
max i max i i

v v v∆ ≈ −∑          (9) 

 

where ,i max
v  is the maximum value determined as feasible for that vital rate. Maximum vital 

rate values were estimated separately for each killer whale population from their observed 

values: 1.0 for survival and upper 95% CL for fecundity. Finally, if the population growth 

rate λ + λ λ
max

∆  is smaller than λtarget, this will indicate that an identified SRKW recovery 

goal is unfeasible and that it could be replaced by λ + λ λ
max

∆ .  If this was the case, 

equation 7 used the latter for computations of ( )δ iv . 

Stochastic versions of λ
new

, ( )δ Chinookx , and λ λ
max

∆  were computed through 

methods described in sections 2.6 and 2.7 to explore the sensitivity of RKW population 

viability to levels of Chinook abundance defined by hypothetical fishing scenarios. 

 

 

2.5.3 Retrospective  

 

The retrospective perturbation analysis was implemented separately for SRKW and NRKW 

to express the observed variation in λ as a function of variation in vital rates in both killer 

whale populations. The retrospective analysis relied on the random design methodology 

used for life table response experiments (LTRE) (Caswell 1989, Brault and Caswell 1993, 

Levin et al. 1996), which involves matrix construction breaking down the variance of λ 
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into the contributions from the variances in the vital rates. The study period was divided in 

six four-year periods and projection matrices were created from each one of them. The 

sensitivity matrices (S) corresponding to individual matrices and the covariance matrix (C) 

were used as entries for the calculation of the matrix of contributions V(λ). Sensitivity was 

calculated as ( )λ/ v w / ,kl k la∂ ∂ = w v , where the denominator is the scalar product of the 

vectors. The variation in vital rates was summarized in a covariance matrix C = ε [(xi - Xi) 

(xi – Xi)’], where ε is the elasticity matrix, xi is the vital rate and Xi is the mean of xi. The 

matrix of contributions V(λ) denotes the variance in λ produced by the variation in the vital 

rates. Because the contributions to V(λ) are made by pairs of matrix entries (Brault and 

Caswell 1993), it can be approximated as:  

( ) ( )λ
ij kl ij kl

ij kl

a a≈∑∑V S S C           (10)  

where aij and akl represent the elements of each possible pair of matrices. The outcome 

columns in the V(λ) matrix are summed and scaled to 1 to obtain proportional 

contributions of vital rates to the variance of λ.  Contributions to the variance in λ were 

also calculated in terms of vital rates by defining a vital rate vector p and computing the 

variance as: 

                   ( ) ( ) λ λ
V λ ,i j

ij i j

p p
p p

∂ ∂
≈

∂ ∂
∑C                            (11) 

 

 We also computed variance-standardized elasticities, following Zuidema and 

Franco (2001), as the product of vital rate elasticities and their temporal CV. This is an 

analogous metric to the contribution of vital rates to the variance in λ in equation 11 but it 

does not adjust for covariance between vital rates. These analyses were conducted with a 

population matrix sub-model (Figure 5) including only those stages with contributions to λ. 

This sub-model (4 x 4 matrix) was therefore a truncated female-only model that excluded 

post-reproductive females, with G2 = σ2 γ2, and µ i as the product of mean offspring 

production by females in stage i and the proportion of females (φf). 
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Figure 5.  Stage-structured projection matrix for resident killer whales used for retrospective 

perturbation analysis: female-only matrix model (highlighted area), excluding stages not 

contributing to population growth (post-reproductive females and males).  

 

 

  

 

2.5.4 Transient dynamics  

 

Transient dynamics were analyzed for the unperturbed projection matrices to evaluate the 

necessary time to achieve the stable distribution and the asymptotic population growth (λ). 
This information is important to determine the minimum length of the time horizon used in 

PVAs (see next section). The parameter λ summarizes the long-term dynamics of the 

population assuming that environmental conditions are maintained indefinitely. Because 

this is unlikely to happen, it is useful to evaluate the short-term or transient dynamics that 

dictate the rate of convergence to the stable stage distribution, which is governed by the 

second largest eigenvalue (λ2; Lefkovitch 1971). The subdominant eigenvalue λ2 may be a 

real or complex number. If complex, it produces oscillations during convergence (Caswell 

2001) that will be faster the larger λ is relative to λ2. A measure of the rate of convergence 

to the stable structure is the damping ratio ρ = λ / │λ2│, where the subdominant eigenvalue 

can have a complex structure λ2 = a + bi, and │λ2│= (a
2
 + b

2
)
1/2

. When λ2 is raised to 

powers representing projection intervals (t): 

   λ2 = │λ2│t
 2 cos θ t                  (12)  

where θ = tan
-1

(b/a) is the angle (in radians) formed by λ2 in the complex plane and the 

convergence takes place with an oscillation period of 2π/θ (Keyfitz and Flieger 1971). 

Convergence to the SSD depends on how close ρ is to 1, and the damping time is defined 

as τ = ln(z)/ln(ρ) (Haridas and Tuljapurkar 2007), where z is the number of times the 

contribution of λ becomes as great as that of λ2. Damping times at z = 10 were used to 

define minimum time horizons for projections of population size. 

 

 

 G2 
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2.6 PVA 

  

Projection matrices were used to compute stochastic population growth and run stochastic 

simulations of quasi-extinction risk and recovery probabilities under an independently and 

identically distributed (IID
2
) environment with the aid of MATLAB R2009a (The 

MathWorks, Inc.) and in a fully stochastic fashion using the population viability analysis 

software RAMASGIS (Akcakaya 2002). The two types of simulations were designed to 

identify the importance of demographic stochasticity and environmental stochasticity vs. 

IID environments on quasi-extinction and recovery probabilities. For each of the RKW 

populations, six matrices constructed with vital rates representatives of four-year periods 

across the time period encompassed in this study were randomly drawn to generate 5000 

realizations of population growth to project future population size and compute stochastic 

population growth and 95% confidence intervals. The fraction of realizations hitting 

population size thresholds during or before a given time horizon was used to generate a 

cumulative distribution function and estimate quasi-extinction and recovery probabilities. 

Input data for RAMAS simulations consisted of a projection matrix of mean values and a 

corresponding matrix of standard deviations for each modeled RKW population. Mean and 

standard deviation matrices were computed from the means and standard deviations of 

matrix elements from the six four-year matrices. Initial conditions in both simulations were 

represented by their stage composition in 2011, and projection matrices were constructed 

using vital rates with linkages to Chinook salmon abundance derived from the regression 

models (hypothesis-based for Chinook salmon and AIC-based for Chum and Chinook 

models) and used to evaluate the effect of this interaction on RKW population viability 

under selected fishing scenarios. Extinction risk was assessed for time horizons large 

enough for convergence to stable stage structures (i.e., damping times) as derived from the 

analysis of transient dynamics. 

  

 RAMAS computer simulations consisted of 5000 realizations of population size per 

time step from projection matrices with matrix-elements drawn from lognormal 

distributions parameterized by the mean and standard deviation matrices. The probability 

of falling below a population threshold (quasi-extinction probability in RAMAS) was 

computed as the proportion of realizations of population size at or before the specific time 

step determined by the analysis of transient dynamics that is reduced to 30 individuals for 

SRKW and 250 for NRKW. Thirty individuals for SRKW was considered small enough to 

enable inbreeding depression, Allee effects, and exacerbated demographic stochasticity 

                                                 
2
 In probability theory and statistics, a sequence or other collection of random variables is independent and 

identically distributed (IID) if each random variable has the same probability distribution as the others and all 

are mutually independent. In the case of projection matrices, the IID concept entails the independence of 

individual period-specific matrices constructed with vital rates drawn from identical distributions in each 

case. Simulations based on projection matrices in an IID environment thus assume that past conditions apply 

in the future. 
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playing important roles on extinction dynamics (see Morris and Doak 2002). For NRKW, 

with a clearly positive population growth and 268 individuals in 2011, 250 individuals was 

identified as a useful threshold for exploration of fishing scenarios. We also computed 

interval extinction risks for both populations, which are defined as the probability that 

abundance will fall below a range of abundances at least once during the next 100 years. 

Probabilities of recovery in SRKW were computed using as population size targets 120 and 

164 individuals as derived from an average growth of 2.3 percent per year for 14 years for 

downlisting and 28 years for delisting, respectively, specified in the recovery plan for this 

population (NMFS 2008). Lastly, expected minimum abundance was calculated for 

NRKW. The expected minimum abundance is the average (over all replications) of the 

minimum population abundance of the trajectory. This metric is an estimate of the smallest 

population size that is expected to occur within the simulated time period. The expected 

minimum abundance can be used as an index of propensity to decline, especially when the 

population variability and risks of decline are low (McCarthy and Thompson 2001), which 

presently is the case for NRKW’s population dynamics.  

 

 Demographic stochasticity was modeled by sampling the number of survivors from 

a binomial distribution with parameters Pi and Ni(t) as sample size and the number of 

calves from a Poisson distribution with mean Fi · Ni(t). Fecundity and survival rates were 

correlated within each modeled population to maintain their covariation structure and 

survival rates were constrained to values between 0 and 1, with the sum of all survival 

transitions from a given stage being ≤ 1 in any time step (see Akcakaya 2002). Density 

dependence at high population size was not explicit in the RAMAS simulations given the 

paucity of information on carrying capacities for both RKW populations and the short time 

frames used for risk assessment. Catastrophe probabilities, a simulation component explicit 

in RAMAS, were not included either because the objective is to identify the influence of 

various levels of Chinook salmon abundance on RKW population viability rather than 

evaluating the influence of other pervasive sources of environmental uncertainty. The 

relative effect of salmon abundance on population viability would be obscured and 

confounded by the large effects catastrophes can have on PVAs (Menges 1990, Lande 

1993, Mangel and Tier 1994, Vélez-Espino and Koops 2012). 

 

 

2.7 Fishing scenarios 

 

The identification of Chinook salmon stocks or stock aggregates with the largest influence 

on RKW population dynamics was based prospectively on the value of elasticities of vital 

rate-Chinook salmon interactions and retrospectively on their contributions to the observed 

variation in population growth for 1987-2011. Since the abundance of specific Chinook 

salmon stocks can interact with more than one vital rate, their added elasticities were 

considered for selection. This selection process was also framed by the hypotheses 
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specified in Box 1. In the case of SRKW, for which population size increases are desirable, 

fishing scenarios were designed to maximize effects on vital rates or minimize fishing 

mortality and evaluate best-case scenarios for increases in population growth rate. As 

before, maximum vital rate values were estimated separately for each killer whale 

population from their observed values: 100% for survival and upper 95% CL for fecundity. 

The most extreme case of minimization of fishing mortality rates was that corresponding to 

fishery closures for selected stock aggregates and abundance type (i.e., ocean abundance or 

terminal run). The effects of maximization of vital rates or minimization of fishing 

mortality were quantified deterministically through direct perturbations following methods 

described in Section 2.5.2 and stochastically through simulations. For NRKW, we explored 

fishing scenarios that slow population growth or produce equilibrium (i.e., λ = 1.0) because 

this population currently has positive growth rates. A variant of equation 8 was used as a 

first approximation to identify equilibrium conditions: 

  

  ( )
( )

1 λ1
δ

ε λ
NRKW

Chinook

Chinook i NRKW

x
x →

  −
=    

  ∑
                    (13) 

 

A limitation of equation 13 is that it applies the same proportional reduction ( )δ Chinookx in 

all vital rates and it is necessary to use an iterative solving process to identify a fishing 

scenario producing exactly λ = 1.000. Hence, the effects of extreme increases in fishing 

mortality were explored and their effects on NRKW vital rates (and ultimately population 

growth) were first approximated deterministically through direct perturbations and then 

estimated stochastically through simulations. 

  

  The procedure to translate changes in fishing mortality, portrayed by selected 

fishing scenarios, into PVA metrics entailed four steps. First, 1987-2011 (1985-2009 for 2-

year lagged models) Chinook abundance time series were modified according to the 

characteristics of fishing scenarios. Second, new time series of target vital rates were 

generated using beta-regression models (Section 2.4). Third, new sets of modified 

projection matrices were created and mean and standard deviation matrices were 

constructed. Lastly, stochastic simulations were ran as described in Section 2.6. PVA 

metrics considered for the comparison of fishing scenarios were: (i) stochastic population 

growth; (ii) mean abundance τ years in the future, where τ is the damping time derived 

from the analysis of transient dynamics (section 2.5.4); (iii) probability of falling below a 

population threshold (30 individuals for SRKW and 250 for NRKW) in the future; (iv) 

extinction probability 100 years in the future; and, (v) probability of U.S. downlisting for 

SRKW and expected minimum abundance for NRKW.  
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3. RESULTS 

 

3.1 RKW demography 

 

In general, vital rate mean values were similar between SRKW and NRKW (Figure 6). 

Mean survival ranged from 0.785 (calf) to 0.985 (young reproductive female) in SRKW 

and from 0.883 (post-reproductive female) to 0.989 (young reproductive female) in 

NRKW. Mean fecundity was 0.116 and 0.069 in SRKW and 0.142 and 0.101 in NRKW for 

young reproductive females and old reproductive females, respectively. Nonetheless, calf 

survival and old-reproductive-female fecundity were significantly different (Nonparametric 

Kolmogorov-Smirnov test p < 0.05) between SRKW and NRKW. In addition, the overall 

proportion of juveniles transitioning into young reproductive females from 1987 to 2011 

was higher in NRKW (0.55) than in SRKW (0.45). This larger proportion of females could 

partly explain NRKW’s higher fecundity rates. Vital-rate coefficients of variation were 

greater for fecundity rates than for survival rates in both populations. Variation in vital 

rates was noticeably greater for all vital rates in SRKW than in NRKW, except for post-

reproductive females (Figure 7). In spite of the similarity in the vital rate mean values of 

the two populations, there was generally low covariation for vital rate and abundance from 

1987 to 2011 (Figure 8). The largest correlation coefficient was 0.46 for the survival of old 

mature males. Time series of vital rates and abundance for SRKW and NRKW are shown 

in Appendix 5. 

 

 Demographic matrices parameterized with vital rates representative of the last 

RKW generation (1987-2011) produced deterministic population growth rates projecting a 

0.92% annual decline for SRKW and a 1.59% annual increase for NRKW. Similarly, 

stochastic population growth rates were 0.91% annual decline (λ = 0.9909; 95% CI: 

0.9719-1.0081) for SRKW and 1.58% annual increase (λ = 1.0158; 95% CI: 1.0027-

1.0285) for NRKW (Figure 9). The current stage distribution of NRKW was closer to the 

stable stage distribution than it was in SRKW (Figure 10) with a noticeably higher 

proportion of post-reproductive females in SRKW than in NRKW (6.8% vs. 3.7%) and a 

higher proportion of juveniles in NRKW than in SRKW (34.8% vs. 27.3%). This also 

means that if current conditions persist (i.e., mean vital rates do not change), NRKW stage 

distributions will experience little change in the future while greater changes are likely for 

SRKW. Moreover, the analysis of transient dynamics produced damping times of 35 years 

for SRKW and 25 years for NRKW. These are the time horizons it would take for the 

subdominant eigenvalue (λ2) to become 10% of the dominant eigenvalue (λ) and identified 

as minimum for projections of population size derived from projection matrices. 

 

  The relative importance of individual vital rates on population growth rates (i.e., 

elasticities) was similar for both populations (Figure 11) and it was greatest for the survival 

of young reproductive females (0.55 for SRKW and 0.53 for NRKW) and lowest for the 
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fecundity of old reproductive females (0.009 for SRKW and 0.012 for NRKW). The 

elasticities of male survival and post-reproductive female are zero because these stages do 

not contribute directly to population growth. The elasticity of the sex ratio (represented by 

the proportion of females) was relatively small and comparable to that of calf survival 

(0.032 for SRKW and 0.044 for NRKW) in both populations. Although any change in the 

survival of young reproductive females is expected to have the greatest effect on population 

growth (as determined by its elasticity), the little room for improvement in this vital rate 

(and in survival rates in general) limits the proportional increase in population growth 

achieved after maximizing the survival of young reproductive females. Greater 

proportional increases in population growth are achieved after maximization of fecundity 

rates (Figure 12), particularly the fecundity of young reproductive females in SRKW. The 

maximization of the latter is projected to produce a 1.7% annual increase in SRKW, which 

is still less than the 2.3% U.S. downlisting recovery target. This also means that the 

feasibility of meeting such a recovery target will require substantial and simultaneous 

increases in several vital rates and most likely will include the fecundity of young 

reproductive females. The relationship between elasticity and expected changes to 

population growth can also be examined without the limitations to increase a given vital 

rate (as in the case for the already high survival rates) by analyzing the necessary change to 

halt population growth (i.e., λ = 1.0) in NRKW (Figure 13). Due to its largest elasticity, a 

small reduction (3.1%) in the survival of young reproductive females would be enough to 

halt NRKW’s population growth. On the other extreme, even an extreme reduction in 

fecundity of old reproductive females to zero would not halt NRKW’s population growth 

(Figure 13). 

 

 The retrospective perturbation analysis identified survival of young reproductive 

females (matrix element P3) as the largest contributor to the variance in observed 

population growth for SRKW, and the fertility of young reproductive females (matrix 

element F3) as the largest contributor for NRKW (Figure 14; upper panel). Similarly, at the 

vital-rate level, the young-reproductive-female annual survival was the largest contributor 

to the CV in observed population growth for SRKW whereas the fecundity of young 

reproductive females was the largest contributor for NRKW (Figure 14; lower panel). 

These results indicate that the survival of young reproductive females is not only the vital 

rate with the greatest potential to influence future population growth but also the vital rate 

with the greatest influence on the observed (1987-2011) variation in population growth for 

SRKW. For NRKW, the survival of young reproductive females was also the vital rate with 

the greatest potential to influence population growth. However, the fecundity of young 

reproductive females had the greatest influence on observed population growth. This latter 

vital rate, if maximized, also had the greatest potential to increase population growth in 

both populations (Figure 12).  
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 3.2 Role of Chinook abundance on RKW population growth 

 

3.2.1 Southern Resident Killer Whales 

 

Twenty-five significant (p < 0.05) and positive (slope > 0.0) relationships between Chinook 

abundance and SRKW vital rates were identified (Table 1). Nine of these relationships 

represented interactions with Chinook salmon terminal run and 16 with ocean abundance. 

Four of the 25 interactions corresponded to hypothesis 1a (stronger causation weight-of-

evidence) while 21 corresponded to hypothesis 2a (weaker causation weight-of-evidence). 

Twenty of the 25 interactions involved fecundity (15 for young reproductive females and 5 

for old reproductive females) and 5 involved the survival of old reproductive females. 

Within hypothesis 1a, the strongest interaction (based on statistical significance alone) 

occurred between the fecundity of old reproductive females and the two-year lagged 

terminal run of Chinook salmon from Puget Sound stocks (Pseudo-R
2
 = 0.164; p = 0.0076). 

Interactions with the individual stocks of the Fraser Early stock aggregate were not 

significant but there were significant interactions between the Fraser Early/Puget Sound 

aggregate and the fecundity of old reproductive females. The interaction between Fraser 

Late terminal run and the fecundity of young reproductive females was also significant. 

Since interactions with the survival of males or post-reproductive females have no direct 

effect on RKW population growth or viability, they were not selected for subsequent 

analyses regardless of their statistical significance. Within hypothesis 2a, four stock 

aggregates had linkages to more than one vital rate contributing to population growth: 

Columbia Spring/Summer terminal run showed significant relationships with the survival 

and fecundity of old reproductive females whereas the ocean abundance of the five stocks 

with the largest contributions to ocean abundance (WCVI, Columbia Upriver Brights, 

Fraser Late, Oregon Coastal, and Puget Sound)
3
, coastwide ocean abundance (all stocks, 

excluding southeast Alaska [SEAK] stocks), and Oregon Coastal ocean abundance showed 

significant relationships with the survival of old reproductive females and the fecundity of 

young reproductive females. On statistical grounds alone, the strongest interaction between 

Chinook abundance and an individual vital rate was between lag-0 coastwide ocean 

abundance and the survival of old reproductive females (Pseudo-R
2
 = 0.488; p = 0.0028). 

 

 The potential effect on population growth and viability of any uncovered interaction 

between Chinook abundance and killer whale vital rates would depend not only on the 

statistical significance (namely pseudo-R
2
 and p-value) of the relationship but also on the 

slope of the regression and the elasticity of the vital rates involved. The slope of the 

regression determines the net change in a vital rate resulting from a change in Chinook 

abundance (as indicated by the far-right term in Equation 6). In general, interactions with 

                                                 
3
 These stocks have the largest Chinook salmon contributions to ocean mixed-stock fisheries managed under 

the Pacific Salmon Treaty as estimated by the PSC Chinook Model (PSC 2011a). 
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greater regression coefficients and involving vital rates with larger elasticities are expected 

to have a greater effect on population growth. In terms of time lags our approach was to 

select the stock aggregate-time lag combination whose interaction with a given vital rate 

had the greatest elasticity (i.e., the greatest relative influence on population growth rate).  

Moreover, interactions with Chinook stock aggregates exhibiting linkages to more than one 

vital rate will have an additive effect (as shown in Equation 6). These effects can be 

inferred from the individual interaction elasticities because elasticities are partial 

derivatives and additive by definition.  

 

Figure 15 shows the mean stochastic elasticities for all significant regressions in 

Table 1. Interactions occurred only with the fecundity of young and old reproductive 

females and the survival of old reproductive females. This figure shows how the majority 

and the stronger interaction elasticities involved the fecundity of young reproductive 

females in spite of this vital rate having an elasticity lower than the survival of old 

reproductive females (Figure 11). This happens because the regression slopes are greater 

for fecundity than for survival. Figure 16 shows a subset of interactions with the largest 

elasticities for both hypothesis 1a and 2a (see Appendix 6 for a glossary of stock aggregate 

definitions). The largest mean elasticity of interactions under hypothesis 1a was that of 

Puget Sound terminal run and the fecundity of old reproductive females (ε = 0.025), closely 

followed by the interaction between this vital rate and Fraser Early/Puget Sound terminal 

run. The largest additive mean elasticity within hypothesis 2a and without cumulative 

effects was that of the interaction between the five stocks with the largest contributions to 

ocean abundance (WCVI, Fraser Late, Puget Sound, Columbia Upriver Brights, and 

Oregon Coastal) and both the fecundity of young reproductive females and the survival of 

old reproductive females (additive ε = 0.046), followed by the interaction between these 

vital rates and coastwide ocean abundance (additive ε = 0.038). The largest mean elasticity 

involved cumulative effects (represented by 5-year abundance running average) of the 

interaction between the ocean abundance of the five large stocks (WCVI, Fraser Late, 

Puget Sound, Columbia Upriver Brights, and Oregon Coastal) and the fecundity of young 

reproductive females. 

   

 Retrospectively, the contribution to the variation in observed population growth was 

smaller for interactions under hypothesis 1a than interactions under hypothesis 2a (Figure 

17). In this case, the interaction with Fraser Late terminal had a greater contribution (0.8%) 

than either Puget Sound or Fraser Early\Puget Sound terminal run. Similar to the results of 

the prospective perturbation analysis, the interaction with the ocean abundance of the five 

large stocks (WCVI, Fraser Late, Puget Sound, Columbia Upriver Brights, and Oregon 

Coastal) had the largest contribution (1.33%) to the variation in observed population 

growth, followed by the interaction with coastwide ocean abundance (1.05%). In spite of 

the low elasticities of the interactions with WCVI terminal run and WCVI ocean abundance 

(reason why they were not included in Figure 16) these interactions had relatively large 
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contributions to the variation in population growth (Figure 17). This was partly due to the 

greater variation in WCVI terminal run (CV = 0.47) and WCVI ocean abundance (CV = 

0.59) relative to the variation in Oregon Coastal ocean abundance (CV = 0.38), included in 

Figure 16, during 1987-2011.  

 

 Based on the summaries provided by prospective and retrospective perturbation 

analyses, indices of Chinook abundance with the largest potential effects on SRKW 

population growth were selected for the exploration of fishing scenarios. The interactions 

with Puget Sound terminal run and Fraser Early/ Puget Sound terminal runs were selected 

to represent hypothesis 1a while the interactions with the ocean abundance of the five large 

stocks (WCVI, Columbia Upriver Brights, Fraser Late, Oregon Coastal, and Puget Sound) 

and coastwide ocean abundance (excluding SEAK) were selected to represent hypothesis 

2a. In addition, the interaction involving cumulative effects of the ocean abundance of the 

five large stocks was included in the list of scenarios. The time series of abundance of these 

stock aggregates are shown in Figure 18. 

  

 

3.2.2 Northern Resident Killer Whales 

  

Many more significant relationships between Chinook abundance and vital rates were 

identified for NRKW than for SRKW. A total of 66 significant (p < 0.05) and positive 

(slope > 0.0) interactions are shown in Table2. Forty-two of these relationships represented 

interactions with Chinook salmon terminal run and 24 with ocean abundance. Seventeen of 

the 66 interactions corresponded to hypothesis 1b (stronger causation weight-of-evidence) 

while 49 corresponded to hypothesis 2b (weaker causation weight-of-evidence). In contrast 

to the interactions found for SRKW where the vast majority of interactions involved 

fecundity, significant relationships were found between Chinook abundance and all vital 

rates directly contributing to population growth for NRKW. Within hypothesis 1b, the 

strongest interaction (based on statistical significance alone) occurred between the survival 

of young reproductive females and the one-year lagged terminal run of Northern BC stocks 

(Pseudo-R
2
 = 0.335; p = 0.0016), followed by the interaction between one-year lagged 

Puget Sound ocean abundance and juvenile survival (Pseudo-R
2
 = 0.265; p = 0.0031). 

Within hypothesis 2b, the greatest interaction (based on statistical significance alone) 

occurred between Oregon Coastal ocean abundance and the survival of young reproductive 

females (Pseudo-R
2
 = 0.514; p = 0.0003), followed by the interaction between one-year 

lagged coastwide ocean abundance (excluding SEAK stocks) and the survival of young 

reproductive females (Pseudo-R
2
 = 0.359; p = 0.0008). Without consideration of 

cumulative effects (represented by 5-year abundance running average), Puget Sound 

terminal run and Fraser Early/Puget Sound terminal run were the only two stock aggregates 

showing interactions with more than one vital rate contributing to population growth: 

juvenile survival and fecundity of old reproductive females for Puget Sound, and fecundity 
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of young and old reproductive females for Fraser Early/Puget Sound. If cumulative effects 

are considered, the time series of 5-year running average abundances of as many as six 

stock aggregates had interactions with two vital rates (Table 2). 

 

Moving from statistical significance to potential and observed effects on population 

growth requires perturbation analyses of those significant interactions between Chinook 

abundance and killer whale vital rates.  Figure 19 shows the mean stochastic elasticities for 

all significant regressions in Table 2. Interactions occurred with all vital rates directly 

contributing to population growth. The majority and the stronger interaction elasticities for 

NRKW involved the fecundity of old reproductive females. Figure 20 shows a subset of 

interactions with the largest elasticities for both hypothesis 1b and 2b. The magnitudes of 

elasticities of interactions for NRKW within hypothesis 1b are comparable to those of 

hypothesis 2b and also comparable to those observed for SRKW. The greatest elasticities 

within hypothesis 1b were those of the interaction with Fraser Early ocean abundance with 

(ε = 0.0465) and without (ε = 0.035) cumulative effects, followed by Lower Georgia Strait 

Terminal Run terminal run (ε = 0.015) and Northern BC terminal run (ε = 0.013). Notice 

that although cumulative effects of Upper Georgia Strait terminal run had a statistical 

interaction that was stronger than the interaction with Lower Georgia Strait terminal run 

(see Table 2), the former had a smaller interaction elasticity (reason why is not in Figure 

20) because interactions with survival had in general smaller regression coefficients and 

therefore smaller influence on population growth resulting from changes in Chinook 

abundance.  The relative strength of interactions between NRKW’s vital rates and bothh 

Upper and Lower Georgia Strait aggregates is consistent with the migration routes of these 

Chinook stock aggregates. While Upper Georgia Strait stocks are far north migrating and 

return to their terminal areas via Johnstone Strait, the Lower Georgia Strait stocks return 

via both Johnstone Strait and Juan de Fuca Strait (PSC 2011a). Regarding hypothesis 2b, 

the largest added elasticities corresponded to the interactions with Fraser Early/Puget 

Sound terminal run with (ε = 0.042) and without (ε = 0.051) cumulative effects, followed 

by that of coastwide ocean abundance (ε = 0.010) and Oregon Coastal ocean abundance (ε 
= 0.007).   

 

Retrospectively, the contribution of the interactions to the variation in observed 

population growth were comparable between hypotheses 1b and 2b (Figure 21), except for 

the contribution of Fraser Early/Puget Sound terminal run whose contributions were at least 

twice as large as the remaining stock aggregates, including those interactions representing 

cumulative effects. In spite of the low elasticities of the interactions with WCVI terminal 

run and (reason why it was not included in Figure 20) this interaction had a relatively large 

contribution to the variation in population growth (Figure 21). This was partly due to the 

greater variation in WCVI terminal run (CV = 0.47) relative to the variation in Puget Sound 

ocean abundance (CV = 0.27), included in Figure 20, during 1987-2011.  
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Indices of Chinook abundance with the largest potential effects on NRKW 

population growth were selected for the exploration of fishing scenarios based on the 

summaries provided by prospective and retrospective perturbation analyses. The 

interactions with Fraser Early ocean abundance and Northern BC terminal run were 

selected to represent hypothesis 1b while interactions with Fraser Early/Puget Sound 

terminal run and coastwide ocean abundance (excluding SEAK stocks) were selected to 

represent hypothesis 2b. In addition, the interaction involving the largest cumulative 

effects, Fraser Early ocean abundance, was included in the list of scenarios. The time series 

of abundance of stock aggregates selected for hypothesis 1b are shown in Figure 22. The 

time series of stock aggregates for hypothesis 2b were included in Figure 18. 

 

 

3.3 Chum salmon as a covariate of RKW population growth  

 

Nine multiple beta-regression models with Chinook and Chum salmon as predictors and no 

collinearity (VIF << 5) had significant (p < 0.05) interactions with common vital rates 

structured by hypothesis (Table 3). The terminal runs of Chum salmon stock aggregates 

relevant in these models were Northern/Central BC and Washington Summer/Fall/Winter. 

Figure 23 depicts the time series of Chum salmon abundance for these stock aggregates. 

Four of these relationships represented interactions with SRKW vital rates whereas five 

occurred with NRKW vital rates. Interactions contributing to population growth involved 

the fecundity of young and old reproductive females for SRKW, and juvenile survival, the 

survival of young reproductive females, and the fecundity of old reproductive females for 

NRKW. Only four of the nine significant multiple regressions showed both a marginal 

increase in the Chinook regression coefficient and lower AIC relative to their 

corresponding simple regression models with Chinook as only predictor (Table 4). From 

these four multiple regressions, one represented hypothesis 1a, one hypothesis 2a, and two 

hypothesis 2b; there was no multiple regression representing hypothesis 1b, which is 

hypothesis supporting causation for NRKW.  

 

For SRKW, the inclusion of Northern/Central BC Chum terminal run as a covariate 

in the interaction between Fraser Late Chinook terminal run and the fecundity of young 

reproductive females, under hypothesis 1a, increased the elasticity of the interaction by 

~17%. However, the interaction between Puget Sound Chinook terminal run (no Chum as 

covariate) and the fecundity of old reproductive females still displayed the largest elasticity 

(Figure 24) and therefore the largest influence on population growth under hypothesis 1a. 

The inclusion of the same Chum stock aggregate, Northern/Central BC Chum terminal run, 

as a covariate in the interaction between the ocean abundance of the five large stocks 

(WCVI, Fraser Late, Puget Sound, Columbia Upriver Brights, and Oregon Coastal) and the 

fecundity of young reproductive females, under hypothesis 2a, produced the largest 

increase in the elasticity of the interaction (~61%). The elasticity of this latter interaction 
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was even greater than the largest elasticity for Chinook-only interactions (without 

cumulative effects) under hypothesis 2a (Figure 24). Appendix 7 shows a glossary of Chum 

salmon stock aggregate definitions. 

 

 For NRKW, the inclusion of Northern/Central BC Chum terminal run as a 

covariate in the interaction between Oregon Coastal Chinook ocean abundance and the 

survival of young reproductive females, under hypothesis 2b, increased the elasticity of the 

interaction by ~10%. Similarly, the inclusion of Washington Summer/Fall/Winter Chum 

terminal run as a covariate in the interaction between Fraser Early/Fraser Late/Puget Sound 

Chinook terminal run and the fecundity of old reproductive females, under hypothesis 2b, 

increased the elasticity of the interaction by ~10%. However, the interaction between 

Fraser Early/Puget Sound Chinook terminal run (no Chum as covariate) and the fecundity 

of young and old reproductive females still displayed the largest elasticity (Figure 25) and 

therefore the largest influence on population growth under hypothesis 2b.  

 

 Although there is statistical support for Chum terminal run as a covariate in 

Chinook-RKW vital rates interactions, the translation of these interactions into effects on 

population growth became important only for SRKW under hypothesis 2a. However, 

hypotheses 2a and 2b have a weaker weight-of-evidence for causation than hypotheses 1a 

and 1b, respectively. Subsequent analyses focused on Chinook-only interactions due to 

the relatively small increase in the elasticity of the interaction under hypothesis 1a and the 

lack of a significant Chum stock covariate under hypothesis 1b. In addition, Chinook-only 

interactions with substantially greater influence on population growth rates occurred for 

NRKW under hypothesis 2b.  

 

 

3.4 RKW population viability under selected fishing scenarios 

 

Numerous scenarios could be explored to assess effects of changes to fishing mortality on 

SRKW population viability, but in light of the relatively small effects of Chinook salmon 

abundance on population growth (as determined from prospective and retrospective 

perturbation analyses), we focus on the exploration of fishing scenarios maximizing 

benefits to SRKW. Similar effects on population growth were identified for NRKW but 

given the clearly positive population growth rate of this population it is of interest to invert 

the focus of fishing scenarios. More specifically, interactions with the largest elasticities 

and contributions to population growth were selected to explore fishing scenarios with the 

potential to halt NRKW’s population growth. Six scenarios were selected for each RKW 

population, including: a status-quo scenario (i.e., no Chinook interactions; scenarios 1 and 

7) as reference, two scenarios relevant for hypothesis 1, two scenarios relevant for 

hypothesis 2, and one scenario to represent cumulative effects of Chinook abundance levels 

(i.e., 5-year running average). Scenarios 1-6 correspond to SRKW while scenarios 7-12 
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correspond to NRKW. The characteristics and targeted vital rates of these scenarios are 

shown in Table 5.  

 

Scenarios 2 and 3 in this table are characterized by no ocean fishing on Puget Sound 

Chinook salmon stocks and no ocean fishing on Fraser Early and Puget Sound Chinook, 

respectively, thus maximizing terminal runs of these stock aggregates. In these two 

scenarios the elimination of fishing mortality increased SRKW target vital rates but did not 

maximize them. Scenarios 4 and 5 are characterized by the maximization of target SRKW 

vital rates, which occurred after a 51% reduction in the ocean harvest rates of the five large 

stocks (WCVI, Columbia Upriver Brights, Fraser Late, Oregon Coastal, and Puget Sound) 

and a 36% reduction in coastwide (excluding SEAK) ocean harvest rates, respectively. 

Scenario 6 represents cumulative effects of changes in Chinook abundance and is 

characterized by 55.5% reductions in the ocean harvest rates of the five large stocks; these 

reductions maximized SRKW’s target vital rate.  Scenario 8 reduces NRKW population 

growth via the maximization of ocean harvest rates of Fraser Early Chinook; this scenario, 

however, did not halt population growth. Scenario 9 effectively halts NRKW population 

growth through reductions in NBC Chinook terminal run via 187% increases in ocean 

harvest rates on this stock. Scenario 10 reduces the terminal run of Fraser Early/Puget 

Sound aggregate via doubling of ocean harvest rates in this stock; this increment, however, 

did not halt NRKW population growth but maximized ocean harvest rates of some of the 

indicator stocks considered for this stock aggregate (see Appendix 4 for details on indicator 

stocks). Scenario 11 halts NRKW population growth through 66% increases in coastwide 

(excluding SEAK) ocean harvest rates. Lastly, Scenario 12 represents cumulative effects of 

changes in Chinook abundance and is characterized by maximization of ocean harvest rates 

of Fraser Early Chinook; this scenario, however, did not halt NRKW population growth. 

 

Given the large number of analyses and figures describing the PVA procedures for 

each scenario, we provide complete details of results for four of the 12 scenarios. Next, we 

describe the PVA results for the two reference scenarios (i.e., status quo) and the scenarios 

with the maximum effect on population growth and viability (without cumulative effect) 

for each of the RKW populations. Identical procedures were applied to the remaining 

scenarios and a complete summary of the viability metrics across all selected fishing 

scenarios is shown in Table 6, which will be further addressed in Section 3.4.5.  

 

 

3.4.1 Scenario 1: SRKW status-quo conditions 

 

Under status-quo conditions, SRKW’s expected population size in an IID environment was 

84 in 10 years, 78 in 20 years, 71 in 30 years, and 68 in 35 years (Figure 26), with 35 years 

as the damping time for SRKW. Only a small fraction of the realizations of population size 

exceeded the initial population size (N = 88) at 10 and 20 years but at 35 years all 
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realizations of population size were below 88 and some were as low as 55-60. In an IID 

environment, the probability of falling below 30 individuals remained effectively zero for 

about 80 years, after which the probability increased rapidly reaching 0.5 at about 130 

years (Figure 27). Accordingly, there was a zero probability of reaching 120 individuals in 

14 years (U.S. downlisting target). However, projections of population size under 

demographic stochasticity showed that the probability of falling below 30 individuals can 

be greater than zero before 80 years and as early as 55 years in the future (Figure 28), thus 

demonstrating the importance of incorporating demographic stochasticity in PVAs for a 

population with such small population size. The incorporation of both environmental and 

demographic stochasticity produced a probability trajectory where the probability of falling 

below 30 individuals is greater than zero at 10 years, 0.5 at 47 years and approximately 0.8 

at 100 years (Figure 29). When the time horizon is fixed, rather than fixing the population 

threshold (as in Figure 29), the interval extinction risk showing the probability of falling 

below a range of population thresholds (Figure 30) indicated an extinction risk of 49%  in 

100 years and an expected minimum abundance of 15 individuals during this timeframe. 

 

 

3.4.2 Scenario 4: SRKW with 51% reduction of ocean harvests rates on the five large 

         Chinook stocks (WCVI, FL, PS, URB, and OC) 

 

Under scenario 4, which produced the maximum benefits to SRKW population growth and 

viability, stochastic population growth indicated a 1.80% annual increase (λ = 1.01803). 

SRKW’s expected population size in an IID environment was 107 in 10 years, 128 in 20 

years, 152 in 30 years and 166 in 35 years (Figure 31). None of the realizations of 

population size were smaller than the initial population size (N = 88) at 20 years and some 

were as large as 200 at 30 years and 230 at 35 years. In an IID environment, the probability 

of falling below 30 individuals remained effectively zero for about seven years, after which 

the probability increased rapidly reaching 0.5 at about 16 years (Figure 32). These results 

also showed that the probability of reaching the U.S. downlisting recovery target (i.e., after 

14 years) was about 0.33. In spite of the positive population growth, projections of 

population size under demographic stochasticity can still produce large differences in 

population trajectories (Figure 33). The incorporation of both environmental and 

demographic stochasticity produced a probability trajectory where the probability of falling 

below 30 individuals is greater than zero at 10 years and approximately 0.27 after 100 

years (Figure 34). When the time horizon is fixed, rather than fixing the population 

threshold (as in Figure 34), the interval extinction risk showing the probability of falling 

below a range of population thresholds (Figure 35) indicated an extinction risk of 13% in 

100 years and an expected minimum abundance of 55 individuals during this timeframe. 
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3.4.3 Scenario 7: NRKW status-quo conditions 

 

Under status-quo conditions, NRKW’s expected population size in an IID environment was 

315 in 10 years, 370 in 20 years, 401 in 25 years, and 434 in 30 years (Figure 36) with 25 

years as the damping time for NRKW. However, projections for more than 25 years in the 

future seem impractical without knowing the carrying capacity. No realizations of 

population size were smaller than the initial population size (N = 268) at 10 years, and at 

25 years some realizations of population size were as high as 480 individuals. In an IID 

environment, the probability of falling below 250 individuals remained effectively zero 

even after 250 years (no figure shown). Projections of population size under demographic 

stochasticity showed steadily increasing trajectories and no trajectory falling below 250 

individuals (Figure 37). The incorporation of both environmental and demographic 

stochasticity produced a rapidly increasing probability trajectory where the probability of 

falling below 250 individuals was 0.5 at 30 years, and asymptotically increasing to 0.52 

after 100 years (Figure 38). This pattern is different to the example scenarios for SRKW 

mainly due to the clearly positive population growth exhibited by NRKW. When the time 

horizon is fixed, rather than fixing the population threshold (as in Figure 38), the interval 

extinction risk showing the probability of falling below a given population threshold 

(Figure 39) indicated an extinction risk of zero in 100 years and an expected minimum 

abundance of 238 individuals during this timeframe. 

 

 

3.4.4 Scenario 11: NRKW with 66% increase of coastwide Chinook ocean harvest rates  

 

Scenario 11 effectively halted NRKW’s population growth with a mean stochastic 

population growth at equilibrium λ = 1.000. NRKW’s expected population size in an IID 

environment was 285 in 10 years, 295 in 20 years, 299 in 25 years, and 301 in 30 years 

(Figure 40). Only a small fraction of the realizations of population size were lower than 

250 individuals at 10 and 20 years and some were as high as 370 individuals after 25 years. 

In an IID environment, the probability of falling below 250 individuals increased steadily 

after 3 years and probabilities greater than 0.45 were achieved after 100 years (Figure 41). 

Projections of population size under demographic stochasticity showed approximately 

equal numbers of increasing and declining trajectories and few of the declining trajectories 

showed less than 240 individuals after 25 years (Figure 42). The incorporation of both 

environmental and demographic stochasticity produced a probability trajectory where the 

probability of falling below 250 individuals was 0.5 at about eight years and 0.84 after 100 

years (Figure 43). When the time horizon is fixed, rather than fixing the population 

threshold (as in Figure 43), the interval extinction risk showing the probability of falling 

below a given population threshold (Figure 44) indicated an extinction risk of 1.7% in 100 

years and an expected minimum abundance of 162 individuals during this timeframe. 
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The increase in population size even after reducing vital rates to produce 

equilibrium is the result of population momentum. Population momentum is due to the 

departure of population structure from the stable stage distribution and it is characterized 

by time lags between a change in the vital rates and the actual observed impact on the 

population (Keyfitz 1971, Koons et al. 2005). The inertial effect of population momentum, 

which applies to demographic simulations bringing population growth to equilibrium (i.e., 

λ = 1), has proved to be especially important in the population dynamics of long-lived 

vertebrates (Koons et al. 2006). 

 

 

3.4.5 PVA summary 

 

Regarding hypothesis 1a, the maximization of terminal runs via the cessation of ocean 

fishing on Puget Sound Chinook salmon stocks (Scenario 2) or via the cessation of ocean 

fishing on the Fraser Early/Puget Sound aggregate (Scenario 3) produced marginal 

increases in SRKW’s population growth relative to status-quo conditions (Scenario 1). 

These increases were enough to create slightly positive population growth rates (+0.6%) 

and halved extinction probabilities in Scenario 2, but population growth remained slightly 

negative (-0.02%) in Scenario 3 (Table 6). These counterintuitive results showing greater 

increases to SRKW population growth rates and viability from the closing of ocean 

fisheries impacting Puget Sound stocks relative to the closing of those impacting both 

Fraser Early and Puget Sound stocks is simply a statistical artifice; the interaction with the 

fecundity of old reproductive females displayed greater regression coefficients and 

statistical significance for Puget Sound than for the Fraser Early/Puget Sound aggregate. 

Histograms of stochastic population growth produced by these two scenarios (Figure 45) 

show the large overlap between the frequency distributions and the 95% confidence 

intervals from these two scenarios. These conditions suggest that interpretations of these 

results require the consideration of other lines of evidence, such as that provided for diet-

composition studies that indicate that Fraser Early Chinook makes up a much larger portion 

of SRKW’s diet in the summer months than Puget Sound Chinook (Hanson et al. 2010). 

Thus, PVA analyses for Scenario 3 are ecologically more robust than those for Scenario 2. 

 

All scenarios selected to represent hypothesis 2a (scenarios 4, 5, and 6) produced 

positive population growth rates and substantially reduced extinction probabilities. This 

includes Scenario 6, which was selected to represent the effect of cumulative effects of 

Chinook abundance levels. This scenario, however, did not produce the largest increase in 

SRKW population growth and viability in spite of the scenario’s effects being based on the 

same stock aggregate as Scenario 4 (i.e., five large stocks WCVI/FL/PS/URB/OC). As 

described in Section 3.4.2, Scenario 4 maximized effects without cumulative effects and 

through the maximization of both the fecundity of young reproductive females and the 

survival of old reproductive females whereas Scenario 6 maximized only the fecundity of 
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young reproductive females. Since this latter interactions pertain to hypothesis 2a (weak 

causation weight-of-evidence), any inference is subject to the assumption that the Chinook 

ocean abundances of these five large stocks remain crucial in SRKW’ diet year-round.  

 

Regarding hypothesis 1b, pre-terminal harvesting of all Fraser Early Chinook 

(Scenario 8) was not enough to halt NRKW”s population growth rate (+0.14%) but it 

produced extinction probabilities slightly greater than zero, and substantially reduced 

expected minimum abundance relative to status-quo conditions (Scenario 7). An equivalent 

scenario, but including cumulative effects of Chinook abundance levels for this stock 

(Scenario 12), also failed to halt population growth. However, reductions in the terminal 

run of NBC Chinook resulting from almost a tripling of the ocean harvest rates on this 

stock (Scenario 9), effectively halted population growth. This large increase in ocean 

harvest rates was possible due to the low terminal-run-equivalent harvest rates (average of 

19% in the last three decades) on NBC’s indicator stock (see Section 2.3.3 and 

corresponding appendices).  

 

Regarding hypothesis 2b, reductions in the terminal run of the Fraser Early/Puget 

Sound aggregate resulting from doubling ocean harvest rates on this aggregate (Scenario 

10) did not halt population growth. Larger increases in ocean harvest rates were not 

possible since some of the indicator stocks for this aggregate reached 100% at this level. 

Decreasing the survival of young reproductive females via 66% increases of coastwide 

ocean harvest rates (Scenario 11) effectively halted population growth. Although the 

probability of falling below 250 individuals reached 0.84 and the expected minimum 

abundance felled to 162 individuals, the risk of extinction in 100 years remained less than 

2%. Nevertheless, any inference from scenarios 10 or 11 is subject to the assumption that 

the Chinook terminal run of the Fraser Early/Puget Sound aggregate or Chinook coastwide 

ocean abundance are critical in NRKW diet during the summer the former and year-round 

the latter.  

 

From the results of the demographic analyses in Section 3.1 it is evident that 

survival of young reproductive females has by far the largest relative influence in the 

population growth rates of SRKW and NRKW. But since the average survival of young 

reproductive females is high in both populations (0.985 for SRKW and 0.989 for NRKW), 

there is little room to increase population growth by improving this vital rate. Conversely, 

large reductions in population growth can be exerted from reductions to this vital rate. That 

is why the fishing scenarios involving interactions with the survival of young reproductive 

females had a greater potential to halt NRKW’s population growth than scenarios involving 

other vital rates (Table 6). Much greater is the room for improvement of fecundity rates 

(Figure 6), which explains fecundity’s potential to produce greater proportional increases in 

population growth (Figure 12) and the greater potential of fishing scenarios involving 

fecundity to improve SRKW’s population growth and viability (Table 6). 
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4. DISCUSSION  

 

This study has addressed some of the pressing questions that have recently engaged the 

efforts of scientists and managers interested in: (1) the factors limiting population growth 

of SRKW; (2) explanations for the marked differences between the observed population 

trajectories of SRKW and NRKW in spite of their large home range overlap; (3) the role of 

Chinook salmon (in light of the vast evidence about the importance of the species in the 

summer diets of both killer whale populations) on the population dynamics of RKW; and, 

(4) the potential benefits for RKW population viability expected from reductions in 

Chinook fishing mortality and changes in Chinook fishery regimes. A purely demographic 

study of questions 1 and 2 was possible thanks to the high standards and temporal coverage 

of census data collected for these two populations. Linking RKW’s demographic attributes 

to variations in the levels of Chinook abundance (question 3) necessarily required the 

simplification of ecological linkages and therefore overlooking many other factors 

(environmental and anthropogenic) potentially influencing RKW population dynamics. 

However, we acknowledge that model complexity is not directly proportional to model 

efficacy (Burnham and Anderson 2002). Addressing questions 3 and 4 was also possible 

due to the existence of indices of Chinook abundance representative of their pre-terminal 

and terminal phases for stocks originating in streams and rivers ranging from California to 

southeast Alaska. Although these indices do not necessarily represent the Chinook salmon 

available for killer whales, they represent the best available information to address these 

questions. Within these limitations, the exploration of how different fishing scenarios could 

influence RKW population viability (question 4) focused on the maximization of effects 

due to the relatively low sensitivity of RKW population growth rates to changes in Chinook 

fishing mortality uncovererd by some of our analyses. In addition, we have provided a 

hypothesis framework designed to assist with the interpretation of results as they pertain to 

linkages between RKW demographic rates and Chinook stock aggregates exhibiting 

different degrees of evidence based on from diet-composition studies. 

 

 Subsequently, we discuss the results of this investigation in light of these 

fundamental questions, including the relevance of Chum salmon as a covariate, and we also 

provide some perspective on the conditions involved in the evaluation of complex 

management scenarios and faced by pragmatic management. Since our exploration of 

fishing scenarios was necessarily limited to a small number of hypothetical situations, we 

have compiled all the analytical tools used in this investigation into a single programming 

platform using R software (R Development Core Team 2011) to facilitate future 

explorations and enable future revision and development of the themes making up the 

present study. Lastly, we provide some recommendations regarding future research and the 

need for caution to base management decisions on the outcome of the population viability 

analyses conducted herein. 

 



38 

 

4.1 Demographic differences between SRKW and NRKW  

 

There are four main demographic factors that explain SRKW’s lower demographic 

performance and viability relative to NRKW. In terms of vital rates, calf survival and the 

fecundity of old reproductive females during 1987-2011 have been on average significantly 

lower in SRKW than in NRKW (Figure 46). Calf survival rate in SRKW was effectively 

zero in 1988 and as low as 0.33 in 1999, 2006 and 2008, whereas the lowest calf survival in 

NRKW was 0.66 in 2000. In addition, there was no calf production in SRKW for the 1996-

1997 annual interval. Differences were not as apparent for the fecundity of old reproductive 

females, but it was generally higher for NRKW and there was a 5-year period, from 1997 

to 2001, when SRKW’s fecundity of old reproductive females was zero. A noticeable 

exception happened in 2005 when SRKW fecundity reached 0.31 in 2005, compared to 

only 0.13 in NRKW (Figure 46).  If the net value of differences in vital rates between the 

two killer whale populations is added annually in a sequential fashion, it becomes evident 

that the cumulative difference in calf survival stands out as the most important feature in 

favour of NRKW (Figure 47(top)). The only vital rate where the cumulative differences 

stand out in favour of SRKW is the survival of post-reproductive females (Figure 

47(bottom)). However, this vital rate does not contribute directly to population growth rate 

and therefore does not increase directly the demographic performance of SRKW relative to 

that of NRKW. Nonetheless, the presence of post-reproductive females seems to 

substantially increase the survival probabilities of their sons older than 30 (Foster et al. 

2012). 

 

A third factor contributing to the lower growth rate of SRKW relative to NRKW is 

SRKW’s lower proportion of juveniles transitioning into young reproductive females. 

Although the departures from a balanced sex ratio are small in both populations, they are 

significantly positive for NRKW (+5%) and negative (-5%) for SRKW, for a total 

difference of 10% in this vital rate in favour of NRKW. The proportion of females, φf, not 

only contributes to the stage-transition probabilities but also to fecundity rates (see Section 

2.2). Sex ratio has a significant effect on a population’s ability to increase from low 

numbers, and this ability is enhanced when females predominate and is depressed when 

males dominate (Caughley 1994). One of the advantages of our two-sex model is that the 

relative influence of the proportion of reproductive females on population growth can be 

quantified using elasticity analysis. Given our results, the proportion of females had 

elasticity values similar to those of calf survival (see Figure 11), and therefore these two 

demographic rates are expected to have similar influence on population growth rates.  

 

Lastly, a fourth demographic factor explaining the lower population viability of the 

SRKW population is its greater vital rate variances. Temporal variation in vital rates was 

noticeably greater in SRKW than in NRKW, except for the survival of post-reproductive 

females (Figure 7). The demographic viability of a population will be mainly determined 
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by its capacity to increase from low numbers and its ability to buffer both density-

dependent and environmentally-driven variability in its vital rates (Vélez-Espino and 

Koops 2012). Density-driven vital rate temporal variability can be linked to SRKW’s small 

population size. There is evidence that inter-annual variability in survival in some 

vertebrate taxa increases at low abundance in an inverse density-dependent fashion and that 

this relationship has important consequences for recovery and population persistence 

(Minto et al., 2008). Thus this greater variability in vital rates could be associated with 

demographic stochasticity, which is the temporal variation in population growth driven by 

chance variation in the actual fates of different individuals within a year. Its magnitude is 

inversely related to population size, it can create substantial variability at low population 

sizes, and it can also translate into greater extinction risk (Morris and Doak 2002). Our 

analyses clearly demonstrated that demographic stochasticity is already an important factor 

in SRKW (e.g., Figure 28), with a strong negative influence on projections of population 

size.  

 

The foregoing discussion identified those demographic factors deemed responsible 

for the lower performance of SRKW relative to that of NRKW. However, the factors 

underpinning differences in vital rates have not been identified and they could be genetic, 

environmental and/or anthropogenic. Among the genetic factors, inbreeding depression can 

occur. However, Ford et al. (2011) found no evidence of offspring produced by close 

relatives but found instead evidence of inbreeding avoidance in SRKW, which has been 

also observed in other killer whale populations (e.g., Barrett-Lennard 2000).  It is therefore 

possible that inbreeding avoidance in a small population such as SRKW can be a deterrent 

for reproductive opportunities and ultimately a limiting factor for pregnancy and fecundity 

rates. In addition to prey availability, which is the focus of this investigation, 

environmental/anthropogenic factors that have been associated with the poor status of 

SRKW include exposure to pollutants (particularly PCBs and PBDEs; Krahn et al. 2007) 

and disturbance from boat traffic (Lusseau et al. 2009, Williams et al. 2009). Unlike 

NRKW, SRKW resides in a more urbanized environment and therefore they are more 

exposed to boat disturbance and environmental contaminants (Krahn et al. 2002).  

 

Understanding the direct or indirect influence of oceanographic variables on RKW 

demographic rates remains a pressing challenge. Ward et al. (2009) found some evidence 

for sea surface temperature as an important covariate of fecundity when Chinook 

abundance affects annual fecundity rates. Interestingly, ocean conditions characterized by 

sea surface temperature following the timing of outmigration of smolts from freshwater to 

marine areas seem to have a significant effect on Chinook salmon survival (Sharma et al. 

2012). Exploratory analyses have also provided statistical support for spring wind stress 

anomaly (a proxy for upwelling) in the northeast Pacific as an environmental covariate of 

RKW’s vital rates and population abundance (Vélez-Espino et al. unpublished). Upwelling 

patterns are directly related to primary production (Bakun 1996) and therefore cumulative 
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or time-lagged patterns have the potential to directly influence Pacific salmon survival 

(Logerwell et al. 2003, Lawson et al. 2004) and consequently affect killer whale vital rates. 

 

Direct links between anthropogenic factors such as pollution and boat disturbance 

and RKW survival or fecundity are difficult to measure. However, there is an 

anthropogenic factor with direct and quantifiable links to RKW vital rates. The live 

captures for the aquaria trade caused a large reduction in population size and disruption of 

stage structure of both RKW populations, particularly SRKW. Olesiuk et al. (1990) 

estimated that 93% of the killer whales cropped between 1962 and 1977 were residents and 

that 76% of these were taken from SRKW.  In addition, this fishery was heavily biased 

towards juveniles and young males and produced major alterations in stage structure (see 

Appendix 2). Although the influence of this perturbation on population structure seems to 

have diminished by the early 1990’s, some of the early years in our study period would 

have been influenced by this anthropogenic factor. Low calving rates in SRKW during the 

years after cropping ended could be partly explained by a reduction in the number of 

mature males below a critical number for optimal productivity (Olesiuk et al. 1990). 

Currently, population proportions of mature males are similar for these two populations at 

22.7% (38.6% reproductive females) in SRKW and 21.1% (36.7% reproductive females) in 

NRKW. 

   

 An important question arises regarding the significant differences in calf survival 

and the fecundity of old reproductive females between SRKW and NRKW. Can these 

differences be explained by the levels of Chinook abundance available for each population? 

Only one significant interaction with calf survival was found, involving the cumulative 

effect of Fraser Late Chinook ocean abundance and this vital rate in NRKW. Conversely, 

numerous stock aggregates interacted with the fecundity of old reproductive females in 

both killer whale populations, with Fraser Early ocean abundance and Fraser Early/Puget 

Sound terminal run showing the largest  potential effects on NRKW’s population growth  

and Fraser Early/Puget Sound terminal run on SRKW. As shown in Figure 18 and 22, there 

are no signs of declining trends for the abundances of these stock aggregates nor there is 

evidence of ocean fishery impacts increasing in these stocks relative to their terminal runs 

(Figure 48). On the contrary, the relative magnitude of fishery impacts has declined in 

recent years for these stock aggregates as well as coastwide (Figure 48). Given this 

information, it is unlikely that differences in vital rates between NRKW and SRKW can be 

explained as the result of different interaction levels with common Chinook aggregates, the 

result of declining trends in Chinook abundance from relevant stocks, or to excessive levels 

of fishing mortality. The possibility of territoriality taking place between SRKW and 

NRKW and suppressing feeding rates of SRKW on common Chinook salmon resources 

based on NRKW’s higher abundance cannot be discounted. However, there is no evidence 

of territoriality in resident killer whales (Ford et al. 2000) or cetaceans in general (Mann et 

al. 2000).  
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4.2 Sensitivity of RKW population growth to Chinook and Chum salmon abundance 

 

4.2.1 Chinook salmon  

 

Although numerous interactions between Chinook abundance from specific stock 

aggregates and RKW’s survival and fecundity rates were found statistically significant, 

those involving fecundity rates were more common and showed greater influence on the 

population growth rates of these populations (as indicated by their elasticities). Most of the 

interactions for SRKW involved the fecundity of young reproductive females whereas for 

NRKW involved the fecundity of old reproductive females, followed by the survival of 

young reproductive females and juvenile survival. The sensitivity of RKW’s population 

growth rates to changes in Chinook abundance was small even for the interactions with the 

largest elasticities. The maximum expected change in population growth (based on mean 

stochastic elasticities), whether individual, additive or cumulative, resulting from a δ% 

change in the Chinook abundance of a given stock aggregate, never exceeded 0.048·δ in 

SRKW or 0.046·δ in NRKW. Based on the 95% upper confidence limits of stochastic 

elasticities, maximum expected changes in RKW’s population growth rates are unlikely to 

be greater than 0.1·δ. These relatively small effects led us to focus on fishing scenarios 

characterized by the maximization of effects. 

 

 In terms of hypotheses regarding RKW-Chinook salmon interactions, our analyses 

showed support for both, those hypotheses in which causation is supported  given the 

weight-of-evidence and those that require key assumptions. Interestingly, Fraser Early 

Chinook emerged as an important stock aggregate under the first group of hypotheses for 

the two killer whale populations, with Fraser Early terminal run being important for SRKW 

and Fraser Early ocean abundance for NRKW. Similarly, Puget Sound terminal run seemed 

important for SRKW and Puget Sound ocean abundance for NRKW under the hypotheses 

supporting causation. In addition, slightly behind the importance of Fraser Early and Puget 

Sound stocks aggregates, Fraser Late terminal run was also important for SRKW under the 

causation hypothesis. Regarding the second type of hypotheses, those that require the 

assumption that Chinook from specific stock aggregates remain important in the killer 

whale diet year-round and/or outside identified critical habitats (see Ford 2006), stock 

aggregates common to the two killer whale populations were also identified. Coastwide 

Chinook ocean abundance (excluding southeast Alaska) and Oregon Coastal ocean 

abundance were among the common stock aggregates with the largest potential influence 

on population growth rates of SRKW and NRKW. The five large stocks (WCVI, Fraser 

Late, Puget Sound, Columbia Upriver Brights, and Oregon Coastal) emerged as important 

for SRKW but not for NRKW, for which Fraser Early/Puget Sound terminal run had the 

largest influence. The sampling of feeding events by NRKW (Ford and Ellis 2006) 

indicates that Fraser Early Chinook returning to their terminal areas are intercepted in the 

summer months by NRKW in Johnstone Strait and are mostly comprised by South 
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Thompson Chinook. South Thompson Chinook is a summer-run stock that represents the 

most abundant component of the Fraser Early complex and about 20% of the Chinook 

stocks returning to rivers around the Salish Sea, and it has a high relative importance in the 

diet of resident killer whales in both Johnestone Strait and Juan de Fuca Strait (Parken et al. 

2011). Although Puget Sound Chinook is also intercepted by NRKW in Johnstone Strait 

during the summer, Puget Sound Chinook are frequently intercepted in Juan de Fuca Strait. 

Passive acoustic monitoring revealed that NRKW use the southern parts of their range 

more frequently than previously thought, and highlighted the importance of the southern 

entrance to the Salish Sea as a killer whale hotspot (Riera 2012). These observations 

indicate that NRKW’s summer range can be larger and including the critical area identified 

for SRKW (Ford 2006) and suggest that the large influence of Fraser Early/Puget Sound 

terminal run on NRKW’s population growth may not be spurious.   

 

Our results also supported the importance of cumulative effects of Chinook 

abundance levels on the population growth rates of both killer whale populations, thus 

highlighting the importance of considering the levels of nutritional stress or population 

response to Chinook abundance levels beyond discrete annual intervals. For SRKW, the 

largest cumulative effect was that involving the levels of ocean abundance of the five large 

stocks (WCVI, Fraser Late, Puget Sound, Columbia Upriver Brights, and Oregon Coastal) 

on the fecundity of young reproductive females (Figure 16) whereas for NRKW, the largest 

cumulative effect was that involving the levels of Fraser Early ocean abundance and the 

fecundity of old reproductive females (Figure 20). It is also interesting that some 

significant relationships between specific stock aggregates and RKW vital rates were 

detected only for cumulative effects. Examples of these were Columbia UpRiver Brights 

ocean abundance and survival of SRKW’s old reproductive females (Table 1), Upper 

Georgia Strait terminal run or Fraser Late ocean abundance and NRKW’s survival of 

young reproductive females (Table 2). In fact, 26 of the 66 significant regressions for 

NRKW corresponded to interactions under cumulative effects. Only five of the 25 

significant regressions for SRKW involved cumulative effects. There could be however 

some pragmatic limitations implementing management actions directed to produce changes 

in a cumulative index of Chinook abundance that encompasses a 5-year period (see Section 

4.3.4 for additional discussion).   

 

 

4.2.2 Chum salmon 

 

Among the various Chun stock aggregates included in the analyses, Northern/Central BC 

and Washington Summer/Fall/Winter were the only ones identified as relevant covariates 

in significant Chinook-vital rate relationships. Chum salmon from the Northern/Central BC 

terminal run increased the Chinook effects for both SRKW and NRKW while increasing 

the overall fit of the regression models. These are important results that point to the need 
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for additional efforts to quantify the importance of Chum salmon on RKW’s diet and to 

identify the contributions of different Chinook and Chum salmon stocks to RKW’s diet 

during the fall and year-round.  

 

Two aspects of Chum salmon as a covariate deserve further discussion. First, the 

inclusion of Northern/Central BC Chum terminal run substantially increased (~61%) the 

relative influence of ocean abundance of the five large stocks (WCVI, Fraser Late, Puget 

Sound, Columbia Upriver Brights, and Oregon Coastal) on SRKW’s population growth 

rate (Table 4). However, this Chum stock aggregate includes terminal runs of Chum 

salmon ranging from the border to southeast Alaska to the south end of Johnstone Strait, 

including Haida Gwaii, and therefore overlaps only slightly with the distribution range 

exhibited by SRKW (see Ford 2006). Nevertheless, unlike the ocean abundance of the five 

large Chinook stocks, the aggregated terminal runs of Northern/Central BC Chum show a 

declining abundance trend (Figure 23) and therefore could be affecting  prey availability 

for RKW, particularly for NRKW. 

 

 Second, the inclusion of Washington Summer/Fall/Winter Chum terminal run 

increased the relative influence of the Fraser Early/Puget Sound/Fraser Late Chinook 

terminal run on NRKW’s population growth by approximately 10% (Table 4). This result 

reiterates the potential importance of salmon (Chinook and Chum) stocks bound to the 

Fraser and Puget Sound terminal areas for NRKW’s fecundity and population performance. 

As discussed in the previous section, Fraser Early/Puget Sound terminal run exhibited the 

largest relative influence on NRKW’s population growth under the weak hypothesis 2b 

(see Figure 20). 

 

 In spite of these aspects of Chum salmon as a covariate deserving attention, and 

although there is statistical support for Chum terminal run as a covariate in Chinook-RKW 

vital rates interactions, only the inclusion of Northern/Central BC Chum terminal run as a 

covariate in the interaction between the terminal run of Fraser Late Chinook and SRKW’s 

fecundity of young females was framed by an hypothesis with support for causation 

(hypothesis 1a). In fact, the inclusion of Chum salmon as a covariate increased the relative 

influence of this interaction on SRKW’s population growth by approximately 17% (Table 

4). However, although Fraser Late Chinook terminal run had a larger contribution to the 

variation in observed population growth than either Puget Sound or Fraser Early Chinook 

terminal run (Figure 17), the interaction between Northern/Central BC Chum terminal run 

and SRKW’s vital rates may be spurious.  
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4.3 Sensitivity of RKW population viability to Chinook fishing mortality 

 

4.3.1 The purpose of PVAs  

 

It has been a common occurrence that the results of PVAs are misinterpreted and seen as 

forecasting exercises. PVAs use stochastic models with fluctuating population size and 

varying demographic parameters to project population size and the probability of 

population persistence (or recovery or extinction) for a defined period under specific 

conditions (Marmontel et al. 1996). It is easy to overlook the last three words of this 

definition. It is not the purpose of a PVA to make predictions of future population state 

since there will always be unforeseen sources of uncertainty. PVAs are projections, 

conditional on a population model, enabling the exploration of population responses to 

perturbations assuming that the population is governed by specific processes operating in 

defined ways. And assuming these processes apply to the future, a PVA generates risks of 

extinction or projections of population size. Thus, PVA forms the basis for explorations of 

a given system (e.g., RKW-Chinook interactions) and allows projections of population 

response to management perturbations where knowing exactly and precisely a population’s 

long-term growth rate or abundance is of lesser importance than obtaining a simpler, 

qualitative assessment of whether the population will tend to grow or decline (Morris and 

Doak 2002). Yet, PVA remains one of the most powerful analytical tools to prioritize 

conservation and management actions and facilitate decision making (Ralls et al. 2002). 

PVA provides a robust assessment of the relative efficacy of two or more management 

strategies and allows explorations of relative differences between simulation scenarios. 

 

The foregoing paragraph sets the stage for an appropriate interpretation of the PVA 

results in this investigation. Now it is clear that the aim of the PVAs herein is not to 

provide perfect forecasts but to allow comparisons of scenarios under a number of 

assumptions such like “the relative importance of Chinook salmon abundance and other 

(unknown) factors have on vital rates will remain the same in the future” or “the observed 

range of variation and covariation in RKW’s vital rates will remain the same (e.g., under an 

IID environment)”. Within the context of fundamental question 4 regarding RKW 

population response to changes in Chinook fishing mortality, attention should be placed on 

the relative differences in population projections under the different selected scenarios 

rather than expecting absolute measures of population size and viability. Some of the 

factors not included in our PVA that have the potential to increase extinction probabilities 

and reduce projected population sizes could include indices of climate change, 

catastrophes, and loss of fitness due to genetic stochasticity (Lande 2002). Other factors 

that not only reflect the complexity of trophic interactions but also may yield less 

optimistic less optimistic population projections include the interactions between Chinook 

salmon and growing populations of other salmon eaters such as harbour seals and sea lions 

(e.g., Preikshot and Perry 2012). Factors moving the balance on the optimistic side, such as 
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the inclusion in our PVA of declining trends in ocean harvest rates, could have been 

incorporated for illustration purposes only. However, there is no reason to assume Chinook 

ocean harvest rates are going to continue declining given current management regimes 

under the Pacific Salmon Treaty and given the currently low ocean harvest rates (~20% 

coastwide). The PVA conducted herein therefore should be considered as a work in 

progress, but also considering that as model complexity increases by including additional 

processes, the increased difficulty of obtaining precise parameter estimates might quickly 

come to outweigh any perceived advantage of enhanced biological realism (Ludwig and 

Walters 1985, Burnham and Anderson 2002). 

 

 

4.3.2 RKW population response to changes in Chinook fishing mortality 

 

Due to the low sensitivity of RKW’s population growth rates to changes in the Chinook 

abundance of multiple stock aggregates, including a coastwide aggregate and stock 

aggregates with little or no support for causation, our exploration of fishing scenarios 

focused on either the maximization of Chinook abundance or the maximization of vital 

rates for SRKW, whatever occurred first. Given the clearly positive population growth in 

NRKW, population responses focused on either halting population growth or maximizing 

fishing mortality, whatever occurred first. The selection of scenarios for SRKW stems from 

the implicit need to recovery for this population in terms of population size and population 

growth. The selection of scenarios for NRKW did not respond to a management objective 

per se but to our research objective of evaluating this population’s response to changes in 

Chinook fishing mortality and gaining insights into the potential effects of large increases 

in harvest rates.      

 

 Among the hypotheses we  explored, the one involving SRKW and Chinook stocks 

evoking greater weight-of-evidence for causation (i.e., hypothesis 1a) is without doubt the 

most important in terms of scientific evidence guiding management decisions. SRKW’s 

small population size and low probabilities of positive population growth under status quo 

conditions (see Figure 9) is in greater need than NRKW of management actions directed to 

increase this population’s viability. In addition, interactions under hypothesis 1a involve 

Chinook stocks that are overwhelmingly prevalent in the summer diets of SRKW (Hanson 

et al. 2012), thus supporting for causation.  The fishing scenarios selected to represent 

hypothesis 1a essentially imply zero fishing mortality in pre-terminal areas (i.e., closing of 

ocean fisheries) for Fraser Early and Puget Sound Chinook stocks (Table 5). Scenario 3, 

which was more consistent with the contribution of Fraser Early to SRKW’s summer diet 

(see Section 3.4.5), basically produces a central tendency to equilibrium (λ ≈ 1.0; Figure 

45). This slight increase in stochastic population growth rate represents however an 

improvement to status quo conditions, which produce a population growth that is expected 

to be slightly negative more than 70% of the time (Figure 9).  
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 Much greater increases in SRKW’s population growth are produced by scenarios 

framed by the weak hypothesis 2a (Table 6). These scenarios produce similar and strongly 

positive annual population growth rates (~1.8%) that are below the U.S. recovery target of 

2.3%. But in spite of the great potential these scenarios hold to produce substantial positive 

improvement to status quo conditions, these scenarios do not represent interactions that 

have the support of other sources of evidence (such as diet-composition studies) and 

require the assumption that Chinook stock aggregates involved in those interactions are as 

important in the diet of SRKW year-round as Fraser Early and Puget Sound are in the 

summer or Fraser Late in the summer-fall transition. The two relevant stock aggregates for 

this hypothesis are not independent since the ocean abundance of the five large stocks 

(WCVI, Fraser Late, Puget Sound, Columbia Upriver Brights, and Oregon Coastal) is 

nested within the coastwide aggregate. The corresponding reductions in ocean harvest rates 

required to maximize the same vital rates (Table 5) are consistent with this nesting 

condition, with 51% reductions for the five large stocks and 36% for the coastwide 

aggregate. 

 

The main benefits of exploring fishing scenarios halting NRKW’s population 

growth or maximizing ocean harvest rates have been demonstrating that the population 

dynamics of NRKW are as sensitive as those of SRKW to changes in Chinook abundance 

and fishing mortality and showing that there are feasible levels of fishing mortality that can 

exert large reductions in population growth and even halt the positive trend NRKW have 

exhibited for the last decades. The fact that a 66% increase in coastwide ocean harvest rates 

has the potential to halt population growth (Table 5) also means that larger increases in 

harvest rates could actually exert declining condition; that is, if key assumptions of weak 

hypothesis 2b are validated.   

 

Although presently causation cannot be invoked for the weak hypotheses 2a and 2b, 

and therefore scientific advice for management decisions cannot be provided on this basis,  

the results of the PVAs involving these hypotheses have generated a host of new 

hypotheses that  go from the importance of Chinook ocean abundance from the Fraser Late 

aggregate or Oregon Coastal aggregate on the year-round diet of SRKW to the significance 

of the Chinook terminal run of the Fraser Early/Puget Sound aggregate on NRKW’s 

summer diet to the relevance of cumulative effects of Chinook abundance levels on RKW’s 

vital rates. The main drawbacks of these so called weak hypotheses occur on statistical and 

ecological grounds. On statistical grounds, it is possible that some of the interactions are 

spurious (Tables 1 and 2) and not necessarily representative of predator-prey dynamics. On 

ecological grounds, there is the possibility of RKW switching to non-salmon prey in 

months when feeding events have been poorly sampled (late fall, winter, and early spring). 

Several decades of RKW studies show however that these populations are not generalist 

predators and raise the possibility that their hunting specialization and prey selectivity can 

constrain their ability to switch prey in response to scarcity of their preferred prey or to the 
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relative abundances of other prey (Ford and Ellis 2006, Ford et al. 2010a, Hanson et al. 

2010, Williams et al. 2011). Data from the limited number of predation events sampled 

during winter and spring seems to confirm this prey specialization and selectivity and 

suggest a prevalence of Chinook salmon in the year-round diet of RKW (Ford 2012). 

 

 

4.3.3 Complex fishing scenarios 

 

The responses of RKW population dynamics to changes in fishing mortality explored in 

this investigation have been based on fishing scenarios isolating the interactions between 

individual Chinook stock aggregates and one or more vital rates (e.g., the interaction 

between coastwide ocean abundance and SRKW’s fecundity of young reproductive 

females and the survival of old reproductive females). Nonetheless, there is the potential to 

explore fishing scenarios of increasing complexity involving more than one Chinook stock 

aggregate. The motivation behind these complex scenarios can be for instance to produce a 

population response that improves SRKW’s population viability relative to the responses 

produced by individual stock aggregates.  However, five conditions have to be met in order 

to proceed with this kind of analysis. First, the two or more stock aggregates involved 

cannot be nested because their abundances would not be independent (e.g., there cannot be 

a complex scenario involving the coastwide aggregate because it encompasses all other 

stock aggregates). Second, the interactions must occur with different vital rates because the 

interactions of one vital rate with several stock aggregates are not independent, otherwise 

huge and unrealistic population responses could be produced by adding the individual 

effects of all interactions with a given vital rate. Third, a complex scenario cannot combine 

interactions representative of different hypotheses because they do not have the same 

weight-of-evidence. Fourth, cumulative and non-cumulative effects cannot be combined in 

a complex scenario because they represent different time intervals. Lastly, complex 

scenarios cannot combine stock aggregates involving different abundance types (e.g., 

terminal run or ocean abundance) because they represent different abundance units (see 

Section 2.3.3).  

 

Complex scenarios were not investigated because they were not anticipated in the 

first stages of this project, because only a few cases can be currently identified (as expected 

from the number of conditions that have to be met), and because they are computationally 

demanding. We can still produce approximations of RKW’s population responses based on 

the elasticity values of interactions involved in a given complex scenario. This is possible 

because elasticities are additive and because there are defined relationships between the 

elasticities of interactions and all PVA metrics resulting from a specified proportional 

change in Chinook abundance (i.e., PVA metrics and elasticities of interactions are strongly 

correlated for a given perturbation; see also Caswell 2001).  
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Perhaps, the identification of complex scenarios makes more sense for the causation 

hypotheses than for the weak hypotheses. The additional complexity may not be warranted 

when key assumptions still need to be addressed for the weak hypotheses. There is only 

one complex scenario for SRKW that meets all of the abovementioned criteria under 

hypothesis 1a (Table 1). This scenario involves two interactions: Fraser Late terminal run 

and the fecundity of young reproductive females, and Puget Sound terminal and the 

fecundity of old reproductive females. Their added elasticity (ε = 0.043) indicates that 

SRKW’s population responses resulting from a small δ% change in the Chinook abundance 

of these stock aggregates are expected to be about twice as large as those of the interaction 

between Fraser Early/Puget Sound terminal run and the fecundity of old reproductive 

females (ε = 0.022). 

  

For NRKW, there are few combinations of stock aggregates that meet all of the 

abovementioned criteria under hypothesis 1b (Table 2), some of which involve terminal run 

and some involving ocean abundance.  The complex scenario with the greatest added 

elasticities for terminal run includes two interactions:  Northern BC and the survival of 

young reproductive females, and Lower Georgia Strait and the fecundity of old 

reproductive females. Their added elasticity (ε = 0.028) indicates that NRKW’s population 

responses resulting from a small δ% change in the Chinook abundance of these stock 

aggregates are expected to be about twice as large as those of the interaction between 

Northern BC terminal run and the survival of old reproductive females (ε = 0.013). In terms 

of ocean abundance, the complex scenario with the greatest added elasticity includes also 

two interactions: Fraser Early and the fecundity of old reproductive females, and Puget 

Sound and juvenile survival. Their added elasticity (ε = 0.045) is almost as high as that of 

the interaction involving Fraser Early ocean abundance under cumulative effects (see 

Figure 20). 

 

Notice that relationships between elasticity and PVA metrics are not necessarily 

linear (Vélez-Espino and Araujo, unpublished). Greater departures from linearity can be 

expected from greater magnitudes of δ% (see Mills et al. 1999, de Kroon et al. 2000, 

Vélez-Espino 2005). Hence, the main limitation of inferring RKW’s population responses 

to complex scenarios from the added elasticities is that proportional changes in Chinook 

abundance (δ%) necessary to produce tangible changes in population growth and viability 

are rather large (due to the low sensitivity of RKW’s population growth to changes in 

Chinook abundance). The magnitude of those changes in our selected scenarios are as large 

as those resulting from the closing of fisheries for SRKW’s recovery objective or 

increasing harvest rates more than 100% for NRKW’s equilibrium objective (see Table 5). 

Thus, assuming linearity between elasticities and PVA metrics poses a critical difficulty to 

the use of this information quantify large perturbations and potentially guide management 

decisions. The full development of direct perturbations and computer simulations is 
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therefore deemed as necessary for the exploration of large changes in Chinook abundance 

derived from complex scenarios (see Section 4.3.5).  

 

 

4.3.4 Pragmatic management  

 

Some analytical components of this investigation have focused on the sensitivity of RKW 

population viability to Chinook fishing mortality transpiring from interactions between 

Chinook stock aggregates and RKW’s vital rates. The nature of these interactions has been 

defined by their weight-of-evidence and the probabilities of RKW encountering and 

preying on specific Chinook stocks (Box 1). However, there is a large leap between the 

identification of relevant interactions - and the characteristics of selected fishing scenarios - 

and the feasibility or practicality of directing management actions towards those Chinook 

stock aggregates identified as relevant. We are referring to the difficulty of exerting harvest 

rate adjustments to specific Chinook stock aggregates in mixed-stock fisheries. Given the 

highly migratory nature of Chinook salmon, ocean fisheries harvest Chinook from stocks 

originating in streams and rivers far away from the area where fisheries are taking place 

and inescapably intercept Chinook salmon from different jurisdictions (Shepard and Argue 

2005). These mixed-stock fisheries are regulated by the Pacific Salmon Treaty and their 

catch composition is monitored and reported annually by the CTC (PSC 2011a). Although 

genetic data have been used to gain insight into population-specific migration timing (e.g., 

Parken et al. 2008) and in-season management of Chinook salmon (e.g., Winther and 

Beacham 2009), the current Chinook management framework under the PST has not fully 

incorporated genetic data to assist management strategies for mixed-stock Chinook 

fisheries.   

 

 It is therefore important to notice that management actions implemented to increase 

SRKW’s population viability under current Chinook fishery regimes and targeting harvest 

rate changes for a specific stock aggregate are going to inexorably affect other stocks. 

Pragmatic management actions could be conservative and embrace this situation, make 

additional use of in-season genetic data or alternatively implement management actions 

directed to the coastwide aggregate. Assuming weak hypotheses are validated by future 

studies, the ocean abundance of the coastwide aggregate (excluding southeast Alaska) is 

one of the stock aggregates with the largest potential influence on SRKW’s population 

growth and it was also identified as important for NRKW. Scenario 5 (Table 5) showed 

that if causation is assumed, a 36% reduction in coastwide harvest rates is expected to 

maximize SRKW’s vital rates involved in the interaction and produce a clearly positive 

population growth rate.  

 

 Our analysis of interactions showed support for the importance of cumulative 

effects of Chinook abundance levels on RKW’s vital rates and ultimately on RKW’s 
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population growth and viability. Large, long-lived species (e.g., RKW) are expected to 

suffer less severe fluctuations in population size than smaller short-lived organisms (Pimm 

1991) mainly due to their greater compensatory reserves (e.g., Vélez-Espino and Koops 

2012) and their capacity to offset density-dependent variations in mortality (Rose et al. 

2001) and population growth (Pianka 1970, Reznick et al. 2002). It is therefore biologically 

plausible that changes in RKW’s vital rates associated to levels of food availability and 

nutritional stress become more tangible for indices of Chinook abundance representing 

time intervals encompassing several years. Multiyear cumulative effects are expected to 

have a greater potential than annual effects to subdue compensatory reserves and offset 

buffer mechanisms in RKW. The problem with management strategies based on 5-year 

cumulative effects on vital rates is that annual effects and RKW stage transition 

probabilities can be confounded and monitoring the impact of these strategies on RKW’s 

population dynamics can be no longer tractable. It seems more pragmatic to base 

management decisions on non-cumulative basis understanding that continuous, 

uninterrupted implementation of a given strategy will eventually translate into cumulative 

effects. 

 

 

4.3.5 An R tool for exploration of fishing scenarios 

 

The present investigation was originally envisioned as phase-1 of a two-phase project 

contingent on second-phase funding from a CDFO-PSC Collaborative Agreement. The 

main goals of phase-1 were (1) the development of information to understand the role 

Chinook abundance and fishing mortality have on RKW population dynamics, and (2) the 

production of code in R software (R Development Core Team 2011) for the exploration of 

Chinook fishing scenarios on killer whale population viability. The modelling components 

of most analyses conducted and detailed in this report have been compiled into a single R-

code available in Appendix 8. And as specified in the Collaborative Agreement, the R-code 

provided also produces the input files required for the Monte Carlo simulations in RAMAS 

that produce some of the viability metrics explored herein. The second phase was identified 

as an opportunity to refine analyses through additional efforts such as the incorporation of 

other covariates, automatic linking of the R-code with RAMAS, and most importantly the 

development of a user-friendly stand-alone application (R-Gui) allowing users to conduct 

real-time evaluations of scenarios of interest (including complex scenarios) and alternative 

biological hypotheses regarding RKW demography and linkages between prey abundance 

and RKW population parameters and viability.  
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4.4 Conclusions 

 

• Based on their demographic rates during the last killer whale generation (25 y), 

expected population growth is 0.91% annual decline (λstochastic = 0.9909; 95% CI: 

0.9719-1.0081) for SRKW and 1.58% annual increase (λstochastic = 1.0158; 95% CI: 

1.0027-1.0285) for NRKW.  The PVA results indicate that if the observed range of 

variation and covariation in its vital rates persists and mean vital rate values remain 

unchanged (i.e., status quo conditions), SRKW’s extinction risk in 100 years is 

~50%. 

 

• In demographic terms, SRKW’s lower expected population growth is mainly due to 

this population’s lower production and survival of viable calves. In addition, greater 

variation in vital rates and a strong influence of demographic stochasticity on future 

population dynamics, both associated to a small population size, contribute to 

SRKW’s lower population viability. 

 

• Based on the information used and produced in this study, we found no evidence 

that differences in demographic rates between killer whale populations are due to 

differential levels of access to common Chinook resources, to declines in Chinook 

abundance, or to increases in fishing mortality of relevant stocks.  

• Numerous interactions between Chinook abundance aggregates and RKW vital 

rates were found. Although we found no evidence that current levels of Chinook 

abundance are limiting SRKW’s population growth, the numerous significant 

relationships between Chinook abundance and the vital rates of both SRKW and 

NRKW are deemed as indication of clear predator-prey dynamics. However, other 

factors (genetic, environmental and/or anthropogenic) must be limiting SRKW’s 

population growth and possibly masking and confounding the detection of stronger 

interactions between killer whale vital rates and Chinook abundance. 

 

• Although interactions were weak on both statistical and demographic grounds, 

some lent support for causation given the weight-of-evidence regarding the 

importance of specific Chinook stocks in RKW’s diet. Chiefly, Fraser River and 

Puget Sound Chinook emerged as important stock aggregates under hypotheses 

supporting causation for the two killer whale populations. Fraser Early terminal run 

was important for SRKW and Fraser Early ocean abundance for NRKW. Similarly, 

Puget Sound terminal run seemed important for SRKW while Puget Sound ocean 

abundance for NRKW. In addition, slightly behind the importance of Fraser Early 

and Puget Sound stocks aggregates, Fraser Late terminal run was also important for 

SRKW under an hypothesis supporting causation. The size of Chinook terminal 

runs from the Fraser River and Puget Sound stock aggregates exhibited a low 



52 

 

interaction with SRKW’s fecundity. Nevertheless, PVA results showed that these 

low interaction levels could still produce slightly positive population growth rates 

approximately 50% of the time under extreme reductions to fishing mortality such 

as those resulting from the closure of ocean fisheries targeting these stocks. In the 

case of NRKW, it was the ocean abundance of the Fraser Early aggregate that 

interacted with this population’s fecundity and showed some potential to influence 

its expected population growth. 

 

• Although the importance of Fraser River and Puget Sound Chinook salmon stocks 

to influence RKW’s population dynamics is supported by this study, it remains a 

challenge exerting adjustments to ocean harvest rates of specific Chinook stock 

aggregates in mixed-stock fisheries. If new studies confirm the prevalent and 

critical importance (as resulting from RKW’s limitation to switch to other prey 

during winter and spring or when Chinook density is low) of Chinook salmon in 

killer whale’s year-round diet, pragmatic management could consider adjustments 

to coastwide Chinook ocean abundance. This combination of stock aggregate and 

abundance type was among the Chinook covariates with the largest influence on 

population growth rates of both killer whale populations.  

 

• Our analyses showed some support for Chum salmon as a covariate for RKW vital 

rates and unlike relevant Chinook salmon aggregates, the declining trend in Chum 

salmon terminal run from the Northern/Central BC aggregate could be affecting 

prey availability for NRKW. 

 

4.5 Recommendations 

 

• Future research efforts are needed to identify the causes of depressed production 

and survival of viable calves in SRKW. 

 

• The continuance of studies of killer whale diet composition in fall, winter, and 

spring is deemed as essential to substantiate relevant interactions uncovered under 

the weak hypotheses. This information is critical to move away from potentially 

spurious correlations and it is required to support causation. 

 

• The influence of cumulative effects of Chinook abundance levels on RKW’s vital 

rates was evident in this study. It seems important to develop alternative methods to 

quantify these effects while enabling the monitoring and tracking of benefits to 

RKW exerted by potential management actions. 
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• The U.S. downlisting recovery target of 2.3% annual growth rate for 14 years for 

SRKW seems biologically unfeasible. A pragmatic population growth-based 

recovery target for SRKW should not exceed the expected population growth for 

NRKW of 1.0158 (1.58% annual increase).  

 

• Although this investigation stands alone as a research contribution, a second phase 

as envisioned in the original project proposal to the PSC Southern Boundary 

Restoration and Enhancement Fund, could address not only technical aspects such 

as automatic links between the R-code and other relevant software such as RAMAS 

and the development of a user-friendly R-interface but also the investigation of 

additional hypotheses generated by this study regarding linkages between Chinook 

(and Chum) salmon stocks and RKW’s population viability. Other aspects 

deserving attention could include additional consideration to potentially important 

environmental covariates as well as cumulative effects of prey abundance levels and 

the exploration of complex management scenarios. 
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TABLES  

 

Table 1. Summary of positive significant interactions (beta-regression models with p < 

0.05) between SRKW vital rates directly contributing to population growth and Chinook 

abundance. Interactions are grouped by abundance type, time lag (5YA: 5-year running 

average), and hypothesis. 

 
Vital Rate Stock or stock aggregate Abundance Type Lag Pseudo-R2 P-value Hypothesis

Fecundity (Female 2) Fraser Early + Puget Sound Terminal Run 1 0.086 0.0259 1a

Fecundity (Female 2) Fraser Early + Puget Sound Terminal Run 2 0.075 0.0275 1a

Fecundity (Female 1) Fraser Late Terminal Run 2 0.073 0.0327 1a

Fecundity (Female 2) Puget Sound Terminal Run 2 0.164 0.0076 1a

Survival (Female 2) Columbia Spring/Summer Terminal run 1 0.319 0.0130 2a

Fecundity (Female 2) Columbia Spring/Summer Terminal run 1 0.140 0.0110 2a

Fecundity (Female 2) Columbia Spring/Summer Terminal run 5YA 0.179 0.0300 2a

Fecundity (Female 1) West Coast Vancouver Island Terminal run 1 0.086 0.0177 2a

Fecundity (Female 1) West Coast Vancouver Island Terminal run 2 0.097 0.0220 2a

Survival (Female 2) WCVI+URB+FL+OC+PS Ocean Abundance 0 0.446 0.0027 2a

Fecundity (Female 1) WCVI+URB+FL+OC+PS Ocean Abundance 1 0.154 0.0059 2a

Fecundity (Female 1) WCVI+URB+FL+OC+PS Ocean Abundance 2 0.155 0.0029 2a

Fecundity (Female 1) WCVI+URB+FL+OC+PS Ocean Abundance 5YA 0.084 0.0114 2a

Survival (Female 2) Coastwide (excluding SEAK) Ocean Abundance 0 0.488 0.0028 2a

Fecundity (Female 1) Coastwide (excluding SEAK) Ocean Abundance 2 0.119 0.0194 2a

Fecundity (Female 1) Coastwide (excluding SEAK) Ocean Abundance 5YA 0.060 0.0365 2a

Fecundity (Female 1) Fraser Late Ocean Abundance 1 0.092 0.0246 2a

Fecundity (Female 1) Fraser Late Ocean Abundance 2 0.117 0.0156 2a

Fecundity (Female 1) Fraser Late Ocean Abundance 5YA 0.116 0.0196 2a

Survival (Female 2) Oregon Coastal Ocean Abundance 0 0.353 0.0322 2a

Fecundity (Female 1) Oregon Coastal Ocean Abundance 1 0.082 0.0349 2a

Fecundity (Female 1) Oregon Coastal Ocean Abundance 2 0.055 0.0395 2a

Fecundity (Female 1) West Coast Vancouver Island Ocean Abundance 1 0.098 0.0162 2a

Fecundity (Female 1) West Coast Vancouver Island Ocean Abundance 2 0.100 0.0105 2a

Survival (Female 2) Columbia UpRiver Brights Ocean Abundance 5YA 0.262 0.0415 2a  
 
WCVI: West Coast Vancouver Island; URB: Colombia UpRiver Brights; FL: Fraser Late; OC: Oregon Coastal; PS: Puget Sound  
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Table 2. Summary of positive significant interactions (beta-regression models with p < 

0.05) between NRKW vital rates directly contributing to population growth and Chinook 

abundance. Interactions are grouped by abundance type, time lag (5YA: 5-year running 

average), and hypothesis. 
Vital Rate Stock or stock aggregate Abundance Type Lag Pseudo-R2 P-value Hypothesis

Survival (Female 1) Northern British Columbia (Areas 1-5) Terminal Run 1 0.335 0.0016 1b

Survival (Female 1) Upper Georgia Strait Terminal Run 5YA 0.225 0.0028 1b

Fecundity (Female 2) Lower Georgia Strait Terminal Run 2 0.096 0.0072 1b

Fecundity (Female 2) Lower Georgia Strait Terminal Run 5YA 0.109 0.0062 1b

Survival (Female 1) West Coast Vancouver Island Terminal Run 0 0.156 0.0205 1b

Fecundity (Female 2) Fraser Early Ocean Abundance 5YA 0.142 0.0020 1b

Survival (Juvenile) Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 0 0.248 0.0138 1b

Survival (Juvenile) Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 1 0.177 0.0400 1b

Survival (Juvenile) Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 5YA 0.179 0.0137 1b

Fecundity (Female 2) Fraser Early Ocean Abundance 0 0.096 0.0164 1b

Fecundity (Female 2) Fraser Early Ocean Abundance 1 0.108 0.0053 1b

Fecundity (Female 2) Fraser Early Ocean Abundance 2 0.078 0.0064 1b

Survival (Juvenile) Puget Sound Ocean Abundance 0 0.176 0.0165 1b

Survival (Juvenile) Puget Sound Ocean Abundance 1 0.265 0.0031 1b

Survival (Juvenile) Puget Sound Ocean Abundance 5YA 0.197 0.0214 1b

Survival (Juvenile) Columbia UpRiver Brights Ocean Abundance 0 0.215 0.0390 1b

Survival (Juvenile) Columbia UpRiver Brights Ocean Abundance 5YA 0.139 0.0238 1b

Fecundity (Female 2) Fraser Early+Puget Sound+Fraser Late Terminal Run 0 0.136 0.0068 2b

Fecundity (Female 2) Fraser Early+Puget Sound+Fraser Late Terminal Run 1 0.097 0.0012 2b

Survival (Female 2) Fraser Early+Puget Sound+Fraser Late Terminal Run 5YA 0.177 0.0434 2b

Fecundity (Female 2) Fraser Early+Puget Sound+Fraser Late Terminal Run 5YA 0.081 0.0095 2b

Survival (Female 2) FE+PS+FL+COLf+COLs+OC Terminal Run 5YA 0.109 0.0452 2b

Fecundity (Female 1) FE+PS+FL+COLf+COLs+OC Terminal Run 5YA 0.146 0.0325 2b

Fecundity (Female 1) Coastwide (excluding Sacramento Fall and Klamath Fall) Terminal Run 5YA 0.143 0.0318 2b

Survival (Juvenile) Columbia Fall (UpRiver Brights+ Tule) Terminal Run 0 0.234 0.0173 2b

Survival (Juvenile) Columbia Fall (UpRiver Brights+ Tule) Terminal Run 5YA 0.113 0.0265 2b

Fecundity (Female 1) Columbia Fall (UpRiver Brights+ Tule) Terminal Run 5YA 0.156 0.0329 2b

Survival (Female 2) Columbia Spring/Summer Terminal Run 1 0.176 0.0328 2b

Survival (Female 2) Columbia Spring/Summer Terminal Run 5YA 0.142 0.0099 2b

Fecundity (Female 2) Columbia Spring/Summer Terminal Run 5YA 0.041 0.0346 2b

Fecundity (Female 2) Fraser Early (Spring and Summer) Terminal Run 0 0.098 0.0166 2b

Fecundity (Female 2) Fraser Early (Spring and Summer) Terminal Run 1 0.085 0.0091 2b

Fecundity (Female 2) Fraser Early (Spring and Summer) Terminal Run 2 0.091 0.0045 2b

Fecundity (Female 2) Fraser Early (Spring and Summer) Terminal Run 5YA 0.148 0.0015 2b

Survival (Female 1) Fraser Early (Spring)  Terminal Run 0 0.245 0.0022 2b

Fecundity (Female 2) Fraser Early (Summer) Terminal Run 0 0.117 0.0118 2b

Survival (Female 2) Fraser Early (Summer) Terminal Run 1 0.191 0.0495 2b

Fecundity (Female 2) Fraser Early (Summer) Terminal Run 1 0.097 0.0102 2b

Fecundity (Female 2) Fraser Early (Summer) Terminal Run 2 0.096 0.0036 2b

Fecundity (Female 2) Fraser Early (Summer) Terminal Run 5YA 0.131 0.0026 2b

Fecundity (Female 2) Fraser Early + Puget Sound Terminal Run 0 0.131 0.0138 2b

Fecundity (Female 2) Fraser Early + Puget Sound Terminal Run 1 0.129 0.0028 2b

Fecundity (Female 1) Fraser Early + Puget Sound Terminal Run 2 0.146 0.0364 2b

Fecundity (Female 2) Fraser Early + Puget Sound Terminal Run 2 0.076 0.0068 2b

Survival (Female 2) Fraser Early + Puget Sound Terminal Run 5YA 0.182 0.0313 2b

Fecundity (Female 2) Fraser Early + Puget Sound Terminal Run 5YA 0.095 0.0053 2b

Survival (Juvenile) Puget Sound (Summer and Fall) Terminal Run 0 0.143 0.0215 2b

Survival (Juvenile) Puget Sound (Summer and Fall) Terminal Run 1 0.266 0.0043 2b

Fecundity (Female 2) Puget Sound (Summer and Fall) Terminal Run 1 0.086 0.0337 2b

Survival (Juvenile) Puget Sound (Summer and Fall) Terminal Run 5YA 0.226 0.0075 2b

Survival (Female 2) Puget Sound (Summer and Fall) Terminal Run 5YA 0.122 0.0362 2b

Survival (Female 1) Oregon Coastal Terminal Run 0 0.334 0.0092 2b

Survival (Female 1) Oregon Coastal Terminal Run 1 0.190 0.0220 2b

Survival (Female 1) Oregon Coastal Terminal Run 5YA 0.101 0.0181 2b

Survival (Female 1) WCVI+FL+OC Ocean Abundance 0 0.255 0.0068 2b

Survival (Female 1) WCVI+FL+OC Ocean Abundance 1 0.227 0.0060 2b

Survival (Female 1) WCVI+FL+OC Ocean Abundance 5YA 0.251 0.0076 2b

Survival (Female 1) Coastwide (excluding SEAK) Ocean Abundance 0 0.354 0.0145 2b

Survival (Female 1) Coastwide (excluding SEAK) Ocean Abundance 1 0.359 0.0008 2b

Survival (Female 1) Coastwide (excluding SEAK) Ocean Abundance 5YA 0.203 0.0024 2b

Survival (Female 1) West Coast Vancouver Island Ocean Abundance 0 0.138 0.0253 2b

Survival (Calf) Fraser Late Ocean Abundance 1 0.218 0.0168 2b

Survival (Female 1) Fraser Late Ocean Abundance 5YA 0.409 0.0013 2b

Survival (Female 1) Oregon Coastal Ocean Abundance 0 0.514 0.0003 2b

Survival (Female 1) Oregon Coastal Ocean Abundance 1 0.319 0.0020 2b

Survival (Female 1) Oregon Coastal Ocean Abundance 5YA 0.240 0.0056 2b  
 

FE: Fraser Early; ;  PS: Puget Sound; FL: Fraser Late; COLf: Columbia Fall; COLs: Columbia Spring/Summer; OC: Oregon Coastal; 
WCVI: West Coast Vancouver Island 
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Table 3. Comparison between simple beta-regression (SR) models with Chinook 

abundance (no cumulative effects) as the only predictor and multiple beta-regression (MR) 

models with Chinook and Chum abundance as predictors for common vital rates by 

hypothesis. Criteria for comparison are the regression coefficient for Chinook (β) and the 

AIC value. See Appendix 6 for Chinook stock definitions and Appendix 7 for Chum stock 

definitions.  

 

 
Population Chinook Stock Chum Stock Vital Rate β (SR) β (MR) AIC_SR AIC_MR Hypothesis

SRKW FL_TR_2 NBC_2 Female 1 Fecundity 6.15E-06 6.7E-06 -71.48 -72.22 1a

SRKW PS_TR_2 WSH_Tot_1 Female 2 Fecundity 1.29E-05 6.7E-06 -183.36 -72.22 1a

SRKW ALL2a_OA_2 NBC_2 Female 1 Fecundity 3.2E-06 4.73E-06 -77.77 -79.89 2a

SRKW COLs_TR_1 WSH_Tot_1 Female 2 Fecundity 3.7E-06 1.86E-06 -183.45 -189.13 2a

NRKW PS_OA_1 WSH_Tot_1 Juvenile Survival 1.72E-05 1.63E-05 -132.21 -129.52 1b

NRKW NBC_TR_1 NBC_0 Female 1 Survival 2.86E-05 2.62E-05 -225.68 -226.64 1b

NRKW PS_TR_1 WSH_Tot_1 Juvenile Survival 7.27E-06 6.78E-06 -131.63 -127.23 2b

NRKW OC_OA_0 NBC_0 Female 1 Survival 1.50E-05 1.53E-05 -225.05 -231.43 2b

NRKW ALL1a_TR_1 WSH_Tot_2 Female 2 Fecundity 4.49E-06 4.7E-06 -66.77 -70.25 2b

 
 
CHINOOK - FL: Fraser Late; PS: Puget Sound; All2a: WCVI, FL, PS, URB, and OC; COLs: Columbia spring/summer; NBC: 

Northern BC; OC: Oregon Coastal; ALL1a: FE, PS, and FL. 

 

CHUM – NBC: Northern/Central BC; WSH_Tot: Washington Summer, Fall, Winter.   
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Table 4.  Summary of regression models meeting selection criteria (greater regression 

coefficient for Chinook and lower AIC) for RKW vital rates and Chinook salmon 

abundance interactions (no cumulative effects) with Chum salmon terminal run as a 

covariate. The increase in the mean stochastic elasticity of the interaction owed to the 

incorporation of Chum abundance as a covariate is shown for each combination of common 

vital rate and hypothesis. See Appendix 6 for Chinook stock definitions and Appendix 7 for 

Chum stock definitions. 

 

 
Population VitalRate Chinook Stock Chum Stock Pseudo-R2 P value Mean Elasticity Elasticity Increase Hypothesis

SRKW Female 1 Fecundity FL_TR_2 NBC_2 0.114 0.0030 0.021 16.89% 1a

SRKW Female 1 Fecundity FL_TR_2 NA 0.073 0.0327 0.018 1a

SRKW Female 1 Fecundity ALL2a_OA_2 NBC_2 0.239 0.0025 0.064 61.44% 2a

SRKW Female 1 Fecundity ALL2a_OA_2 NA 0.155 0.0029 0.040 2a

NRKW Female 1 Survival OC_OA_0 NBC_0 0.520 0.0003 0.008 10.37% 2b

NRKW Female 1 Survival OC_OA_0 NA 0.514 0.0141 0.007 2b

NRKW Female 2 Fecundity ALL1a_TR_1 WSH_Tot_2 0.097 0.0012 0.033 9.52% 2b

NRKW Female 2 Fecundity ALL1a_TR_1 NA 0.092 0.0020 0.030 2b

 
 
 
CHINOOK - FL: Fraser Late; All2a: WCVI, FL, PS, URB, and OCOC: Oregon Coastal; ALL1a: FE, PS, and FL. 

 

CHUM – NBC: Northern/Central BC; WSH_Tot: Washington Summer, Fall, Winter.   
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Table 5. Fishing scenarios selected for the assessment of the effects on RKW population 

viability. PVAs for SRKW focused on recovery objectives whereas PVAs for NRKW 

focused on producing equilibrium (i.e., λ = 1.0). Status quo scenarios were included as 

reference. 

Population Scenario Hypothesis Objective Characteristics Target Vital Rate(s) 

SRKW 1 NA Reference Status quo NA

SRKW 2 1a Recovery

Maximization of PS 

Terminal Run: no ocean 

fishing on PS

Increasing the fecundity of 

old reproductive females

SRKW 3 1a Recovery

Maximization of FE+PS 

Terminal Run: no ocean 

fishing on FE+PS

Increasing the fecundity of 

old reproductive females

SRKW 4 2a Recovery

51% reduction in the ocean 

harvest rates of the five 

large stocks (WCVI, FL, PS, 

OC, and URB)

Maximizing the fecundity of 

young reproductive females 

and the survival of old 

reproductive females

SRKW 5 2a Recovery
36% reduction in coastwide 

ocean harvest rates

Maximizing the fecundity of 

young reproductive females 

and the survival of old 

reproductive females

SRKW 6
2a                          

(cumulative effects)
Recovery

55.5% reduction in the 

ocean harvest rates of the 

five large stocks (WCVI, FL, 

PS, OC, and URB)

Maximizing the fecundity of 

young reproductive females

NRKW 7 NA Reference Status quo NA

NRKW 8 1b

Reduce 

population 

growth 

Maximizing ocean harvest 

rates of Fraser Early 

Chinook

Reducing the fecundity of old 

reproductive females

NRKW 9 1b

Halt 

population 

growth

Reductions of NBC 

Terminal Run as a result of 

increasing NBC ocean 

harvest rates by 187%

Decreasing the survival of 

young reproductive females

NRKW 10 2b

Reduce 

population 

growth 

Reductions of FE+PS 

Terminal Run as a result of 

doubling FE+PS ocean 

harvest rates

Decreasing the fecundity of 

young and old reproductive 

females

NRKW 11 2b

Halt 

population 

growth 

66% increase of coastwide 

ocean harvest rates

Decreasing survival of young 

reproductive females

NRKW 12
1b            

(cumulative effects)

Reduce 

population 

growth

Maximizing ocean harvest 

rates of Fraser Early 

Chinook

Reducing the fecundity of old 

reproductive females
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Table 6. Summary of PVA results for selected fishing scenarios characterized in Table 5. 

Viability metrics in the last column differ between SRKW and NRKW due to their 

differing trajectories and recovery targets. U.S. downlisting criteria have been specified for 

SRKW whereas there is no population-based recovery target for NRKW. The expected 

minimum abundance is used here as an index of the propensity to decline in NRKW.  

 

 

Population Scenario

Stochastic 

population 

growth

Mean 

abundance 

τ years in 

the future *

Extinction probability 

100 years in the future

Probability of falling 

below 30 individuals in 

the next 100 years

Probability of 

downlisting 

(U.S.)

SRKW 1 0.99091 68 0.493 0.780 0.000

SRKW 2 1.00595 117 0.228 0.445 0.032

SRKW 3 0.99977 93 0.324 0.595 0.000

SRKW 4 1.01803 166 0.129 0.270 0.334

SRKW 5 1.01766 164 0.142 0.279 0.310

SRKW 6 1.01792 165 0.148 0.292 0.331

Probability of falling 

below 250 individuals in 

the next 100 years

Expected 

minimum 

abundance

NRKW 7 1.01577 401 0.000 0.523 238

NRKW 8 1.00144 296 0.032 0.836 159

NRKW 9 1.00000 299 0.019 0.844 158

NRKW 10 1.00828 339 0.005 0.694 206

NRKW 11 1.00000 299 0.017 0.838 162

NRKW 12 1.00086 294 0.032 0.858 155

 
 
* Damping times (τ) were 35 years for SRKW and 25 years for NRKW 
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FIGURES 

(3.1 RKW demography) 
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Figure 6. Box plot of vital rates for SRKW (blue) and NRKW (grey) corresponding to 

1987-2011. Juv: Juvenile; F1: young reproductive female; F2: old reproductive female; F3: 

post-reproductive female; M1: young male; M2: old male. 
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Figure 7. Coefficient of variation in vital rates of NRKW and SRKW corresponding to 

1987-2011. F1: young reproductive female; F2: old reproductive female; F3: post-

reproductive female; M1: young male; M2: old male. 
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Figure 8. Vital-rate and abundance correlation coefficients between NRKW and SRKW 

for 1987-2011. Female 1: young reproductive female; Female 2: old reproductive female; 

Female 3: post-reproductive female; Male 1: young mature male; Male 2: old mature male. 
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Figure 9. Frequency distribution of stochastic population growth computed through 

simulations (5000 replicates) for SRKW and NRKW. 
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Figure 10. Stable-stage-distribution projections for NRKW and SRKW starting at stage 

distributions observed in 2011. 
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Figure 11. Vital-rate elasticities for NRKW and SRKW. Bars represent standard 

deviations. Female 1: young reproductive female; Female 2: old reproductive female; 

Female 3: post-reproductive female; Male 1: young mature male; Male 2: old mature male. 
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Figure 12. Maximum proportional increase in population growth resulting from 

maximization of individual vital rates (1.0 for survival and upper 95% C.L. for fecundity) 

in NRKW and SRKW. The proportional increase necessary to achieve the U.S. downlisting 

recovery goal is also shown. Female 1: young reproductive female; Female 2: old 

reproductive female. The maximization Female 1 fecundity is projected to produce a 1.7% 

annual increase in SRKW, which is still lower than the 2.3% U.S. downlisting recovery 

target 
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Figure 13. Proportional  reduction in individual vital rates required to halt population 

growth (i.e., λ = 1.0) in NRKW. The horizontal line shows the maximum reduction in a 

vital rate. Female 1: young reproductive female; Female 2: old reproductive female. 
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Figure 14. Contributions of matrix elements to the variance in population growth (top) and 

contributions of individual vital rates to the CV in population growth (bottom) for 1987-

2011. Female 1: young reproductive female; Female 2: old reproductive female. 
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FIGURES  

(3.2 Role of Chinook abundance on RKW population growth) 
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Figure 15. Mean stochastic elasticities of interactions between SRKW vital rates and 

Chinook salmon abundance for all significant regressions in Table 1.  F1: young 

reproductive females; F2: old reproductive females. See Appendix 6 for a glossary of stock 

definitions. 
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Figure 16. Elasticities of interactions between Chinook abundance and SRKW vital rates. 

Stock aggregates influencing more than one vital rate are color coded. Corresponding vital 

rates are shown at the bottom. The interactions corresponding to hypothesis 1a are 

highlighted. All other interactions correspond to hypothesis 2a. The interaction with the 

largest elasticity for cumulative effects is shown at the far right of the figure. F1: young 

reproductive female; F2: old reproductive female. 
 
PS: Puget Sound; FE: Fraser Early; FL: Fraser Late; ALL2a: Columbia UpRiver Brights, OC, PS, FL, and WCVI; CW: Coastwide 

(excluding SEAK); OC: Oregon Coastal;  
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Figure 17. Contributions of SRKW vital rate - Chinook abundance interactions to the CV 

of population growth for years 1987-2011. The contributions of stock aggregates 

influencing more than one vital rate have been added to compute the total contribution to 

the CV in population growth. The interactions corresponding to hypothesis 1a are 

highlighted. All other interactions correspond to hypothesis 2a. The interaction with the 

largest elasticity for cumulative effects is shown at the far right of the figure.  

 
 
FE: Fraser Early; PS: Puget Sound; CW: Coastwide (excluding SEAK); WCVI: West Coast Vancouver Island; OC: Oregon Coastal; 

FL: Fraser Late; ALL2a: Columbia UpRiver Brights, OC, PS, FL, and WCVI. 
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Figure 18. Time series of abundance for Chinook aggregates relevant for exploration of 

fishing scenarios under hypotheses 1a (top) and 2a (bottom). 
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Figure 19. Mean stochastic elasticities of interactions between NRKW vital rates and Chinook salmon abundance for all significant 

regressions in Table 2.  F1: young reproductive females; F2: old reproductive females. See Appendix 6 for a glossary of stock definitions. 
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Figure 20. Elasticities of interactions between Chinook abundance and NRKW vital rates. 

Stock aggregates influencing more than one vital rate are color coded. Corresponding vital 

rates are shown at the bottom. The interaction corresponding to hypothesis 1b is 

highlighted. All other interactions correspond to hypothesis 2b. The interactions with the 

largest elasticities for cumulative effects are shown at the far right for each set of stock 

aggregates. F1: young reproductive female; F2: old reproductive female. 

 
FE: Fraser Early; LGS: Lower Georgia Strait; NBC: Northern BC; PS: Puget Sound; CW: Coastwide; OC: Oregon Coastal 
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Figure 21. Contributions of NRKW vital rate - Chinook abundance interactions to the CV 

of population growth for years 1987-2011. The contributions of stock aggregates 

influencing more than one vital rate have been added to compute the total contribution to 

the CV in population growth. The interactions corresponding to hypothesis 1b are 

highlighted. All other interactions correspond to hypothesis 2b. The interactions with the 

largest elasticities for cumulative effects are shown at the far right of each set. 

 

 
FE: Fraser Early; LGS: Lower Georgia Strait; NBC: Northern BC; WCVI: West Coast Vancouver Island; PS: Puget Sound; OC: 

Oregon Coastal;  CW: Coastwide; ALL2b: Fraser Late, OC, and WCVI. 
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Figure 22. Time series of relative abundance for Chinook aggregates relevant for 

exploration of fishing scenarios under hypotheses 1b. Abundance was centralized (i.e., 

annual value divided by the long-term average) for this figure because abundance indices 

derived for terminal run and ocean abundance are in different units. 
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FIGURES 

(3.3 Chum salmon as a covariate of RKW population growth) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Time series of relative abundance (annual terminal run divided by the long-term 

average) for Chum salmon aggregates relevant for multiple beta-regression models meeting 

selection criteria and summarized in Table 3. 
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Figure 24. Elasticities of interactions between SRKW vital rates and Chinook abundance 

with and without Chum abundance as a covariate as identified in Table 4. Included in the 

figure are the Chinook interactions with the largest elasticities by hypothesis (dark bars) for 

comparison. The vital rates corresponding to each interaction are shown above the bars. 

See Appendix 6 for Chinook stock definitions and Appendix 7 for Chum stock definitions. 
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Figure 25. Elasticities of interactions between NRKW vital rates and Chinook abundance 

with and without Chum abundance as a covariate identified in Table 4. Included in the 

figure are the Chinook interactions with the largest elasticity for hypothesis 2b (dark bars) 

for comparison.  There were no interactions with Chum abundance as a covariate meeting 

criteria for hypothesis 1b. The vital rates corresponding to each interaction are shown 

above the bars. See Appendix 6 for Chinook stock definitions and Appendix 7 for Chum 

stock definitions. 
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FIGURES 

(3.4 RKW population viability under selected fishing scenarios) 
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Figure 26. Projections of SRKW population size in an IID environment under status quo 

conditions (Scenario 1) at 10, 20, 30, and 35 years in the future (SRKW Damping Time = 

35 years). Histograms and computation of stochastic population growth generated from 

5000 realizations of population size.  
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Figure 27. Cumulative probability of SRKW population size falling below 30 individuals 

in the future in an IID environment under status quo conditions (Scenario 1). Probabilities 

computed from 5000 realizations of population size. Twenty runs are shown in the figure. 
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Figure 28. Projections (100) of SRKW population size under demographic stochasticity 

and status quo conditions (Scenario 1). Horizontal shows the 30-individual threshold used 

for Figure 27.   
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Figure 29. Probability of SRKW population falling below 30 individuals in the future 

under environmental and demographic stochasticity and status quo conditions (Scenario 1). 

Mean probability and 95% CIs generated from 5000 replications. Median is the number of 

years to reach a 0.5 probability of falling below 30 individuals. 
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Figure 30. Probability of SRKW population size falling below a population threshold in 

100 years under environmental and demographic stochasticity and status quo conditions 

(Scenario 1). Mean probability and 95% CIs generated from 5000 replications. Also shown 

are the extinction risk for NThreshold = 0 and the expected minimum abundance, which is the 

average (over all replications) of the minimum population abundance of the trajectory.   
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Figure 31. Projections of SRKW population size in an IID environment under Scenario 4 

(51% reduction in the ocean harvest rates of the five large stocks WCVI/FL/PS/OC/URB) 

at 10, 20, 30, and 35 years in the future (SRKW Damping Time = 35 years). Histograms 

and computation of stochastic population growth generated from 5000 realizations of 

population size.  
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Figure 32. Cumulative probability of SRKW recovery (recovery target = downlisting 

population size = 120 individuals) in the future in an IID environment under Scenario 4 

(51% reduction in the ocean harvest rates of the five large stocks WCVI/FL/PS/OC/URB). 

Probabilities computed from 5000 realizations of population size. Twenty runs are shown 

in the figure. 
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Figure 33. Projections (100) of SRKW population size under demographic stochasticity 

and under Scenario 4 (51% reduction in the ocean harvest rates on the five large stocks 

WCVI/FL/PS/OC/URB). 
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Figure 34. Probability of SRKW population falling below 30 individuals in the future 

under environmental and demographic stochasticity for Scenario 4 (51% reduction in the 

ocean harvest rates on the five large stocks WCVI/FL/PS/OC/URB). Median is the number 

of years to reach a 0.5 probability of falling below 30 individuals. Mean probability and 

95% CIs generated from 5000 replications. 
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Figure 35. Probability of SRKW population size falling below a population threshold in 

100 years under environmental and demographic stochasticity for Scenario 4 (51% 

reduction in the ocean harvest rates on the five large stocks WCVI/FL/PS/OC/URB). Mean 

probability and 95% CIs generated from 5000 replications. Also shown are the extinction 

risk for NThreshold = 0 and the expected minimum abundance, which is the average (over all 

replications) of the minimum population abundance of the trajectory.   
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Figure 36. Projections of NRKW population size in an IID environment under status quo 

conditions (Scenario 7) at 10, 20, 30, and 25 years in the future (NRKW Damping Time = 

25 years). Histograms and computation of stochastic population growth generated from 

5000 realizations of population size.  
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Figure 37. Projections (100) of NRKW population size under demographic stochasticity 

and status quo conditions (Scenario 7).  
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Figure 38. Probability of NRKW population falling below 250 individuals in the future 

under environmental and demographic stochasticity and status quo conditions (Scenario 7). 

Mean probability and 95% CIs generated from 5000 replications. Median is the number of 

years to reach a 0.5 probability of falling below 250 individuals.  
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Figure 39. Probability of NRKW population size falling below a population threshold in 

100 years under environmental and demographic stochasticity and status quo conditions 

(Scenario 7). Mean probability and 95% CIs generated from 5000 replications. Also shown 

are the extinction risk for NThreshold = 0 and the expected minimum abundance, which is the 

average (over all replications) of the minimum population abundance of the trajectory.   
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Figure 40. Projections of NRKW population size in an IID environment under Scenario 11 

(66% increase of coastwide Chinook ocean harvest rates) at 10, 20, 30 and 25 years in the 

future (NRKW Damping Time = 25 years). Histograms and computation of stochastic 

population growth generated from 5000 realizations of population size.  
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Figure 41. Cumulative probability of NRKW population size falling below 250 individuals 

in the future in an IID environment under Scenario 11 (66% increase of coastwide Chinook 

ocean harvest rates). Probabilities computed from 5000 realizations of population size. 

Twenty runs are shown in the figure. 
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Figure 42. Projections (100) of NRKW population size under demographic stochasticity 

and Scenario 11 (66% increase of coastwide Chinook ocean harvest rates). 
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Figure 43. Probability of NRKW population falling below 250 individuals in the future 

under environmental and demographic stochasticity and Scenario 11 (66% increase of 

coastwide Chinook ocean harvest rates). Mean probability and 95% CIs generated from 

5000 replications. Median is the number of years to reach a 0.5 probability of falling below 

250 individuals.  
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Figure 44. Probability of NRKW population size falling below a population threshold in 

100 years under environmental and demographic stochasticity and Scenario 11 (66% 

increase of coastwide Chinook ocean harvest rates).  Mean probability and 95% CIs 

generated from 5000 replications. Also shown are the extinction risk for NThreshold = 0 and 

the expected minimum abundance, which is the average (over all replications) of the 

minimum population abundance of the trajectory. 
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Figure 45. Frequency distribution of stochastic population growth for SRKW under fishing 

scenarios 2 (top) and 3 (bottom). See Table 5 for scenario characteristics. 

Scenario 2: λ = 1.00595 (95% CI: 0.9812 -1.0236) 

Scenario 3: λ = 0.99977 (95% CI: 0.9808 -1.0207) 
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FIGURES  

(4. Discussion) 
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Figure 46. Viable calf survival (top) and fecundity of old reproductive females (bottom) 

for NRKW and SRKW for years 1987-2011. Viable calves are defined as those that 

survived to at least 0.5 years of age. 
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Figure 47. Cumulative difference between vital rates of NRKW and SRKW for years 

1987-2011. The top panel shows the cumulative difference for vital rates contributing 

directly to population growth and the bottom panel for vital rates not contributing directly 

to population growth. 
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Figure 48. Terminal run and fishery impacts for Chinook stock aggregates with prominent 

interactions with RKW’s vital rates (Kope and Parken, Appendix 3). 
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APPENDICES  

 

Appendix 1.  Alternative RKW matrix population models used in this investigation 

included a model with gender identification at birth (below) and a truncated female-only 

model (shaded matrix elements) that excluded post-reproductive females. 

 

Killer whale life cycle and projection matrix

1: Female Calves

2: Female juveniles

3: Young reproductive females

4: Old reproductive females

5: Post-reproductive females

6: Male calves

7: Male juveniles

8: Young mature males

9: Old mature males

1

7 8

2 43
G1 G2 G3

P2 P3 P4

F2f

F3f

G7

P7 P8

P1

0      F2f F3f F4f 0     0    0    0    0

G1 P2 0     0     0 0    0    0    0

0      G2  P3 0     0     0    0    0    0

0       0      G3 P4 0     0    0    0    0

0      0       0     G4 P5 0    0    0    0

0      F2m F3m F4m 0    0    0    0    0

0      0       0      0     0   G6 P7 0    0

0      0       0      0     0    0    G7   P8    0

0      0       0      0     0    0    0   G8 P9

M =
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Appendix 2. Projections of observed stage distributions towards stable stage distributions 

for SRKW and NRKW in the period between the end of the live-capture fishery and the 

first year used for the analyses in this report (1987). The projections represent the periods 

1973-1976, 1977-1981, 1982-1986, and the entire period 1973-1986. Observed and stable 

stage distributions differ substantially from those in 1987-2011, particularly for SRKW. 

The live-capture fishery targeted mostly SRKW. Olesiuk et al. (1995) estimated 48 

individuals (mostly juveniles and young males) were taken from the SRKW population 

between 1965 and 1973. 
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Appendix 3.  
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Appendix 4. Use of terminal run equivalents (TREs) for the exploration of fishing 

scenarios. 

 

A4.1 Use of TREs to compute the proportional increase in terminal run size in the 

absence of fishing (PI_TR_NF) in CTC exploitation rate indicator stocks and calculate the 

increase in terminal run of a stock of interest (New_TRstock,y) for the exploration of fishing 

scenarios. See Table A4.1 for a summary of indicator stocks corresponding to each of the 

time series of Chinook abundance used for analysis. 
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A4.2 Sequence of equations necessary to compute the terminal run scalar (TR_Scalary) 

resulting from an specified change in the ocean harvest rate of a CTC exploitation rate 

indicator stock (
preterminal , ,TRE obs y

HR ), where ny is the number of fish necessary to produce that 

change. The following equations correspond to an increase in ocean harvest rate.  
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TR_Scalary is then used to calculate the increase in terminal run of a stock of interest 

(New_TRstock,y) for the exploration of fishing scenarios. 
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If more than one CTC exploitation rate indicator stock is used to represent the variability in 

catch and maturation rates within a stock aggregate, then the scalar in Equation 7 is 

computed as: 
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For the exploration of fishing scenarios, the time series average scalar was used for years 

without indicator stock information in a given stock aggregate.  

 

Also notice that in the absence of fishing, , ,indicatorTRE new y
HR is zero, 
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Table A4.1. List of CTC exploitation rate indicator stocks used to compute terminal run 

scalars (TR_ScalarAggregaget,y) for time series of Chinook stock aggregates. See Table A4.2 

for indicator stock acronyms. Data required to generate TREs for Sacramento Fall’s SRFC 

and Klamath Fall’s KRFC were obtained from PFMC 2012. 

 

 
Time series Stock or stock aggregate Lag ER Indicator Stocks

FE_TR_0 Fraser Early (Spring and Summer) 0 DOM,NIC,SHU

FE_TR_1 Fraser Early (Spring and Summer) 1 DOM,NIC,SHU

FE_TR_2 Fraser Early (Spring and Summer) 2 DOM,NIC,SHU

FE_TR_5YA Fraser Early (Spring and Summer) 5YA DOM,NIC,SHU

FE2_TR_0 Fraser Early (Spring)  0 DOM,NIC

FE2_TR_1 Fraser Early (Spring)  1 DOM,NIC

FE2_TR_2 Fraser Early (Spring)  2 DOM,NIC

FE2_TR_5YA Fraser Early (Spring)  5YA DOM,NIC

FE3_TR_0 Fraser Early (Summer) 0 SHU

FE3_TR_1 Fraser Early (Summer) 1 SHU

FE3_TR_2 Fraser Early (Summer) 2 SHU

FE3_TR_5YA Fraser Early (Summer) 5YA SHU

PS_TR_0 Puget Sound (Summer and Fall) 0 SPS,SAM,GAD

PS_TR_1 Puget Sound (Summer and Fall) 1 SPS,SAM,GAD

PS_TR_2 Puget Sound (Summer and Fall) 2 SPS,SAM,GAD

PS_TR_5YA Puget Sound (Summer and Fall) 5YA SPS,SAM,GAD

FEPS_TR_0 Fraser Early + Puget Sound 0 DOM,NIC,SHU,SPS,SAM,GAD

FEPS_TR_1 Fraser Early + Puget Sound 1 DOM,NIC,SHU,SPS,SAM,GAD

FEPS_TR_2 Fraser Early + Puget Sound 2 DOM,NIC,SHU,SPS,SAM,GAD

FEPS_TR_5YA Fraser Early + Puget Sound 5YA DOM,NIC,SHU,SPS,SAM,GAD

FL_TR_0 Fraser Late 0 CHE,CHI

FL_TR_1 Fraser Late 1 CHE,CHI

FL_TR_2 Fraser Late 2 CHE,CHI

FL_TR_5YA Fraser Late 5YA CHE,CHI

ALL1a_TR_0 Fraser Early+Puget Sound+Fraser Late 0 DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI

ALL1a_TR_1 Fraser Early+Puget Sound+Fraser Late 1 DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI

ALL1a_TR_2 Fraser Early+Puget Sound+Fraser Late 2 DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI

ALL1a_TR_5YA Fraser Early+Puget Sound+Fraser Late 5YA DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI

NBC_TR_0 Northern British Columbia (Areas 1-5) 0 KLM

NBC_TR_1 Northern British Columbia (Areas 1-5) 1 KLM

NBC_TR_2 Northern British Columbia (Areas 1-5) 2 KLM

NBC_TR_5YA Northern British Columbia (Areas 1-5) 5YA KLM

CBC_TR_0 Central British Columbia (Areas 6-10) 0 ATN

CBC_TR_1 Central British Columbia (Areas 6-10) 1 ATN

CBC_TR_2 Central British Columbia (Areas 6-10) 2 ATN

CBC_TR_5YA Central British Columbia (Areas 6-10) 5YA ATN

WCVI_TR_0 West Coast Vancouver Island 0 RBT

WCVI_TR_1 West Coast Vancouver Island 1 RBT

WCVI_TR_2 West Coast Vancouver Island 2 RBT

WCVI_TR_5YA West Coast Vancouver Island 5YA RBT

UGS_TR_0 Upper Georgia Strait 0 QUI

UGS_TR_1 Upper Georgia Strait 1 QUI

UGS_TR_2 Upper Georgia Strait 2 QUI

UGS_TR_5YA Upper Georgia Strait 5YA QUI

LGS_TR_0 Lower Georgia Strait 0 BQR,COW,NAN,PPS

LGS_TR_1 Lower Georgia Strait 1 BQR,COW,NAN,PPS

LGS_TR_2 Lower Georgia Strait 2 BQR,COW,NAN,PPS

LGS_TR_5YA Lower Georgia Strait 5YA BQR,COW,NAN,PPS

ALL1b_TR_0 NBC+CBC+WCVI+UGS+LGS 0 KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS

ALL1b_TR_1 NBC+CBC+WCVI+UGS+LGS 1 KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS

ALL1b_TR_2 NBC+CBC+WCVI+UGS+LGS 2 KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS

ALL1b_TR_5YA NBC+CBC+WCVI+UGS+LGS 5YA KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS

SF_TR_0 Sacramento Fall 0 SRFC

SF_TR_1 Sacramento Fall 1 SRFC

SF_TR_2 Sacramento Fall 2 SRFC

SF_TR_5YA Sacramento Fall 5YA SRFC

KLF_TR_0 Klamath Fall 0 KRFC

KLF_TR_1 Klamath Fall 1 KRFC

KLF_TR_2 Klamath Fall 2 KRFC

KLF_TR_5YA Klamath Fall 5YA KRFC

COLf_TR_0 Columbia Fall (UpRiver Brights+ Tule) 0 URB,LRH,SPR

COLf_TR_1 Columbia Fall (UpRiver Brights+ Tule) 1 URB,LRH,SPR

COLf_TR_2 Columbia Fall (UpRiver Brights+ Tule) 2 URB,LRH,SPR

COLf_TR_5YA Columbia Fall (UpRiver Brights+ Tule) 5YA URB,LRH,SPR

COLs_TR_0 Columbia Spring/Summer 0 WSH,SUM

COLs_TR_1 Columbia Spring/Summer 1 WSH,SUM

COLs_TR_2 Columbia Spring/Summer 2 WSH,SUM

COLs_TR_5YA Columbia Spring/Summer 5YA WSH,SUM

OC_TR_0 Oregon Coastal 0 SRH

OC_TR_1 Oregon Coastal 1 SRH

OC_TR_2 Oregon Coastal 2 SRH

OC_TR_5YA Oregon Coastal 5YA SRH

ALL2a_TR_0 SF+KLF+COLf+COLs+OC+WCVI 0 URB,LRH,SPR,WSH,SUM,SRH,RBT

ALL2a_TR_1 SF+KLF+COLf+COLs+OC+WCVI 1 URB,LRH,SPR,WSH,SUM,SRH,RBT

ALL2a_TR_2 SF+KLF+COLf+COLs+OC+WCVI 2 URB,LRH,SPR,WSH,SUM,SRH,RBT

ALL2a_TR_5YA SF+KLF+COLf+COLs+OC+WCVI 5YA URB,LRH,SPR,WSH,SUM,SRH,RBT

CW2a_TR_0 Coastwide (excluding SEAK, NBC and CBC) 0 RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2a_TR_1 Coastwide (excluding SEAK, NBC and CBC) 1 RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2a_TR_2 Coastwide (excluding SEAK, NBC and CBC) 2 RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2a_TR_5YA Coastwide (excluding SEAK, NBC and CBC) 5YA RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

ALL2b_TR_0 FE+PS+FL+COLf+COLs+OC 0 DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

ALL2b_TR_1 FE+PS+FL+COLf+COLs+OC 1 DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

ALL2b_TR_2 FE+PS+FL+COLf+COLs+OC 2 DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

ALL2b_TR_5YA FE+PS+FL+COLf+COLs+OC 5YA DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2b_TR_0 Coastwide (excluding Sacramento Fall and Klamath Fall) 0 KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2b_TR_1 Coastwide (excluding Sacramento Fall and Klamath Fall) 1 KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2b_TR_2 Coastwide (excluding Sacramento Fall and Klamath Fall) 2 KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH

CW2b_TR_5YA Coastwide (excluding Sacramento Fall and Klamath Fall) 5YA KLM,ATN,RBT,QUI,BQR,COW,NAN,PPS,DOM,NIC,SHU,SPS,SAM,GAD,CHE,CHI,URB,LRH,SPR,WSH,SUM,SRH 
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Table A4.2. Glossary of acronyms used for CTC exploitation rate indicator stocks. 

 
Stock acronym Description

ACI  Alaska Central Inside

AKS  Alaska Spring

ALP  Little Port Walter

ASI  Alaska Southern Inside

ATN  Atnarko Summer

BQR  Big Qualicum

CAP  Capilano Falls

CHE  Chehalis (Harrison Fall Stock)

CHI  Chilliwack (Harrison Fall Stock)

CKO  Chilko Spring

COW  Cowichan Fall

CWF  Cowlitz Fall Tule

CWS  Cowlitz Spring

DOM  Dome Creek Spring

ELK  Elk River

ELW  Elwha Fall Fingerling

GAD  George Adams Fall Fingerling

GRN  Green River Fall Fingerling

GRO  Grovers Creek Fall Fingerling

HAN  Hanford Wild

HOK  Hoko Fall Fingerling

ISS  Issaquah Fall Fingerling

KIT  Kitimat Spring

KLM  Kitsumkalum Summer

LRH  Columbia Lower River Hatchery

LRW  Lewis River Wild

LYF  Lyons Ferry

NAN  Nanaimo River Fall

NIC  Nicola River Spring

NIS  Nisqually Fall Fingerling

NKF  Nooksack Fall Fingerling

NKS  Nooksack Spring Yearling

NPY  North Puget Sound Fall Yearling

NSF  Nooksack Spring Fingerling

PPS  Puntledge Summer

QNT  Quinault Fall Fingerling

QUE  Queets Fall Fingerling

QUI  Quinsam Fall

RBT  Robertson Creek

SAM  Samish Fall Fingerling

SHU  Lower Shuswap River Summers

SKE  Skeena Summer

SKF  Skagit Spring Fingerling

SKS  Skagit Spring Yearling

SKY  Skykomish Fall Fingerling

SOO  Sooes Fall Fingerling

SPR  Spring Creek Tule

SPS  South Puget Sound Fall Fingerling

SPY  South Puget Sound Fall Yearling

SQP  Squaxin Pens Fall Yearling

SRH  Salmon River

SSF  Skagit Summer Fingerling

STL  Stillaguamish Fall Fingerling

SUM  Columbia Summers

URB  Upriver Brights

UWA  University of Washington Accelerated

WHF  White River Hatchery Fingerling

WHY  White River Hatchery Yearling

WRF  White River Fall Fingerling

WRY  White River Spring Yearling

WSH  Willamette Spring
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Appendix 5. Time series of vital rates and total population abundance for SRKW and NRKW (1987-2011). Female 1: young reproductive 

female; Female 2: old reproductive female; Female 3: post-reproductive female; Male 1: young mature male; Male 2: old mature male. 

 
Year Pop Calf Surv. Juvenile Surv. Female 1 Surv. Female 2 Surv. Female 3 Surv. Male 1 Surv. Male 2 Surv. Female 1 Fec. Female 2 Fec. Abundance

1987 SRKW 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1500 0.0571 84

1988 SRKW 0.0000 1.0000 1.0000 1.0000 1.0000 0.7619 1.0000 0.0952 0.0000 85

1989 SRKW 1.0000 1.0000 1.0000 1.0000 0.8571 1.0000 1.0000 0.0500 0.0556 83

1990 SRKW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2500 0.0000 87

1991 SRKW 0.7500 0.9444 1.0000 1.0000 1.0000 1.0000 0.9500 0.1000 0.1081 91

1992 SRKW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1111 0.0500 91

1993 SRKW 0.8333 0.9510 0.8750 0.9524 1.0000 1.0000 1.0000 0.2222 0.0952 97

1994 SRKW 1.0000 1.0000 1.0000 1.0000 1.0000 0.8571 0.7727 0.1000 0.0000 94

1995 SRKW 1.0000 1.0000 1.0000 0.8750 1.0000 0.8333 0.9000 0.1818 0.1143 96

1996 SRKW 1.0000 1.0000 1.0000 0.9157 0.6250 1.0000 0.9000 0.1667 0.0667 97

1997 SRKW NA 0.9438 1.0000 1.0000 1.0000 1.0000 0.7500 0.0000 0.0000 91

1998 SRKW 1.0000 0.9405 0.9000 0.9537 1.0000 1.0000 0.6667 0.0833 0.0000 89

1999 SRKW 0.3333 1.0000 0.9550 0.8083 1.0000 1.0000 0.9286 0.1200 0.0000 85

2000 SRKW 0.6667 1.0000 1.0000 0.8571 1.0000 0.9000 0.5714 0.1200 0.0000 82

2001 SRKW 0.6667 1.0000 0.9750 1.0000 1.0000 1.0000 1.0000 0.1702 0.0000 80

2002 SRKW 1.0000 1.0000 1.0000 1.0000 0.8000 1.0000 0.8000 0.0000 0.0800 80

2003 SRKW 0.8333 1.0000 1.0000 1.0000 0.7778 1.0000 1.0000 0.2273 0.0769 84

2004 SRKW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0435 0.0769 84

2005 SRKW 0.7143 0.7857 1.0000 1.0000 0.8750 1.0000 1.0000 0.1667 0.3077 91

2006 SRKW 0.3333 1.0000 0.9545 0.9375 1.0000 0.9688 1.0000 0.1250 0.0000 89

2007 SRKW 1.0000 0.9714 1.0000 1.0000 0.7500 1.0000 1.0000 0.0526 0.1250 87

2008 SRKW 0.3333 1.0000 0.9697 0.9750 0.8333 1.0000 1.0000 0.0000 0.1250 88

2009 SRKW 1.0000 1.0000 1.0000 0.9375 0.9167 1.0000 0.6667 0.0556 0.1290 87

2010 SRKW 0.8333 1.0000 1.0000 1.0000 0.8333 0.9286 0.6000 0.2632 0.2000 88

2011 SRKW NA NA NA NA NA NA NA 0.0526 0.0667 88

1987 NRKW 1.0000 0.9931 1.0000 0.9702 0.7857 1.0000 1.0000 0.2368 0.0833 177

1988 NRKW 0.8571 0.9926 1.0000 0.8821 0.8750 1.0000 1.0000 0.1647 0.0000 182

1989 NRKW 1.0000 0.9990 1.0000 1.0000 1.0000 1.0000 0.9744 0.0870 0.1277 185

1990 NRKW 1.0000 0.9875 1.0000 0.9484 0.8571 0.9484 0.8974 0.1489 0.1200 194

1991 NRKW 0.9833 0.9899 0.9917 0.9872 0.9524 1.0000 1.0000 0.1443 0.1333 197

1992 NRKW 1.0000 0.9410 0.9900 1.0000 0.9125 0.9444 0.9099 0.1176 0.0909 203

1993 NRKW 0.9500 0.9726 1.0000 0.9904 0.6238 1.0000 0.9589 0.0926 0.0000 200

1994 NRKW 1.0000 0.9609 1.0000 0.9694 0.9673 1.0000 0.9952 0.1622 0.1481 207

1995 NRKW 0.8571 0.9721 1.0000 0.9881 0.8242 1.0000 0.9853 0.0877 0.1000 210

1996 NRKW 0.8750 0.9694 0.9664 0.9857 0.7148 0.9991 0.9144 0.1152 0.0494 213

1997 NRKW 0.8462 0.9708 0.9895 0.9852 0.9391 0.9990 0.8087 0.2062 0.0476 218

1998 NRKW 1.0000 0.9417 0.9893 0.9775 0.8738 0.9330 0.8000 0.1203 0.0513 215

1999 NRKW 1.0000 0.9830 0.9707 0.9793 0.6896 0.9796 0.7731 0.1131 0.1714 215

2000 NRKW 0.6667 0.9223 0.9700 0.9667 0.8750 0.9417 0.8196 0.0775 0.0588 209

2001 NRKW 0.8750 0.9694 0.9867 1.0000 1.0000 0.9890 0.9375 0.1156 0.0500 201

2002 NRKW 0.9000 0.9709 1.0000 1.0000 1.0000 0.9444 0.9412 0.1186 0.1364 204

2003 NRKW 1.0000 0.9946 1.0000 1.0000 0.9375 1.0000 1.0000 0.0781 0.1333 205

2004 NRKW 0.9714 0.9854 1.0000 0.9861 0.8750 1.0000 1.0000 0.2015 0.2143 222

2005 NRKW 0.8750 0.9441 0.9690 0.9815 0.7500 0.9977 0.9211 0.1976 0.1250 236

2006 NRKW 0.9333 0.9740 0.9835 1.0000 1.0000 0.9429 0.9825 0.2180 0.0984 240

2007 NRKW 0.8462 0.9842 0.9728 1.0000 1.0000 0.9167 0.9750 0.1686 0.1000 246

2008 NRKW 0.7647 0.9969 0.9932 0.9889 0.7500 0.9697 0.8254 0.1770 0.1613 256

2009 NRKW 1.0000 0.9783 0.9926 1.0000 1.0000 0.9621 0.7895 0.1443 0.1250 258

2010 NRKW 0.9231 0.9767 0.9709 0.9967 1.0000 0.9818 0.9792 0.1505 0.1135 264

2011 NRKW NA NA NA NA NA NA NA 0.1139 0.0811 268  
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Appendix 6. Glossary of Chinook abundance definitions by stock aggregate, abundance 

type, time lag (5YA: 5-year running average), and hypothesis (SR: Southern Resident 

Killer Whale; NR: Northern Resident Killer Whale). 

 

 
Time series Stock or stock aggregate Abundance type Time lag SR Hypothesis NR Hypothesis

FE_TR_0 Fraser Early (Spring and Summer) Terminal run 0 1a 2b

FE_TR_1 Fraser Early (Spring and Summer) Terminal run 1 1a 2b

FE_TR_2 Fraser Early (Spring and Summer) Terminal run 2 1a 2b

FE_TR_5YA Fraser Early (Spring and Summer) Terminal run 5YA 1a 2b

FE2_TR_0 Fraser Early (Spring)  Terminal run 0 1a 2b

FE2_TR_1 Fraser Early (Spring)  Terminal run 1 1a 2b

FE2_TR_2 Fraser Early (Spring)  Terminal run 2 1a 2b

FE2_TR_5YA Fraser Early (Spring)  Terminal run 5YA 1a 2b

FE3_TR_0 Fraser Early (Summer) Terminal run 0 1a 2b

FE3_TR_1 Fraser Early (Summer) Terminal run 1 1a 2b

FE3_TR_2 Fraser Early (Summer) Terminal run 2 1a 2b

FE3_TR_5YA Fraser Early (Summer) Terminal run 5YA 1a 2b

PS_TR_0 Puget Sound (Summer and Fall) Terminal run 0 1a 2b

PS_TR_1 Puget Sound (Summer and Fall) Terminal run 1 1a 2b

PS_TR_2 Puget Sound (Summer and Fall) Terminal run 2 1a 2b

PS_TR_5YA Puget Sound (Summer and Fall) Terminal run 5YA 1a 2b

FEPS_TR_0 Fraser Early + Puget Sound Terminal run 0 1a 2b

FEPS_TR_1 Fraser Early + Puget Sound Terminal run 1 1a 2b

FEPS_TR_2 Fraser Early + Puget Sound Terminal run 2 1a 2b

FEPS_TR_5YA Fraser Early + Puget Sound Terminal run 5YA 1a 2b

FL_TR_0 Fraser Late Terminal run 0 1a 2b

FL_TR_1 Fraser Late Terminal run 1 1a 2b

FL_TR_2 Fraser Late Terminal run 2 1a 2b

FL_TR_5YA Fraser Late Terminal run 5YA 1a 2b

ALL1a_TR_0 Fraser Early+Puget Sound+Fraser Late Terminal run 0 1a 2b

ALL1a_TR_1 Fraser Early+Puget Sound+Fraser Late Terminal run 1 1a 2b

ALL1a_TR_2 Fraser Early+Puget Sound+Fraser Late Terminal run 2 1a 2b

ALL1a_TR_5YA Fraser Early+Puget Sound+Fraser Late Terminal run 5YA 1a 2b

NBC_TR_0 Northern British Columbia (Areas 1-5) Terminal run 0 NA 1b

NBC_TR_1 Northern British Columbia (Areas 1-5) Terminal run 1 NA 1b

NBC_TR_2 Northern British Columbia (Areas 1-5) Terminal run 2 NA 1b

NBC_TR_5YA Northern British Columbia (Areas 1-5) Terminal run 5YA NA 1b

CBC_TR_0 Central British Columbia (Areas 6-10) Terminal run 0 NA 1b

CBC_TR_1 Central British Columbia (Areas 6-10) Terminal run 1 NA 1b

CBC_TR_2 Central British Columbia (Areas 6-10) Terminal run 2 NA 1b

CBC_TR_5YA Central British Columbia (Areas 6-10) Terminal run 5YA NA 1b

WCVI_TR_0 West Coast Vancouver Island Terminal run 0 2a 1b

WCVI_TR_1 West Coast Vancouver Island Terminal run 1 2a 1b

WCVI_TR_2 West Coast Vancouver Island Terminal run 2 2a 1b

WCVI_TR_5YA West Coast Vancouver Island Terminal run 5YA 2a 1b

UGS_TR_0 Upper Georgia Strait Terminal run 0 NA 1b

UGS_TR_1 Upper Georgia Strait Terminal run 1 NA 1b

UGS_TR_2 Upper Georgia Strait Terminal run 2 NA 1b

UGS_TR_5YA Upper Georgia Strait Terminal run 5YA NA 1b

LGS_TR_0 Lower Georgia Strait Terminal run 0 NA 1b

LGS_TR_1 Lower Georgia Strait Terminal run 1 NA 1b

LGS_TR_2 Lower Georgia Strait Terminal run 2 NA 1b

LGS_TR_5YA Lower Georgia Strait Terminal run 5YA NA 1b

ALL1b_TR_0 NBC+CBC+WCVI+UGS+LGS Terminal run 0 NA 1b

ALL1b_TR_1 NBC+CBC+WCVI+UGS+LGS Terminal run 1 NA 1b

ALL1b_TR_2 NBC+CBC+WCVI+UGS+LGS Terminal run 2 NA 1b

ALL1b_TR_5YA NBC+CBC+WCVI+UGS+LGS Terminal run 5YA NA 1b

FE_OA_0 Fraser Early Ocean Abundance 0 NA 1b

FE_OA_1 Fraser Early Ocean Abundance 1 NA 1b

FE_OA_2 Fraser Early Ocean Abundance 2 NA 1b

FE_OA_5YA Fraser Early Ocean Abundance 5YA NA 1b

PS_OA_0 Puget Sound Ocean Abundance 0 2a 1b

PS_OA_1 Puget Sound Ocean Abundance 1 2a 1b

PS_OA_2 Puget Sound Ocean Abundance 2 2a 1b

PS_OA_5YA Puget Sound Ocean Abundance 5YA 2a 1b  
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URB_OA_0 Columbia UpRiver Brights Ocean Abundance 0 2a 1b

URB_OA_1 Columbia UpRiver Brights Ocean Abundance 1 2a 1b

URB_OA_2 Columbia UpRiver Brights Ocean Abundance 2 2a 1b

URB_OA_5YA Columbia UpRiver Brights Ocean Abundance 5YA 2a 1b

ALL1b_OA_0 Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 0 NA 1b

ALL1b_OA_1 Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 1 NA 1b

ALL1b_OA_2 Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 2 NA 1b

ALL1b_OA_5YA Fraser Early+Puget Sound+Columbia UpRiver Brights Ocean Abundance 5YA NA 1b

SF_TR_0 Sacramento Fall Terminal run 0 2a NA

SF_TR_1 Sacramento Fall Terminal run 1 2a NA

SF_TR_2 Sacramento Fall Terminal run 2 2a NA

SF_TR_5YA Sacramento Fall Terminal run 5YA 2a NA

KLF_TR_0 Klamath Fall Terminal run 0 2a NA

KLF_TR_1 Klamath Fall Terminal run 1 2a NA

KLF_TR_2 Klamath Fall Terminal run 2 2a NA

KLF_TR_5YA Klamath Fall Terminal run 5YA 2a NA

COLf_TR_0 Columbia Fall (UpRiver Brights+ Tule) Terminal run 0 2a 2b

COLf_TR_1 Columbia Fall (UpRiver Brights+ Tule) Terminal run 1 2a 2b

COLf_TR_2 Columbia Fall (UpRiver Brights+ Tule) Terminal run 2 2a 2b

COLf_TR_5YA Columbia Fall (UpRiver Brights+ Tule) Terminal run 5YA 2a 2b

COLs_TR_0 Columbia Spring/Summer Terminal run 0 2a 2b

COLs_TR_1 Columbia Spring/Summer Terminal run 1 2a 2b

COLs_TR_2 Columbia Spring/Summer Terminal run 2 2a 2b

COLs_TR_5YA Columbia Spring/Summer Terminal run 5YA 2a 2b

OC_TR_0 Oregon Coastal Terminal run 0 2a 2b

OC_TR_1 Oregon Coastal Terminal run 1 2a 2b

OC_TR_2 Oregon Coastal Terminal run 2 2a 2b

OC_TR_5YA Oregon Coastal Terminal run 5YA 2a 2b

ALL2a_TR_0 SF+KLF+COLf+COLs+OC+WCVI Terminal run 0 2a NA

ALL2a_TR_1 SF+KLF+COLf+COLs+OC+WCVI Terminal run 1 2a NA

ALL2a_TR_2 SF+KLF+COLf+COLs+OC+WCVI Terminal run 2 2a NA

ALL2a_TR_5YA SF+KLF+COLf+COLs+OC+WCVI Terminal run 5YA 2a NA

CW2a_TR_0 Coastwide (excluding SEAK, NBC and CBC) Terminal run 0 2a NA

CW2a_TR_1 Coastwide (excluding SEAK, NBC and CBC) Terminal run 1 2a NA

CW2a_TR_2 Coastwide (excluding SEAK, NBC and CBC) Terminal run 2 2a NA

CW2a_TR_5YA Coastwide (excluding SEAK, NBC and CBC) Terminal run 5YA 2a NA

WCVI_OA_0 West Coast Vancouver Island Ocean Abundance 0 2a 2b

WCVI_OA_1 West Coast Vancouver Island Ocean Abundance 1 2a 2b

WCVI_OA_2 West Coast Vancouver Island Ocean Abundance 2 2a 2b

WCVI_OA_5YA West Coast Vancouver Island Ocean Abundance 5YA 2a 2b

FL_OA_0 Fraser Late Ocean Abundance 0 2a 2b

FL_OA_1 Fraser Late Ocean Abundance 1 2a 2b

FL_OA_2 Fraser Late Ocean Abundance 2 2a 2b

FL_OA_5YA Fraser Late Ocean Abundance 5YA 2a 2b

OC_OA_0 Oregon Coastal Ocean Abundance 0 2a 2b

OC_OA_1 Oregon Coastal Ocean Abundance 1 2a 2b

OC_OA_2 Oregon Coastal Ocean Abundance 2 2a 2b

OC_OA_5YA Oregon Coastal Ocean Abundance 5YA 2a 2b

ALL2a_OA_0 WCVI+URB+FL+OC+PS Ocean Abundance 0 2a NA

ALL2a_OA_1 WCVI+URB+FL+OC+PS Ocean Abundance 1 2a NA

ALL2a_OA_2 WCVI+URB+FL+OC+PS Ocean Abundance 2 2a NA

ALL2a_OA_5YA WCVI+URB+FL+OC+PS Ocean Abundance 5YA 2a NA

CW_OA_0 Coastwide (excluding SEAK) Ocean Abundance 0 2a 2b

CW_OA_1 Coastwide (excluding SEAK) Ocean Abundance 1 2a 2b

CW_OA_2 Coastwide (excluding SEAK) Ocean Abundance 2 2a 2b

CW_OA_5YA Coastwide (excluding SEAK) Ocean Abundance 5YA 2a 2b

ALL2b_TR_0 FE+PS+FL+COLf+COLs+OC Terminal run 0 NA 2b

ALL2b_TR_1 FE+PS+FL+COLf+COLs+OC Terminal run 1 NA 2b

ALL2b_TR_2 FE+PS+FL+COLf+COLs+OC Terminal run 2 NA 2b

ALL2b_TR_5YA FE+PS+FL+COLf+COLs+OC Terminal run 5YA NA 2b

ALL2b_OA_0 WCVI+FL+OC Ocean Abundance 0 NA 2b

ALL2b_OA_1 WCVI+FL+OC Ocean Abundance 1 NA 2b

ALL2b_OA_2 WCVI+FL+OC Ocean Abundance 2 NA 2b

ALL2b_OA_5YA WCVI+FL+OC Ocean Abundance 5YA NA 2b

CW2b_TR_0 Coastwide (excluding Sacramento Fall and Klamath Fall) Terminal run 0 NA 2b

CW2b_TR_1 Coastwide (excluding Sacramento Fall and Klamath Fall) Terminal run 1 NA 2b

CW2b_TR_2 Coastwide (excluding Sacramento Fall and Klamath Fall) Terminal run 2 NA 2b

CW2b_TR_5YA Coastwide (excluding Sacramento Fall and Klamath Fall) Terminal run 5YA NA 2b  
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Appendix 7. Glossary of Chum salmon terminal run definitions by stock aggregate and 

time lag. Northern/Central BC includes both summer and fall run types. Southern BC 

Chum includes only fall run type. 

 

 

 
Time series Stock aggregate Time lag

NBC_0 Northern/Central Brittish Columbia 0

NBC_1 Northern/Central Brittish Columbia 1

NBC_2 Northern/Central Brittish Columbia 2

SBC_0 Southern British Columbia 0

SBC_1 Southern British Columbia 1

SBC_2 Southern British Columbia 2

WSH_Fa_0 Washington Fall 0

WSH_Fa_1 Washington Fall 1

WSH_Fa_2 Washington Fall 2

WSH_Tot_0 Washington Summer, Fall and Winter 0

WSH_Tot_1 Washington Summer, Fall and Winter 1

WSH_Tot_2 Washington Summer, Fall and Winter 2

SBCWSH__Fa_0 Southern BC and Washington Fall 0

SBCWSH__Fa_1 Southern BC and Washington Fall 1

SBCWSH__Fa_2 Southern BC and Washington Fall 2

SBCWSH_Tot_0 Southern BC and Washington Su/Fa/Wi 0

SBCWSH_Tot_1 Southern BC and Washington Su/Fa/Wi 1

SBCWSH_Tot_2 Southern BC and Washington Su/Fa/Wi 2  
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Appendix 8. R code for the study of RKW demography, evaluation of interactions with 

Chinook abundance, and exploration of effects of Chinook fishing scenarios on RKW 

population viability.  

 

A 8.1. R-code modules 
 

KW R-CODE MODULES 

FUNCTIONS : SOURCE (MONSTERCAVE)  

1.  SETTINGS  

2.  DEMOGRAPHIC DATA PROCESSING  

3.  ESTIMATING SURVIVALS & FECUNDITIES  

4.  DETERMINISTIC MATRIX ELEMENTS AND MEAN MATRIX  

5.  ALIVE IN LAST YEAR  

6.  BASIC MATRIX ESTIMATES  

7.  DETERMINISTIC VITAL RATE ELASTICITY AND SENSITIVITY  

8.  STOCHASTIC VITAL RATE ELASTICITY AND SENSITIVITY  

9.  CHINOOK REGRESSION MODELS  

10. NORMAL ERROR STRUCTURE TESTS  

11. ELASTICITIES OF INTERACTIONS- MATRIX PERT.     

12. PLOTTING BETA DIAGNOSTICS AND AIC  

13. RESTROSPECTIVE ANALYSES  

14. STOCHASTIC POPULATION GROWTH 

15. PROJECTING POPULATION SIZE  

16. FISHING SCENARIOS - TERMINAL RUN  

17. FISHING SCENARIOS - OCEAN ABUNDANCE  

18. REGRESSIONS KW ABUNDANCE ~ CHINOOK ABUNDANCE  

19. CHUM MULTIPLE REGRESSIONS 

20. ELASTICITY OF INTERACTION FOR CHUM MR 

 

                                  

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@        1.SETTINGS         @@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

getwd()   #Where are we working exactly? 

#setwd()  #Uncomment(#) to change workfolder, if needed. E.G. 

setwd("C:/KillerWhales/R_code)  

                                    

#Defines the population to be used in the analyses: Northern (NRKW) or Southern 

(SRKW)  

Population<- c('SRKW') 

 

#Period for Demographic analyses. Note: Double check IID periods is this  setting 

is changed (earliest year is 1973) 

Period<- c(1987,2011) 

 

#Seed for Stochastic simulations 

set.seed= pi*pi    

 

#Select "YES" to install packages if it is the first time running the code 

install_pcks = "NO"  

 

#Options to control R output 

options(width = 200, digits = 5, prompt = ">", continue = "+")    

 

#File with Functions 

source('MonsterCave.r')   

 

#Recommended Tinn-R version:  

#<<< http://sourceforge.net/projects/tinn-r/files/Tinn-R%20setup/1.19.1.9/ >>> 

 

#@@@@@@@@@@@@@@@@@@         Defining  Age Categories        @@@@@@@@@@@@@@@@@@@ 
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#These age categories can be changed according to the user needs, except for 

#Juveniles  

#Starting age for young males and females must be 10. Age groups must be         

# continuous 

#(e.g. no gaps in ages). See section 2.2 Killer Whale matrix population modeling  

# of the report for more information.    

 

CalfAges <- c(0,1)         #   calves age range                     (default 0 to 

1) 

JuvsAges <- c(2,9)         #   juveniles age range                 (default 2 to 

9) 

YRFemAges<- c(10,30)       #   young reproductive females age range(default 10 to 

30) 

ORFemAges<- c(31,50)       #   old reproductive females age range  (default 31 to 

50) 

PRFemAges<- c(51,200)      #   post reproductive females age range (default 51 to 

200) 

YMMalAges<- c(10,21)       #   young mature males                  (default 10 to 

21) 

OMMalAges<- c(22,200)      #   old mature males                    (default 22 to 

200) 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@           2. DEMOGRAPHIC DATA PROCESSING           @@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#This section inputs demographic data of KW and estimates counts by year and     

# stageaccording to the selection criteria from the age categories. See section  

# 2.2 of the report for more information. 

 

Cat2Names<- 

c('calve','Juvenil','YoungRFem','OldRFem','PostRFem','YoungMale','OldMale')      

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

KWdata<- 

read.table(paste(getwd(),'/','R_Inputs','/',Population,'_R.csv',sep=""),header=T, 

sep=",")  

KWdata<-  subset(KWdata, Year >= Period[1] & Year <= Period[2])                  

  

#------ STAGES ------  

Females<- subset(KWdata, Cat1=='Female') 

Males  <- subset(KWdata, Cat1=='Male') 

 

calvs<- subset(subset(KWdata, Cat1 == 'Juv') 

                ,Age >= CalfAges[1] & Age <= CalfAges[2])                        

Cat2<- rep(Cat2Names[1],length(calvs[,1])) 

calvs<- cbind(calvs,Cat2) 

 

juvsC<- subset(subset(KWdata, Cat1 == 'Juv')                                     

                ,Age >= JuvsAges[1] & Age <= JuvsAges[2])                       

Cat2<- rep(Cat2Names[2],length(juvsC[,1])) 

juvsC<- cbind(juvsC,Cat2) 

 

juvs<-  subset(KWdata, Cat1 == 'Juv')                                           

Cat2<- rep(Cat2Names[2],length(juvs[,1])) 

juvs<- cbind(juvs,Cat2) 

 

YRFem<- subset(subset(KWdata, Cat1 == 'Female') 

                ,Age >= YRFemAges[1] & Age <= YRFemAges[2])                     

Cat2<- rep(Cat2Names[3],length(YRFem[,1])) 

YRFem<- cbind(YRFem,Cat2) 
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ORFem<- subset(subset(KWdata, Cat1 == 'Female') 

                ,Age >= ORFemAges[1] & Age <= ORFemAges[2])                      

Cat2<- rep(Cat2Names[4],length(ORFem[,1])) 

ORFem<- cbind(ORFem,Cat2) 

 

PRFem<- subset(subset(KWdata, Cat1 == 'Female') 

                ,Age >= PRFemAges[1])                                            

Cat2<- rep(Cat2Names[5],length(PRFem[,1])) 

PRFem<- cbind(PRFem,Cat2) 

 

YMMal<- subset(subset(KWdata, Cat1 == 'Male') 

                ,Age >= YMMalAges[1] & Age <= YMMalAges[2])                      

Cat2<- rep(Cat2Names[6],length(YMMal[,1])) 

YMMal<- cbind(YMMal,Cat2)                 

                 

OMMal<- subset(subset(KWdata, Cat1 == 'Male') 

                ,Age >= OMMalAges[1] & Age <= OMMalAges[2])                      

Cat2<- rep(Cat2Names[7],length(OMMal[,1])) 

OMMal<- cbind(OMMal,Cat2)  

 

Count_Calves <- CountFun(calvs$Count,calvs$Year)  

Count_Juvs   <- CountFun(juvsC$Count,juvsC$Year)  

Count_YRFem  <- CountFun(YRFem$Count,YRFem$Year) 

Count_ORFem  <- CountFun(ORFem$Count,ORFem$Year) 

Count_PRFem  <- CountFun(PRFem$Count,PRFem$Year)           

Count_YMMal  <- CountFun(YMMal$Count,YMMal$Year) 

Count_OMMal  <- CountFun(OMMal$Count,OMMal$Year) 

 

df.abundances<- as.data.frame(cbind(seq(Period[1],Period[2],1),Count_Calves, 

    Count_Juvs,Count_YRFem,Count_ORFem,Count_PRFem,Count_YMMal,Count_OMMal))    

colnames(df.abundances)<- c("Year",Cat2Names)    

 

Total_KW<- apply(df.abundances[-1],1,sum) 

df.abundances<- cbind(df.abundances,Total_KW) 

 

write.table(df.abundances, file = paste('Counts by 

Year',Population[1],Period[1],"-",Period[2],'.csv'), sep=',', quote = FALSE, 

row.names = FALSE) 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@  3.ESTIMATING SURVIVALS & FECUNDITIES     @@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#This section estimates the KW survivals and fecundities (Vital rates) for the  

#different age categories. See section 2.2 Killer Whale matrix population        

# modeling of the report.  

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

#***************************        Juveniles   ******************************** 

SurtempJ<- 0. 

for (j in 1:length(juvs$Year)){                                                    

    SurtempJ [j]<- (1/juvs$Count[j])*juvs$Count[j+YRFemAges[1]]                  

    } 

SurtempJ <- c(NA,SurtempJ[-length(juvs$Year)])                                   

 

Temp1     <- subset(rbind(YRFem,YMMal), Age == 10)                               

F_yearM_F <- factor(Temp1$Year)                                                  

factor.juvs <- tapply(Temp1$Count,F_yearM_F,sum)  

Countjuvs= as.integer(factor.juvs) 

 

Temp1df<- data.frame(Year= seq(min(Temp1$Year),max(Temp1$Year),1), 

Age=rep(10,length(Countjuvs)),        

          Count=Countjuvs, Offspring=rep(NA,length(Countjuvs)), 

Cat1=rep('M+F',length(Countjuvs)),Cat2=rep('Juvs2',length(Countjuvs))) 
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Temp2df<- rbind(subset(juvs, Age == JuvsAges[2]),Temp1df)                        

                                                    

Surtemp10s<- 0. 

for (k in 1:length(Temp2df$Year)){                                               

     Surtemp10s[k]<- (1/Temp2df$Count[k])*Temp2df$Count[k+length(Temp1df$Year)+1] 

    } 

Surtemp10s<-Surtemp10s[-seq((length(Females[Females$Age==YRFemAges[1],]$Year)+1), 

                      (length(Females[Females$Age==YRFemAges[1],]$Year)*2),1)]     

    

Dummy5<- cbind(juvs,SurtempJ) [cbind(juvs,SurtempJ) $Age ==1,]                  

Dummy5$SurtempJ<-Surtemp10s                                                      

Dummy6<- cbind(juvs,SurtempJ) [!(cbind(juvs,SurtempJ) $Age==1),]                

Dummy7<-rbind(Dummy5,Dummy6) 

Dummy7$Age<-ifelse(Dummy7$Age==1, 10,Dummy7$Age)                                

Dummy8 <- Dummy7[order(Dummy7$Year,Dummy7$Age),]                          

Dummy9<- subset(Dummy8, Age>=JuvsAges[1]+1 & Age <=JuvsAges[2]+1) 

Dummy10<- subset(Dummy9, Dummy9$SurtempJ!= "NaN")                                

F_SurvJuvsYear <- factor(Dummy10$Year)                                          

Juvenile_Survival <- as.numeric(tapply(Dummy10$SurtempJ,F_SurvJuvsYear, mean))      

 

 

#***************************        Calves     ********************************* 

 

Dummy11<- subset(Dummy8, Age==JuvsAges[1]) 

Dummy11<- subset(Dummy11, Dummy11$SurtempJ!= "NA")  

Calf_Survival<- Dummy11$SurtempJ 

 

#***************************        Females    ********************************* 

#This procedure is different from the one above used to estimate the survival of 

#juveniles.  

#The main reason is that it uses a four loop plus a index (IND) which allows     

# adding a year to the max age each year. For example, if in 1990 the max age of 

# femaleswas 56, in 1991 the max age will be 57. The procedure also allows       

# estimating all survivals of the different groups of females at once, rather    

# than one at the time.    

 

IND<- rep(0:(length(Females[Females$Age==YRFemAges[1],]$Year)-

1),length(Females[Females$Year==min(Females$Year),]$Year):length(Females[Females$

Year==max(Females$Year),]$Year))        

 

SurFem<-0.                                                               

for (j in 1:length(Females$Year)){                                                  

    SurFem [j]<- (1/Females$Count[j])*Females$Count[j+(max(Females[Females$Year== 

min(Females$Year),]$Age) -YRFemAges[1]+2+IND[j])]                        

    } 

 

FemaleSurvs<- as.data.frame(cbind(Females,SurFem)) 

FemaleSurvs<- subset(FemaleSurvs, FemaleSurvs$SurFem!= "NaN") 

 

YRFSurvs<- subset(FemaleSurvs, Age >= YRFemAges[1] & Age <=YRFemAges[2]) 

F_SurvYRFYear <- factor(YRFSurvs$Year)                                                

F1_Survival <- as.numeric(tapply(YRFSurvs$SurFem,F_SurvYRFYear, mean))  

  

ORFSurvs<- subset(FemaleSurvs, Age >= ORFemAges[1] & Age <=ORFemAges[2]) 

F_SurvORFYear <- factor(ORFSurvs$Year)                                               

F2_Survival <- as.numeric(tapply(ORFSurvs$SurFem,F_SurvORFYear, mean))  

   

PRFSurvs<- subset(FemaleSurvs, Age >= PRFemAges[1] & Age <=PRFemAges[2]) 

F_SurvPRFYear <- factor(PRFSurvs$Year)                                               

F3_Survival <- as.numeric(tapply(PRFSurvs$SurFem,F_SurvPRFYear, mean))  

         

 

#***************************        Males      ********************************* 
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INDm<- rep(0:(length(Males[Males$Age==YMMalAges[1],]$Year)-

1),length(Males[Males$Year==min(Males$Year),]$Year):length(Males[Males$Year==max(

Males$Year),]$Year))        

 

SurMal<-0.  

for (j in 1:length(Males$Year)){                                               

    SurMal [j]<- (1/Males$Count[j])*Males$Count[j+(max(Males[Males$Year== 

min(Males$Year),]$Age)-YMMalAges[1]+2+INDm[j])]                        

    } 

 

Malesurvs<- as.data.frame(cbind(Males,SurMal)) 

Malesurvs<- subset(Malesurvs, Malesurvs$SurMal!= "NaN") 

 

YMMSurvs<- subset(Malesurvs, Age >= YMMalAges[1] & Age <=YMMalAges[2]) 

F_SurvYMMYear <- factor(YMMSurvs$Year)                                               

M1_Survival <- as.numeric(tapply(YMMSurvs$SurMal,F_SurvYMMYear, mean))  

 

 

OMMSurvs<- subset(Malesurvs, Age >= OMMalAges[1] & Age <=OMMalAges[2]) 

F_SurvOMMYear <- factor(OMMSurvs$Year)                                                

M2_Survival <- as.numeric(tapply(OMMSurvs$SurMal,F_SurvOMMYear, mean))  

 

 

Year<- seq(min(KWdata$Year),max(KWdata$Year)-1,1) 

SurvTable<- cbind(Year, Calf_Survival, 

Juvenile_Survival,F1_Survival,F2_Survival,F3_Survival,M1_Survival, M2_Survival)   

 

 

F_yearYRFem <- factor(YRFem$Year)                                              

Offs.YRFem <- as.numeric(tapply(YRFem$Offspring , F_yearYRFem, sum))                         

Count.YRFem <- as.numeric(tapply(YRFem$Count, F_yearYRFem, sum))   

F1_Fecundity<- Offs.YRFem/Count.YRFem 

 

F_yearORFem <- factor(ORFem$Year)                                              

Offs.ORFem <- as.numeric(tapply(ORFem$Offspring , F_yearORFem, sum))  

Count.ORFem <- as.numeric(tapply(ORFem$Count, F_yearORFem, sum))  

F2_Fecundity<- Offs.ORFem/Count.ORFem                       

 

YearOff<- seq(min(KWdata$Year),max(KWdata$Year),1)    

OffspringTable<- cbind(YearOff, F1_Fecundity,F2_Fecundity ) 

 

SurvTable 

OffspringTable    

  

SurvTable2<- rbind(SurvTable[,-1],rep(NA,7))    

OffsprTable2<-OffspringTable[,-1] 

 

VR_orig<- cbind(SurvTable2,OffsprTable2) 

write.table(cbind(OffspringTable[,1],VR_orig), file = paste('Vital rates 

estimates',Population[1],Period[1],"-",Period[2],'.csv'), sep=',', quote = FALSE, 

row.names = FALSE) 

 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@   4.DETERMINISTIC MATRIX ELEMENTS AND MEAN MATRIX        @@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>>             

#This section produces a series of matrix elements constructed from the  

#vital rates estimated previously. See section 2.2 Killer Whale matrix population 

#modeling of the report.     

 

 

SurvSigma<- as.numeric(colMeans(SurvTable, na.rm = TRUE, dims = 1))[-1]           

MaxAge<-c(CalfAges[2],JuvsAges[2], YRFemAges[2],ORFemAges[2], 

max(PRFem[PRFem$Count>0,]$Age),YMMalAges[2],max(OMMal[OMMal$Count>0,]$Age)) 

SurvGamma<-c(1, 1/(MaxAge[2]-MaxAge[1]), 1/(MaxAge[3]-MaxAge[2]),  1/(MaxAge[4]-
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MaxAge[3]),  1/(MaxAge[5]-MaxAge[4]), 1/(MaxAge[6]-MaxAge[2]),1/(MaxAge[7]-

MaxAge[6]) ) 

  

Temp1.Mal<-Temp1[Temp1$Cat1=='Male',]                                           

Temp1.Fem<-Temp1[Temp1$Cat1=='Female',]  

Perc.Mal<-Temp1.Mal[3]/(Temp1.Mal[3]+Temp1.Fem[3])                                 

Perc.Fem<-Temp1.Fem[3]/(Temp1.Mal[3]+Temp1.Fem[3])                                

Mean.Perc.Mal<- colMeans(Perc.Mal,na.rm = TRUE);Var.Perc.Mal<- var(Perc.Mal,na.rm 

= TRUE)       

Mean.Perc.Fem<- colMeans(Perc.Fem,na.rm = TRUE);Var.Perc.Fem<- var(Perc.Fem,na.rm 

= TRUE)   

 

Mean.Ratio.Mal<- sum(Temp1.Mal[3])/sum(Temp1.Mal[3]+Temp1.Fem[3])                 

Mean.Ratio.Fem<- sum(Temp1.Fem[3])/sum(Temp1.Mal[3]+Temp1.Fem[3])                 

 

PercentPhi<- c(NaN,NaN,as.numeric(Mean.Ratio.Fem[1]),NaN,NaN, 

as.numeric(Mean.Ratio.Mal[1]), NaN) 

MuOffsp<- c(0,0,na.omit(mean(F1_Fecundity)),na.omit(mean(F2_Fecundity)),0,0,0) 

  

VitalR<- rbind(SurvSigma,MaxAge,SurvGamma,PercentPhi,MuOffsp)                    

 

                             # <<< Matrix Elements>>> 

 

P1=SurvSigma[1] *(1-SurvGamma[1]) 

P2=SurvSigma[2] *(1-SurvGamma[2]) 

P3=SurvSigma[3] *(1-SurvGamma[3]) 

P4=SurvSigma[4] *(1-SurvGamma[4])  

P5=SurvSigma[5]    

P6=SurvSigma[6] *(1-SurvGamma[6])  

P7=SurvSigma[7]    

 

G1<-SurvSigma[1]^0.5  

G2f<-SurvSigma[2]*SurvGamma[2]*PercentPhi[3] 

G3<-SurvSigma[3]*SurvGamma[3] 

G4<-SurvSigma[4]*SurvGamma[4] 

G2m<-SurvSigma[2]*SurvGamma[2]*PercentPhi[6]  

G5<-SurvSigma[6]*SurvGamma[6] 

                               

#***************************      MEAN MATRIX       **************************** 

  

CalveMat<-c(0,G1,0,0,0,0,0)   

JuvMat  <-c(G1*(((1+P2)*MuOffsp[2])+(G2f*MuOffsp[3]))/2, P2,G2f,0,0,G2m,0)  

YoFemMat<-c(G1*(((1+P3)*MuOffsp[3])+(G3* MuOffsp[4]))/2, 0,P3,G3,0,0,0)  

OlFemMat<-c(G1*(((1+P4)*MuOffsp[4])+(G4* MuOffsp[5]))/2, 0,0,P4,G4,0,0) 

PRFemMat<-c(0,0,0,0,P5,0,0) 

YoMalMat<-c(0,0,0,0,0,P6,G5)  

OlMalMat<-c(0,0,0,0,0,0,P7) 

 

MeanMat<- 

as.matrix(cbind(CalveMat,JuvMat,YoFemMat,OlFemMat,PRFemMat,YoMalMat,OlMalMat))#, 

dimnames = list(Cat2Names,Cat2Names),byrow = TRUE)  

write.table(MeanMat, file = paste('MeanMatrix',Population[1],'.csv'), sep=',', 

quote = FALSE, row.names = FALSE) 

cat(paste('Mean Matrix',Population[1]),'(saved in working 

folder)',"\n");print(MeanMat) 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@         5.ALIVE IN LAST YEAR              @@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

                                 

#This section estimates the percentage of individuals alive in a determined year 

#(Year_Q) by year of birth. It determines how young or senile the population in  

#a year is.  

 

Year_Q <- Period[2]    # Year of the query, by default the last year in Period.  
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#It could be change e.g. 1987.  

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

tempalive<- KWdata[KWdata$Year==Year_Q,] 

F_Agetempalive<- factor(tempalive$Age)                                              

tempalive2 <- as.numeric(tapply(tempalive$Count, F_Agetempalive, sum)) 

tempalive3<-tempalive2/sum(tempalive2) 

 

Yearsback<- seq(Year_Q,Year_Q-length(tempalive3)+1,-1)            

alive<- cbind(Yearsback,tempalive3*100) 

colnames(alive)<-c('Year','Percentage')   

write.table(alive, file =paste('Alive',Year_Q[1],Population[1],'.csv') , sep=',', 

quote = FALSE, row.names = FALSE) 

 

graphics.off()                                                                   

pdf(paste('Alive',Year_Q[1],Population[1] ,'.pdf'),width=12,height=8) 

plot(alive, type='h', lwd=2, main=paste('Percentage of individuals alive 

in',Year_Q[1],'by year of birth'), ylim=c(0,10), ylab='percentage')  

dev.off() 

 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@  6.BASIC MATRIX ESTIMATES  @@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#This section estimates dominant lambda and other eigenvectors, the stable stage 

#distribution (and population projection), and the damping ratio. See section  

#2.5 of the report.   

 

#<<<Prior Running the following modules, these R packages must be installed.  

# Select "YES" from install all packages in settings. Every time a new R version 

# is installed, packages need to be re-installed.>>> 

 

Sims<- 1000           #Number of simulations  used for the population projection 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

if(install_pcks == "YES"){   

install.packages("popbio")  

install.packages("lattice") 

install.packages("betareg")} 

 

library(popbio) 

library(lattice) 

library(betareg)                      

 

#**********************     Estimating Eigen Vactors        ******************* 

 

eigenall (MeanMat) 

 

#**********************        Population Projection         ******************* 

 

# Creating a projection Matrix 

  

nlastYear<- c( 

sum(calvs[calvs$Year==max(KWdata$Year),]$Count), 

sum(juvs [ juvs$Year==max(KWdata$Year),]$Count)-

sum(calvs[calvs$Year==max(KWdata$Year),]$Count), 

sum(YRFem[YRFem$Year==max(KWdata$Year),]$Count), 

sum(ORFem[ORFem$Year==max(KWdata$Year),]$Count), 

sum(PRFem[PRFem$Year==max(KWdata$Year),]$Count), 

sum(YMMal[YMMal$Year==max(KWdata$Year),]$Count), 

sum(OMMal[OMMal$Year==max(KWdata$Year),]$Count)) 

 

propLastYear<-nlastYear/sum(nlastYear)  
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CountsLastyear<- data.frame(Cat2Names,nlastYear,propLastYear)                    

   

p.projection <- pop.projection(MeanMat, nlastYear, Sims) 

  

CountsLastYearOrd <- CountsLastyear[order(CountsLastyear$nlastYear),]            

StableStage<-p.projection$stage.vectors                                           

Cat2Names->rownames(StableStage)                                                  

 

write.table(StableStage, file = paste('Stable State 

Values',Population[1],Period[1],'-',Period[2],'.csv'), sep=',', quote = TRUE, 

row.names = TRUE)                                                                              

write.table(CountsLastYearOrd, file = paste('Counts and Proportions 

T0',Population[1],Period[1],'-',Period[2],'.csv'), sep=',', quote = TRUE, 

row.names = TRUE)        

 

eigVals  <- eigen.analysis(MeanMat) 

eigVals 

Lambda1<- eigVals$lambda1 

 

ResultsLambda<- eigenall (MeanMat)  

DampTime10 <- log(10) / (log(Lambda1 / ResultsLambda$lambdas[2]))  

DampTime10<- c("damping ratio'", round(DampTime10,0)) 

 

write.table(DampTime10, file = paste('Damping Time',Population[1],Period[1],'-

',Period[2],'.txt'), sep=',', quote = TRUE, col.names=FALSE, row.names = FALSE)    

cat(paste('Damping time @ Z=10',Population[1]),'(Saved to 

Folder)',"\n");print(DampTime10) 

 

graphics.off()                                                                   

pdf(paste('Stable Stage Projection',Population[1],Period[1],'-',Period[2] 

,'.pdf'),width=8,height=8) 

stage.vector.plot(StableStage,proportions=TRUE, legend.coords="topright",  

        ylim=c(0,max(CountsLastYearOrd$propLastYear)+0.1), xlab="Years into the 

future", xlim=c(-2, 50), 

        ylab='proportion of total population', col=rainbow(7), main=paste("Stable 

Stage Projection from", 

        Population[1], Period[1],'-',Period[2])) 

        text(5, y = CountsLastYearOrd$propLastYear, labels = 

round(CountsLastYearOrd$nlastYear,0), col = 2, font = 2, cex=1) 

        text(10, y = max(CountsLastYearOrd$propLastYear)+0.05, labels = 

paste('Counts',Period[2]), col = 2, font = 2, cex=1) 

dev.off() 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>>    

#<<<@@@@@    7. DETERMINISTIC VITAL RATE ELASTICITY AND SENSITIVITY      @@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section estimates deterministic sensitivities of vital rates, and  

# deterministic elasticities of vital rates. See section 2.5 Perturbation        

# analysis of the report for more information.   

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

#***************             Defining Vital Rates            ******************* 

 

MeansSigma<- as.numeric(colMeans(SurvTable, na.rm = TRUE, dims = 1))[-1]          

VarsSigma<- as.numeric(apply(SurvTable, 2, var,na.rm = TRUE))[-1]                 

 

MeansMuOffsp<- c(0,0,mean(F1_Fecundity),mean(F2_Fecundity),0,0,0)                  

VarsMuOffsp<- c(0,0,var(F1_Fecundity),var(F2_Fecundity),0,0,0)                    

                                                                      

SummaryVrs<- data.frame(Cat2Names,MeansSigma,VarsSigma, MeansMuOffsp, 

VarsMuOffsp) 

names(SummaryVrs)<-  c('Category','Mean_Surv', 'Var_Surv', 'Mean_Offspr', 

'Var_Offspr')    
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write.table(SummaryVrs, file = paste('Stats by 

Category',Population[1],Period[1],'-',Period[2],'.csv'), sep=',', quote = TRUE, 

row.names = FALSE)  

  

symsN<- 

c('Ss1','Ss2','Ss3','Ss4','Ss5','Ss6','Ss7','Sg2','Sg3','Sg4','Sg6','Sp2','Sp3','

Sf3','Sf4') 

 

Ss1 = SurvSigma[1]       

Ss2 = SurvSigma[2] 

Ss3 = SurvSigma[3] 

Ss4 = SurvSigma[4] 

Ss5 = SurvSigma[5] 

Ss6 = SurvSigma[6] 

Ss7 = SurvSigma[7] 

Sg2 = SurvGamma [2] 

Sg3 = SurvGamma [3] 

Sg4 = SurvGamma [4] 

Sg6 = SurvGamma [6] 

Sp2 = PercentPhi[3] 

Sp3 = PercentPhi[6] 

Sf3 = MeansMuOffsp [3] 

Sf4 = MeansMuOffsp [4] 

MeanVR=c(Ss1,Ss2,Ss3,Ss4,Ss5,Ss6,Ss7,Sg2,Sg3,Sg4,Sg6,Sp2,Sp3,Sf3,Sf4) 

 

#***********      Deterministic Elasticities of Vital Rates        ************* 

 

#Using POPbio fun vitalsens 

KW.vr<- list(Ss1=Ss1 ,Ss2=Ss2 ,Ss3=Ss3 ,Ss4=Ss4 ,Ss5=Ss5 ,Ss6=Ss6, Ss7=Ss7 

,Sg2=Sg2 ,Sg3=Sg3, Sg4=Sg4 ,Sg6=Sg6 ,Sp2=Sp2 ,Sp3=Sp3 ,Sf3=Sf3 ,Sf4=Sf4) 

 

KW.el<- expression( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7 

        )  

 

KW.mat<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        )  

  

KW.n<-length(KW.vr); vr<-seq(0,1,.1) 

vrsen<-matrix(numeric(KW.n*length(vr)), ncol=KW.n, dimnames=list(vr, 

names(KW.vr))) 

 

for (h in 1:KW.n) 

{ 

KW.vr2<-list(Ss1=Ss1 ,Ss2=Ss2 ,Ss3=Ss3  ,Ss4=Ss4 ,Ss5=Ss5 ,Ss6=Ss6 ,Ss7=Ss7 

,Sg2=Sg2 ,Sg3=Sg3 ,Sg4=Sg4 ,Sg6=Sg6  ,Sp2=Sp2 ,Sp3=Sp3 ,Sf3=Sf3 ,Sf4=Sf4) 

for (i in 1:length(vr)){ 

KW.vr2[[h]]<-vr[i] 

A<-matrix(sapply(KW.el, eval,KW.vr2,NULL), nrow=sqrt(length(KW.el)), byrow=TRUE) 
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vrsen[i,h] <- max(Re(eigen(A)$values)) 

}} 

 

graphics.off() 

pdf(paste('Effects of changing KW VRs ', Period[1],'-',Period[2],Population[1] 

,'.pdf'),width=8,height=8) 

matplot(rownames(vrsen), vrsen, type='l', lwd=2, las=1, col= rainbow(15), 

lty=1:15, 

ylab="KW population growth", xlab="Value of vital rate",   

main=paste("Effects of changing KW vital rates ", Period[1],'-

',Period[2],Population[1])) 

vrn<-

expression('Ss1','Ss2','Ss3','Ss4','Ss5','Ss6','Ss7','Sg2','Sg3','Sg4','Sg6','Sp2

','Sp3','Sf3','Sf4') 

legend(.05, max(vrsen), vrn, lwd=2, lty=1:15, col= rainbow(15), cex=0.75, 

border="gray100") 

dev.off() 

 

graphics.off()  

pdf(paste('Det. VRs Sensitivity and Elasticity', Period[1],'-

',Period[2],Population[1],'.pdf'),width=12,height=8)                                                                 

x.KW<-vitalsens(KW.el, KW.vr) 

sum(x.KW$elasticity) 

barplot(t(x.KW[,2:3]), beside=TRUE, legend=TRUE, las=1, xlab="Vital rate", 

main=paste("KW vital rate sensitivity and elasticity",Period[1],'-

',Period[2],Population[1])) 

abline(h=0, lwd=2, col=1) 

dev.off() 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@    8.STOCHASTIC VITAL RATE ELASTICITY AND SENSITIVITY       @@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section estimates stochastic sensitivities of vital rates, and  

# stochastic elasticities of vital rates as well as it produces a series of  

# elasticity statistics. The procedure uses stochastic sampling of beta and  

# lognormal distributions fit to the KW vital rate data. See section 

# 2.5 Perturbation analysis of the report for more information.   

 

reps=Sims                    # number of repetitions used in stochastic sampling  

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

VDts1 =  'beta'  

VDts2 =  'beta'     

VDts3 =  'beta'    

VDts4 =  'beta'    

VDts5 =  'beta'   

VDts6 =  'beta'    

VDts7 =  'beta'   

VDtg2 =  'lognorm' 

VDtg3 =  'lognorm'  

VDtg4 =  'lognorm'  

VDtg6 =  'lognorm'  

VDtp2 =  'lognorm'  

VDtp3 =  'lognorm'  

VDtf3 =  'lognorm' 

VDtf4 =  'lognorm' 

VDtVR= 

c(VDts1,VDts2,VDts3,VDts4,VDts5,VDts6,VDts7,VDtg2,VDtg3,VDtg4,VDtg6,VDtp2,VDtp3,V

Dtf3,VDtf4) 

VDtVR_T <- cbind(symsN,VDtVR) 

 

#Variances 

Vs1 = VarsSigma[1]                                                               
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Vs2 = VarsSigma[2] 

Vs3 = VarsSigma[3] 

Vs4 = VarsSigma[4] 

Vs5 = VarsSigma[5] 

Vs6 = VarsSigma[6] 

Vs7 = VarsSigma[7] 

Vg2 = 0.00000 

Vg3 = 0.00000 

Vg4 = 0.00000 

Vg6 = 0.00000 

Vp2 = 0.00000 

Vp3 = 0.00000 

Vf3 = VarsMuOffsp [3] 

Vf4 = VarsMuOffsp [4] 

VarVR=c(Vs1,Vs2,Vs3,Vs4,Vs5,Vs6,Vs7,Vg2,Vg3,Vg4,Vg6,Vp2,Vp3,Vf3,Vf4) 

 

numvrs <- length(KW.vr)   

randvrsBeta <- matrix(NA, nrow=reps, ncol=numvrs)                                 

randvrsLN <- matrix(NA, nrow=reps, ncol=numvrs)                                   

  

beta.Ind <- which(VDtVR=="beta")                                                

for (i in beta.Ind) { 

    randvrsBeta[,i] <- betarv(m=MeanVR[i], v=VarVR[i], n=reps)                  

}                                   

 

lognorm.Ind <- which(VDtVR=="lognorm") 

for (i in lognorm.Ind) { 

    randvrsLN[,i] <- rlnorm(reps, meanlog=log(MeanVR[i]), sdlog=sqrt(VarVR[i]))   

    } 

 

apply(randvrsBeta,2,function(x){!all(is.na(x))}) 

randvrsBeta<- randvrsBeta[,apply(randvrsBeta,2,function(x){!all(is.na(x))})]  

colnames(randvrsBeta)<- subset(VDtVR_T, VDtVR=="beta")[,1]  

   

apply(randvrsLN,2,function(x){!all(is.na(x))}) 

randvrsLN<- randvrsLN[,apply(randvrsLN,2,function(x){!all(is.na(x))})]   

colnames(randvrsLN)<- subset(VDtVR_T, VDtVR=="lognorm")[,1] 

 

StochRates<- cbind(randvrsBeta,randvrsLN)  

StochRates<- StochRates[,symsN]                                                  

StochRates.df<- as.data.frame(StochRates)  

 

graphics.off() 

pdf(paste('Stochastic Vital rates',Population[1] ,'.pdf'),width=8,height=8) 

par( mar=c(2,2,2,2), oma=c(2,2,2,2) )      

par (mfrow=c(3,3),yaxt='n') 

hist(StochRates.df$Ss1,main='Ss1', xlab="", ylab="") 

hist(StochRates.df$Ss2,main='Ss2', xlab="", ylab="") 

hist(StochRates.df$Ss3,main='Ss3', xlab="", ylab="") 

hist(StochRates.df$Ss4,main='Ss4', xlab="", ylab="") 

hist(StochRates.df$Ss5,main='Ss5', xlab="", ylab="") 

hist(StochRates.df$Ss6,main='Ss6', xlab="", ylab="") 

hist(StochRates.df$Ss7,main='Ss7', xlab="", ylab="") 

hist(StochRates.df$Sf3,main='Sf3', xlab="", ylab="") 

hist(StochRates.df$Sf4,main='Sf4', xlab="", ylab="" ) 

 mtext(paste('Stochastic Vital rates for',Population[1]),     side = 3, outer = 

TRUE, col = "black", cex= 1.2, font = 2) 

 mtext (text= "", side=1, outer=TRUE, cex=1., font = 2 ) 

 mtext (text= " ", side=2,outer=TRUE, cex=1., font = 2 ) 

dev.off() 

 

dev.new(width=7, height=4)    

plot(rep(0,10)~seq(1,10), ylim=c(0,1),type='l',xlab="", ylab="", col='white', 

tck=0) 

axis(1, NULL, col.axis = "white",tcl=0) 
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axis(2, NULL, col.axis = "white",tcl=0 ) 

text(5.3,0.6,  paste("Running Stochastic VR Elasticities 

for",Population[1],'...'),cex=1.5, col=1) 

text(5.3,0.3,  paste(reps,"Repetitions"),cex=1.5, col=1) 

 

df.Elast<- as.data.frame(matrix(NA, nrow=reps, ncol=length(KW.vr))) 

for (i in 1:reps){ 

stoch.KW <-vitalsens(KW.el, as.list(StochRates[i,])) 

df.Elast[i,]<- stoch.KW$elasticity 

} 

colnames(df.Elast)<-names(KW.vr)   

 

graphics.off() 

pdf(paste('Stochastic Elasticity of VR',Population[1],'.pdf'),width=12,height=8) 

boxplot(df.Elast, main=paste('Stochastic Elasticity of Vital rates 

for',Population[1]), ylim=c(0,1), col=rainbow(length(KW.vr))) 

legend(9,1, legend=names(KW.vr), lty=0 , lwd= 1.5, cex= 1, bty='n')  

legend(10,1, legend= VDtVR,       lty=0 , lwd= 1.5, cex= 1, bty='n')   

dev.off() 

 

   

ElasMean.KW <-apply(df.Elast,2,mean) 

ElasMed.KW <- apply(df.Elast,2,median) 

ElasMin.KW <- apply(df.Elast,2,min) 

ElasMax.KW <- apply(df.Elast,2,max) 

ElasQuan.KW<- apply(df.Elast,2,quantile,probs = c(0.05, 0.95)) 

ElasStats.KW<- rbind(ElasMean.KW,ElasMed.KW,ElasMin.KW,ElasMax.KW,ElasQuan.KW) 

 

write.table(ElasStats.KW, file = paste('Stoch. Elasticity 

Stats',Population[1],'.csv'), sep=',') 

cat(paste('Stoch. Elasticity Stats',Population[1]),'(saved in working 

folder)',"\n");print(ElasStats.KW) 

 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>>          

#<<<@@@@@@@@@@@@@@@@@@    9. CHINOOK REGRESSION MODELS    @@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section fits either simple beta or simple linear regression to all 

possible 

# combinations of chinook stock aggregates (abundance or standardized data) and 

KW 

# vital rates. The preference is the beta regression (using package betareg) as  

# it considers the non-normal error structure present in the KW vital rates,  

# particularly survivals. See section 2.4 Functional relationships between RKW 

# vital rates and Chinook salmon abundance for more information. 

 

Use_F.Impacts<- FALSE      # Use Fishery Impacts data and definitions (TRUE or 

#FALSE?  

BetaQ_SR<- "YES"           # BetaQ_SR defines if the simple regressions should  

                           #be run with a Beta "YES" or Linear model "NO"  

p_val=0.05                 # p- value for the regression 

Standr_Data<- "NO"         # Use standarized data? "YES" or "NO" 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

Is.Beta<- ifelse(BetaQ_SR=="YES", '(Beta Regressions)','(Linear Regressions)')  

 

  

if(Use_F.Impacts==FALSE){ 

ChinDefs<- 

read.table(paste(getwd(),'/','R_Inputs','/','Chinook_Ab_Definitions_R.csv',sep=""

),header=T, sep=",")    
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ChinData_raw<- 

read.table(paste(getwd(),'/','R_Inputs','/','ChinookAbundance_Data_R.csv',sep="")

,header=T, sep=",")  

} 

 

if(Use_F.Impacts==TRUE) { 

ChinDefs<- 

read.table(paste(getwd(),'/','R_Inputs','/','Chinook_Ab_Defs_FI_R.csv',sep=""),he

ader=T, sep=",") 

ChinData_raw<- 

read.table(paste(getwd(),'/','R_Inputs','/','ChinookAbundance_FI_R.csv',sep=""),h

eader=T, sep=",") 

} 

ChinData<-  subset(ChinData_raw, Year >= Period[1] & Year <= Period[2])    

  

if(Standr_Data== "NO"){  

ChinData2   <- ChinData[,-1] 

} 

if(Standr_Data== "YES"){  

ChinData2   <- apply(na.omit(ChinData[,-1]),2,Stdz_Fun)  

} 

Chindefs0.1.2 <- ChinDefs                      

Chindefs0.1   <- ChinDefs[!ChinDefs$lag==2,]                                   

Chindefs0.2   <- ChinDefs[!ChinDefs$lag==1,]  

Chindefs1.2   <- ChinDefs[!ChinDefs$lag==0,]  

ChinData0.1<- subset(ChinData2,select=as.vector(Chindefs0.1$TimeSeries))         

ChinData0.2<- subset(ChinData2,select=as.vector(Chindefs0.2$TimeSeries))  

ChinData1.2<- subset(ChinData2,select=as.vector(Chindefs1.2$TimeSeries))  

 

if(BetaQ_SR=="YES"){   

dev.new(width=7, height=4)    

plot(rep(0,10)~seq(1,10), ylim=c(0,1),type='l',xlab="", ylab="", col='white', 

tck=0) 

axis(1, NULL, col.axis = "white",tcl=0) 

axis(2, NULL, col.axis = "white",tcl=0 ) 

text(5.3,0.5,  paste("Running Beta Regressions for",Population[1],'...'),cex=1.5, 

col='red') 

} 

 

if(BetaQ_SR=="NO"){ 

dev.new(width=7, height=4)       

plot(rep(0,10)~seq(1,10), ylim=c(0,1),type='l',xlab="", 

ylab="",tck=0,col='white') 

axis(1, NULL, col.axis = "white",tcl=0 ) 

axis(2, NULL, col.axis = "white",tcl=0 ) 

text(5.3,0.5,  paste("Running Linear Regressions 

for",Population[1],'...'),cex=1.5, col='blue') 

} 

 

ifelse(BetaQ_SR== "YES",  

SurvModsSim<- 

SurvFunB(ChinD=ChinData0.1,SurvT=SurvTable2,Chindef=Chindefs0.1,p_val=p_val),                       

SurvModsSim<- 

SurvFun(ChinD=ChinData0.1,SurvT=SurvTable2,Chindef=Chindefs0.1,p_val=p_val))  

 

ifelse(BetaQ_SR== "YES",  

FecModsSim <- 

FecFunB(ChinD=ChinData2,OffsprT=OffsprTable2,Chindef=Chindefs0.1.2,p_val=p_val),  

FecModsSim <- 

FecFun(ChinD=ChinData2,OffsprT=OffsprTable2,Chindef=Chindefs0.1.2,p_val=p_val))   

 

SimpleRegMods<- rbind(SurvModsSim,FecModsSim) 

SimpleRegMods<- SimpleRegMods[SimpleRegMods$slope>0,]                           

#Filtering out negative slopes. 
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write.table(SimpleRegMods, file = 

paste('SimpleRegModels',Population[1],Is.Beta,'.csv'), sep=',', quote = TRUE, 

row.names = FALSE) 

cat(paste('Selected Simple Regression Models Chinook -

',Population[1],Is.Beta),'(Saved to Folder)',"\n");print(SimpleRegMods) 

graphics.off() 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@      10. NORMAL STRUCTURE TESTS      @@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#This section performs graphical normality diagnostics using a Generalized Simple 

#Linear Regression. It's not necessary to run it for subsequent analyses, it can 

#be skipped using the command skipSection= TRUE or FALSE. 

 

plot= TRUE               # Plot section graphs ? TRUE or FALSE 

ask = FALSE              # Press enter to switch between graphs?  TRUE or FALSE 

skipSection= FALSE      # Skip section ?  TRUE or FALSE 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

if(skipSection==FALSE){ 

ChinD=ChinData0.1 

SurvT=SurvTable2 

Chindef=Chindefs0.1 

storemVR<- matrix(NA, nrow=length(ChinD), ncol=5) 

storem1<- list(storemVR,storemVR, storemVR,storemVR,storemVR,storemVR, storemVR) 

storemREs<-matrix(NA, nrow=length(ChinD), ncol=length(ChinD[,1]))      

storem1REs<-list(storemREs,storemREs, storemREs,storemREs,storemREs,storemREs, 

storemREs)  

                                                                                 

for (i in 1:length(SurvT[1,])){                                                  

    for (j in 1:length(ChinD)){                                                  

 

         y <- SurvT[,i] 

         x <- ChinD[,j] 

     lmSimple   <- glm(y~x, family=gaussian, na.action=na.exclude)              

     coefSimple <- coef(lmSimple)  

     summSimple <- summary(lmSimple) 

                   options(digits=5)  

     Dev.Resid  <- summSimple$deviance.resid                   

     rsqr <-       summSimple[7]                                                 

     p_value    <- summSimple$coefficients[2,4]                                   

storemVR[j,] <- c(i,j,coefSimple[1],coefSimple[2],p_value) 

storem1[[i]] <- storemVR 

storemREs[j,] <-  Dev.Resid  

storem1REs [[i]] <- storemREs 

   } 

   } 

storem1 

SurvMods<- rbind(storem1[[1]],storem1[[2]], storem1[[3]],storem1[[4]], 

storem1[[5]],storem1[[6]], storem1[[7]])  

ResidMods<-rbind(storem1REs[[1]],storem1REs[[2]], 

storem1REs[[3]],storem1REs[[4]], storem1REs[[5]],storem1REs[[6]], 

storem1REs[[7]])   

VRnamex<- rep(colnames(SurvT), each=length(ChinD))             

Runnamex<- rep(colnames(ChinD),length(SurvT[1,]))      

SurvModsnam<- 

c('VitalRate','Chinook_Run','Lag','intercept','slope1','p_value',ifelse(Populatio

n[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))           

ifelse(Population[1]=='NRKW', 

 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$NR_Hyp)[,-(4:5)] 

,  
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 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

SurvModsRes 

colnames(SurvModsRes)<-SurvModsnam 

  

SurvModsResSel<- subset(SurvModsRes, p_value <= p_val)  

SurvModsResSel 

 

ResidMods_p<- as.data.frame(cbind(SurvModsRes,ResidMods))   

ResidMods_p_sel<- subset(ResidMods_p,  p_value <= p_val, digits=3)  

  

graphics.off() 

par( oma=c(2,2,4,2), mar=c(4,2,4,2)) 

par(mfrow=c(4,2),ask=ask) 

   for(i in 1:length(ResidMods_p_sel[,1])){   

   hist(as.numeric(ResidMods_p_sel[i,][-(1:7)]), plot = 

plot,main=paste(ResidMods_p_sel[i,]$VitalRate,'-

',ResidMods_p_sel[i,]$Chinook_Run), 

    

   ylab="", xlab="")  

   mtext(paste("p_value",round(ResidMods_p_sel[i,]$p_value,4)),cex=0.8,side=3)  

   mtext(text=paste("Residuals of",Is.Beta), side=3, outer=TRUE) 

   } 

  

graphics.off() 

par( oma=c(2,2,2,2), mar=c(1.5,2,3,2))   

par(mfrow=c(4,2),ask=F) 

   for(i in 1:length(ResidMods_p_sel[,1])){   

   qqnorm(as.numeric(ResidMods_p_sel[i,][-(1:7)]), plot = plot, 

main=paste(ResidMods_p_sel[i,]$VitalRate,'-',ResidMods_p_sel[i,]$Chinook_Run),  

   ylab="", xlab="") 

   qqline(as.numeric(ResidMods_p_sel[i,][-(1:7)]), col=2) 

   mtext(paste("p_value",round(ResidMods_p_sel[i,]$p_value,4)),cex=0.8,side=3)  

   mtext (text=paste("NORMAL QQ-PLot p_value < ",p_val), side = 3, outer = TRUE, 

font=2) 

   } 

graphics.off() 

} 

 

if(skipSection==TRUE){ 

addSkip<- c(paste('No graphical tests of normality performed')) 

print(addSkip) 

} 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@      11. ELASTICITIES OF INTERACTIONS- MATRIX PERT.          @@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section calculates the elasticity of KW vital rates using matrix 

#perturbation.  

# It considers the effect of chinook abundance on the vital rates in the simple 

#regressions.  

# There are two available approaches (variants): 

# variant 1      Elasticity X = ((lambda_B/lambda_A)-1)/((x_B/x_A)-1) 

# variant 2      Elasticity X = elast.median_VR((vr_B/vr_A)-1)/((x_B/x_A)-1)                     

# For more information see section 2.5.2 Quantification of Chinook salmon 

abundance 

# levels for RKW viability. 

# Graphic output:  Hypothesis 1(a=blue)(b= green), 2(a,b) in gray. 

                                                                                   

percIncr <- 0.1        #(0.1 =10%) Percentage increment of chinook abundance                                                                        

Variant<- 2            # or 1 . Use 2 as default because it includes 95% CI.  

inputTable<-           SimpleRegMods              

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 
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VRnames_SF<- c(colnames(SurvTable2),colnames(OffsprTable2))                      

MeanVR_SF<-c(Ss1,Ss2,Ss3,Ss4,Ss5,Ss6,Ss7,Sf3,Sf4) 

MeanVR_SFnam<-c('Ss1_','Ss2_','Ss3_','Ss4_','Ss5_','Ss6_','Ss7_','Sf3_','Sf4_') 

symsNVR<- c("Ss1","Ss2","Ss3","Ss4","Ss5","Ss6","Ss7","Sf3","Sf4") 

Table_SF<- data.frame(VRnames_SF, MeanVR_SF, MeanVR_SFnam, symsNVR) 

 

RegMod<- inputTable    

 

RegMod$MatName  <- 

Table_SF$MeanVR_SFnam[match(RegMod$VitalRate,Table_SF$VRnames_SF)]  

 

RegMod$VR_Name <- Table_SF$symsNVR[match(RegMod$VitalRate ,Table_SF$VRnames_SF)]  

TableStc.elas <- as.data.frame(t(ElasStats.KW)) 

 

colnames(TableStc.elas)<- 

c('ElasMean.KW','ElasMed.KW','ElasMin.KW','ElasMax.KW','CI_5','CI_95') 

TableStc.elas$Sx <- rownames(TableStc.elas)   

 

RegMod$E.VR_Stc <- 

TableStc.elas$ElasMed.KW[match(RegMod$VR_Name,TableStc.elas$Sx)]        

RegMod$E.VR_95  <- TableStc.elas$CI_95[match(RegMod$VR_Name,TableStc.elas$Sx)]    

#For the 95%    

  

PerturbNames  <- data.frame(KW.matNames, MeanVR_SFnam) 

RegMod$PerturbMat <- 

PerturbNames$KW.matNames[match(RegMod$MatName,PerturbNames$MeanVR_SFnam)]  

  

X_A<-colMeans(na.omit(ChinData))[-1] 

RegMod$X_A <- X_A[match(RegMod$Chinook_Run,names(X_A))]     

                              

if (BetaQ_SR=="NO") { 

VR_A<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_A [e] <- RegMod$intercept[e]+ (RegMod$slope1[e] * RegMod$X_A[e]) 

} 

RegMod$VR_A<-VR_A  

}                                                                                 

  

if (BetaQ_SR=="YES") {   

VR_A<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_A [e] <-  1/(1+exp(-RegMod$intercept[e]-(RegMod$slope1[e] * RegMod$X_A[e]))) 

} 

RegMod$VR_A<-VR_A                                                        

} 

  

df.list <- vector("list", length(RegMod[,1]))  

for(i in 1:length(RegMod[,1])){df.list[[i]] <- matrix(data = NA, 

                                     nrow = 7, 

                                     ncol = 7, 

                                     byrow = FALSE, 

                                     dimnames = NULL)} 

  

for (f in 1:length(RegMod[,1])){ 

  

 if(RegMod$MatName[f]=='Ss1_') {df.list[[f]]<- FunTSs1(RegMod$VR_A[f])}  

 if(RegMod$MatName[f]=='Ss2_') {df.list[[f]]<- FunTSs2(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss3_') {df.list[[f]]<- FunTSs3(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss4_') {df.list[[f]]<- FunTSs4(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss5_') {df.list[[f]]<- FunTSs5(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss6_') {df.list[[f]]<- FunTSs6(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss7_') {df.list[[f]]<- FunTSs7(RegMod$VR_A[f])}  

 if(RegMod$MatName[f]=='Sf3_') {df.list[[f]]<- FunTSf3(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Sf4_') {df.list[[f]]<- FunTSf4(RegMod$VR_A[f])} 
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 } 

  

RegMod$LambdaA<- as.numeric(unlist(lapply(df.list,lambda))) 

RegMod$X_B<- RegMod$X_A*(1+percIncr)   

     

if (BetaQ_SR=="NO") { 

VR_B<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_B [e] <- RegMod$intercept[e]+ (RegMod$slope1[e] * RegMod$X_B[e]) 

} 

RegMod$VR_B<-VR_B  

}                                                                                 

 

if (BetaQ_SR=="YES") {   

VR_B<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_B [e] <-  1/(1+exp(-RegMod$intercept[e]-(RegMod$slope1[e] * RegMod$X_B[e]))) 

} 

RegMod$VR_B<-VR_B                                                         

} 

  

for (f in 1:length(RegMod[,1])){ 

 if(RegMod$MatName[f]=='Ss1_') {df.list[[f]]<- FunTSs1(RegMod$VR_B[f])}      

 if(RegMod$MatName[f]=='Ss2_') {df.list[[f]]<- FunTSs2(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss3_') {df.list[[f]]<- FunTSs3(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss4_') {df.list[[f]]<- FunTSs4(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss5_') {df.list[[f]]<- FunTSs5(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss6_') {df.list[[f]]<- FunTSs6(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss7_') {df.list[[f]]<- FunTSs7(RegMod$VR_B[f])}  

 if(RegMod$MatName[f]=='Sf3_') {df.list[[f]]<- FunTSf3(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Sf4_') {df.list[[f]]<- FunTSf4(RegMod$VR_B[f])} 

 } 

RegMod$LambdaB<- as.numeric(unlist(lapply(df.list,lambdaPop))) 

ElX_V1<-  ((RegMod$LambdaB/RegMod$LambdaA)-1)/((RegMod$X_B/RegMod$X_A)-1) 

ElX_V2    <-   (RegMod$E.VR_Stc*((RegMod$VR_B/RegMod$VR_A)-

1))/((RegMod$X_B/RegMod$X_A)-1)         

ElX_V2_95 <-   (RegMod$E.VR_95* ((RegMod$VR_B/RegMod$VR_A)-

1))/((RegMod$X_B/RegMod$X_A)-1)     

 

graphics.off()                                                                   

pdf(paste('Comparison of Variant 1 and 2',Population[1],'.pdf'),width=8,height=8) 

plot(ElX_V1,ElX_V2, xlab="Variant1", ylab="Variant2", main="Comparing Elasticity 

Variants") 

abline(coef=c(0,1),col='red', lwd=2) 

dev.off() 

 

ifelse(Variant==1, 

RegMod$Elast.Inter <- ElX_V1 , 

RegMod$Elast.Inter <- ElX_V2) 

RegMod$Elast.Inter95<- ElX_V2_95 

   

RegModPos<- subset(RegMod, slope1>=0)   

RegModPos<- RegModPos[order(RegModPos$Chinook_Run),]    

 

RegModPos<- subset(RegModPos,MatName  != "Ss5_"& MatName  != "Ss6_"& MatName  != 

"Ss7_") 

  

ifelse(Population[1]=='SRKW', 

RegModPos <- subset(RegModPos, SR_Hyp != 'NA' & SR_Hyp !='Hybrid'),                

RegModPos <- subset(RegModPos, NR_Hyp != 'NA' & NR_Hyp !='Hybrid'))      

  

FreqVRs= as.data.frame(table(factor(RegModPos$VitalRate)) )               

UniqDF<-  unique(factor(RegModPos$VitalRate))                          

NAsdm<- rep(NA,length(UniqDF))                                               
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graphics.off()                                                                   

pdf(paste('Elasticities of Interaction Method Matrix 

Pert.',Population[1],Is.Beta[1],'.pdf'),width=12,height=8) 

facVRT <- factor(RegModPos$VitalRate) 

barchart(Elast.Inter~Chinook_Run | facVRT, data= RegModPos, horiz=F, layout = 

c(1,length(UniqDF)), box.ratio=1,  

 ylim=c(0,max(RegModPos$Elast.Inter)+0.005), xlab="Chinook Regressions", 

cex=4,ylab=paste("Elasticity - Variant", Variant[1]),  

col= ifelse(Population[1]=='NRKW','royalblue1','yellowgreen'), type="p",  

main=paste('Elasticities of Interaction - Method Matrix 

Pert.',Population[1],Is.Beta[1]), bg="white",    

scales=list(x=list(rot=90, tck=c(-74,0), col='grey5', 

labels=paste(unique(RegModPos$Chinook_Run))))) 

dev.off() 

Elast_Ss1  <-  funElastCI('Calf_Survival', RegModPos) 

Elast_Ss2  <-  funElastCI('Juvenile_Survival', RegModPos) 

Elast_Ss3  <-  funElastCI('F1_Survival', RegModPos) 

Elast_Ss4  <-  funElastCI('F2_Survival', RegModPos) 

Elast_Ss5  <-  funElastCI('F3_Survival', RegModPos) 

Elast_Ss6  <-  funElastCI('M1_Survival', RegModPos) 

Elast_Ss7  <-  funElastCI('M2_Survival', RegModPos) 

Elast_Sf3  <-  funElastCI('F1_Fecundity', RegModPos) 

Elast_Sf4  <-  funElastCI('F2_Fecundity', RegModPos) 

write.table(RegModPos, file = paste('Elasticity of 

Interactions',Population[1],'.csv'), sep=',', quote = FALSE, row.names = FALSE) 

ListtoL<-RegModPos[1:2]   

SignifR<-RegModPos[c('VitalRate','Chinook_Run', 'p_value')]  

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@  12.PLOTTING BETA DIAGNOSTICS, AND AIC    @@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This optional section plots the linear and logit functions fit to the selected  

# regressions and estimates the AIC for both linear and beta approaches.  

# See <<<http://cran.r-project.org/web/packages/betareg/vignettes/betareg.pdf>>> 

# for more info.   

 

SkipBetaD = FALSE     # Skip this section ? "TRUE" or  "FALSE". This section has  

                      # to be ran if conducting Chum multiple regressions 

ask= FALSE           # Press enter to switch between graphs?  TRUE or FALSE 

YLIM= c(0,1)         # Y limits for figures 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

allVR<- as.data.frame(cbind(SurvTable2,OffspringTable[,-1])) 

 

df.AllVR<- matrix(NA,nrow=length(allVR[,1]), ncol=length(allVR[1,])) 

for (i in 1:length(allVR[1,])){ 

   df.AllVR [,i] <- ifelse(allVR[,i]==1,0.99999,allVR[,i]) 

    } 

 

df.AllVR2<- matrix(NA,nrow=length(allVR[,1]), ncol=length(allVR[1,])) 

for (i in 1:length(allVR[1,])){ 

    df.AllVR2 [,i] <- ifelse(df.AllVR[,i]==0,0.000001,df.AllVR[,i]) 

    } 

 

AllVR <- as.data.frame(df.AllVR2) 

colnames(AllVR)<- names(allVR) 

 

VR_Sel<-subset(AllVR, select = as.vector(unique(RegModPos$VitalRate)))  

ChinSel <- subset(ChinData, select = as.vector(unique(RegModPos$Chinook_Run)))  

AllVars<- cbind(VR_Sel,ChinSel) 

AllVars<-na.omit(AllVars) 

 

if(SkipBetaD==FALSE){   
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#****************************************************************************** 

 

Slice.lt <- vector("list", length(ListtoL[,1]))  

for(i in 1:length(ListtoL[,1])){Slice.lt[[i]] <- matrix(data = NA, 

                                     nrow = length(AllVars[,1]) , 

                                     ncol = 2, 

                                     byrow = FALSE, 

                                     dimnames = NULL)} 

 

AIC_storem<-  matrix(NA,nrow =length(ListtoL[,1]),ncol = 2)  

 

par(oma=c(2,2,2,2), mar=c(1.5,2,3,2))   

par(mfrow=c(1,1) ,ask=ask) 

 

for (i in 1:length(ListtoL[,1])){                                           

                                       

         y <- subset(AllVars, select=as.vector(ListtoL[i,1]))#      

         x <- subset(AllVars, select=as.vector(ListtoL[i,2]))#  

                   

         Slice.lt[[i]] <- cbind(x,y) 

       

         LSimple  <- lm(unlist(Slice.lt[[i]][2])~unlist(Slice.lt[[i]][1]), 

na.action=na.omit) 

         coefSimpleL <- coef(LSimple)          

         AIC_L<- AIC(LSimple) 

                  

         BSimple  <- 

betareg(as.numeric(unlist(Slice.lt[[i]][2]))~as.numeric(unlist(Slice.lt[[i]][1]))

, na.action=na.omit) 

         coefSimpleB <- coef(BSimple)  

         AIC_B<-  AIC(BSimple) 

 

         AIC_storem[i,]<- c(AIC_B,AIC_L) 

            

par(mfrow=c(1,1)) 

plot(unlist(Slice.lt[[i]][2])~unlist(Slice.lt[[i]][1]), ylim=YLIM, xlab="Chinook 

Abundance", ylab="Vital Rate", 

main=paste(colnames(Slice.lt[[i]][2]),"~",colnames(Slice.lt[[i]][1]) )) 

par(new=T) 

responseB<-1/(1+exp(-coefSimpleB[1]-(coefSimpleB[2] * unlist(Slice.lt[[i]][1])   

))) 

plot(unlist(Slice.lt[[i]][1]),responseB,type="b",lwd=2,col=2,lty= 1, axes=F, 

ylim=YLIM, ylab="",xlab="" ) 

par(new=T) 

responseL<-coefSimpleL[1]+(coefSimpleL[2] *unlist(Slice.lt[[i]][1])) 

plot(unlist(Slice.lt[[i]][1]),responseL,type="b",lwd=2,col=3,lty= 1, axes=F, 

ylim=YLIM, ylab="" ,xlab="") 

 

mtext (text= paste('Selected Regressions',Population[1]), side=3, outer=TRUE, 

cex=1., font = 2 ) 

} 

 

colnames(AIC_storem)<- c("AIC_Beta","AIC_Linear" );as.data.frame(AIC_storem) 

AIC_Comp<- cbind(ListtoL,round(AIC_storem,2))  

write.table(AIC_Comp, file = paste('AIC Comparison Beta vs. 

Linear',Population[1],'.csv'), sep=',', quote = TRUE, row.names = FALSE) 

 

graphics.off() 

} 

 

if(SkipBetaD==TRUE){ 

   Skipadd<- c(paste('Section PLOTTING BETA DIAGNOSTICS, AND AIC has been 

skipped')) 

   print(Skipadd) 

   } 
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#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>>       

#<<<@@@@@@@@@@@@@@@@@@     13. RETROSPECTIVE ANALYSES     @@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>>         

# This section breaks the study period in user-defined matrix for each period  

# in an independently and the identically distributed (IID)  

# environment (see section 2.6 PVA for more information) and performs 

retrospective  

# analysis for vital rates (first sub-section) and for Chinook interactions 

# (second sub-section) 

 

    

#******************************************************************************* 

#**********           Contribution of VR to the CV of Lambda         *********** 

#******************************************************************************* 

 

AutoDiv<- "NO"               #if "YES" It divides the period of analyses  

# automatically in an EQUAL number of periods specified in Auto_brakes  

Auto_brakes=4                #Because of the number of periods are EQUAL, 

Autobreakes  

#is sensitive to the number of years available. Verify automatic division.                         

 

#If AutoDiv="NO" Set the sets for the study period manually .  

Set1<- c(1987,1990) 

Set2<- c(1991,1994) 

Set3<- c(1995,1998) 

Set4<- c(1999,2002) 

Set5<- c(2003,2006) 

Set6<- c(2007,2011) 

Set7<- c(0,0) 

Set8<- c(0,0) 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

  

if(Set1[1]<Period[1]){ 

 cat('WARNING !!!!!!!!: The period of analyses is:',Period,"\n") } 

if(AutoDiv=="NO"){ 

Set1=Set1 

Set2=Set2  

Set3=Set3  

Set4=Set4 

Set5=Set5 

Set6=Set6 

Set7=Set7 

Set8=Set8 

} 

 

if(AutoDiv=="YES"){ 

Inter_Y<- (floor((Period[2]-Period[1])/Auto_brakes))-1 

Set1<-  c(Period[1],Period[1]+Inter_Y) 

Set2<-  c(Set1[2]+1,Set1[2]+1+Inter_Y) 

Set3<-  c(Set2[2]+1,Set2[2]+1+Inter_Y) 

Set4<-  c(Set3[2]+1,Set3[2]+1+Inter_Y) 

Set5<-  c(Set4[2]+1,Set4[2]+1+Inter_Y) 

Set6<-  c(Set5[2]+1,Set5[2]+1+Inter_Y) 

Set7<-  c(Set6[2]+1,Set6[2]+1+Inter_Y) 

Set8<-  c(Set7[2]+1,Set7[2]+1+Inter_Y) 

} 

 

DataIID<- cbind(SurvTable2,OffsprTable2)                                

 

Std_DT<- as.numeric(apply(DataIID, 2, sd,na.rm = TRUE))                           

Var_DT<- as.numeric(apply(DataIID, 2, var,na.rm = TRUE))                       

Mea_DT<- as.numeric(apply(DataIID, 2, mean,na.rm = TRUE))                      
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symsNIID<-symsNVR 

 

meanElastIID<- ElasStats.KW[,symsNIID][2,]                                     

CV_DT<-Std_DT/Mea_DT                                  

CV_Elast <- meanElastIID*CV_DT                       

CV_to_Lambda  <-CV_Elast/sum(CV_Elast)                         

Var_to_Lambda  <-Var_Elast/sum(Var_Elast)                             

  

write.table(CV_to_Lambda, file = paste('Contribution of VR to the CV of 

Lambda',Population[1],'.csv'), sep=',', quote = TRUE, col.names = FALSE, 

row.names=TRUE) 

 

graphics.off()                                                                   

pdf(paste('Contribution of VR to the CV of 

Lambda',Population[1],'.pdf'),width=12,height=8) 

barplot(CV_to_Lambda, col=rainbow(length(CV_to_Lambda)), main= "Contribution of 

VR to the CV of Lambda", ylim=c(0,max(CV_to_Lambda)+0.02))              

dev.off() 

 

IIDModelSumm<-  

data.frame(meanElastIID,CV_DT,CV_Elast,CV_to_Lambda,Var_Elast,Var_to_Lambda)       

IIDModelSumm 

  

DataT_IID<- as.data.frame(cbind(year=seq(Period[1],Period[2]),DataIID))        

 

  

SetIID1<-  subset(DataT_IID, year>=Set1[1] & year<=Set1[2])[-1] 

SetIID2<-  subset(DataT_IID, year>=Set2[1] & year<=Set2[2])[-1] 

SetIID3<-  subset(DataT_IID, year>=Set3[1] & year<=Set3[2])[-1] 

SetIID4<-  subset(DataT_IID, year>=Set4[1] & year<=Set4[2])[-1] 

SetIID5<-  subset(DataT_IID, year>=Set5[1] & year<=Set5[2])[-1] 

SetIID6<-  subset(DataT_IID, year>=Set6[1] & year<=Set6[2])[-1] 

SetIID7<-  subset(DataT_IID, year>=Set7[1] & year<=Set7[2])[-1] 

SetIID8<-  subset(DataT_IID, year>=Set8[1] & year<=Set8[2])[-1] 

  

Mat_IID1<-FunMat(SetIID1, Set1)                                                 

Mat_IID2<-FunMat(SetIID2, Set2) 

Mat_IID3<-FunMat(SetIID3, Set3) 

Mat_IID4<-FunMat(SetIID4, Set4) 

Mat_IID5<-FunMat(SetIID5, Set5) 

Mat_IID6<-FunMat(SetIID6, Set6) 

Mat_IID7<-FunMat(SetIID7, Set7) 

Mat_IID8<-FunMat(SetIID8, Set8) 

  

RetroMats_pre<- list(Mat_IID1, Mat_IID2, Mat_IID3, Mat_IID4, Mat_IID5, Mat_IID6, 

Mat_IID7, Mat_IID8 ) 

RetroMats<- RetroMats_pre[1:length(na.omit(unlist(lapply(RetroMats_pre,sum))))]            

write.table(RetroMats, file = paste('IID Matrices',Population[1],'.csv'), 

sep=',', quote = F, col.names=TRUE, row.names = FALSE) 

LambdasIID<- as.numeric(unlist(lapply(RetroMats,lambda))) 

Avg_Lambda_IID<- mean(LambdasIID) 

cat('Average IID Lambda',Period,'=',Avg_Lambda_IID,'. Number of IID 

Matrices=',length(RetroMats),'. Automatic Division=', AutoDiv ,"\n")  

 

#******************************************************************************* 

#**********   CONTRIBUTION OF THE INTERACTION TO THE CV of LAMBDA     ********** 

#******************************************************************************* 

# This section estimates the contribution of the interaction of Chinook - KW      

# vital rates to the CV of lambda. Graphic output:  Hypothesis 1(a,b) in blue,   

# 2(a,b) in gray. 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 
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CV_Chin<- apply(ChinSel,2,sd,na.rm = TRUE)/apply(ChinSel,2,mean,na.rm = TRUE)  

CV_Chin<- as.data.frame(CV_Chin) 

RegModPos$CV_Chin <- CV_Chin$CV_Chin[match(RegModPos$Chinook_Run, 

row.names(CV_Chin))]  

RegModPos$ContCV_lambda<-   RegModPos$Elast.Inter*RegModPos$CV_Chin 

F_ChinR <- factor(RegModPos$Chinook_Run)                                                  

factor.ChinR <- tapply(RegModPos$ContCV_lambda,F_ChinR,sum)  

CV_Chin_lambda = as.data.frame(factor.ChinR) 

write.table(CV_Chin_lambda, file = paste('Contribution of Interacion CV to 

Lambda',Population[1],'.csv'), sep=',', quote = T, row.names = TRUE) 

graphics.off() 

 

Table_SF$MeanVR_SFnam[match(RegMod$VitalRate,Table_SF$VRnames_SF)] 

pdf(paste('Contribution of Interaction to the CV of 

Lambda',Population[1],'.pdf'),width=12,height=8) 

 

if(Population=="SRKW"){ 

colHy<- 

ifelse(RegModPos$SR_Hyp[match(row.names(CV_Chin_lambda),RegModPos$Chinook_Run)]==

'1a','blue','gray') 

} 

 

if(Population=="NRKW"){ 

colHy<- 

ifelse(RegModPos$NR_Hyp[match(row.names(CV_Chin_lambda),RegModPos$Chinook_Run)]==

'1b','blue','gray') 

} 

 

par(mai=c(1.4,0.8,0.8,0.4)) 

barplot(CV_Chin_lambda$factor.ChinR,col= colHy, main= paste("Contribution of 

Interaction to the CV of Lambda",Population[1]),las=2,cex.names=0.8)     

dev.off() 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@   14. STOCHASTIC POPULATION GROWTH       @@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section estimates the stochastic population growth using either vital 

rates 

# as random variables or the IID matrices using the Tuljapurkar’s approximation 

# Output: 

# sim: log stochastic growth rate by simulation 

# sim.CI:confindence interval for simulation 

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

  

mats.lt <- vector("list", length(StochRates[,1])) # create list 

for(z in 1:length(StochRates[,1])){ 

Ss1[z]<-StochRates[,1][z] 

Ss2[z]<-StochRates[,2][z] 

Ss3[z]<-StochRates[,3][z] 

Ss4[z]<-StochRates[,4][z] 

Ss5[z]<-StochRates[,5][z] 

Ss6[z]<-StochRates[,6][z] 

Ss7[z]<-StochRates[,7][z] 

Sg2[z]<-StochRates[,8][z] 

Sg3[z]<-StochRates[,9][z] 

Sg4[z]<-StochRates[,10][z] 

Sg6[z]<-StochRates[,11][z] 

Sp2[z]<-StochRates[,12][z] 

Sp3[z]<-StochRates[,13][z] 

Sf3[z]<-StochRates[,14][z] 

Sf4[z]<-StochRates[,15][z] 
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mats.lt[[z]]<- matrix(c( 

        0, (Ss1[z]^0.5*(Ss2[z]*Sg2[z]*Sp2[z]*Sf3[z]))/2, 

(Ss1[z]^0.5*(((1+(Ss3[z]*(1-Sg3[z])))*Sf3[z])+(Ss3[z]*Sg3[z]*Sf4[z])))/2,  

(Ss1[z]^0.5*((1+(Ss4[z]*(1-Sg4[z])))*Sf4[z]))/2, 0, 0, 0, 

        Ss1[z]^0.5, Ss2[z]*(1-Sg2[z]), 0, 0, 0, 0, 0, 

        0, Ss2[z]*Sg2[z]*Sp2[z], Ss3[z]*(1-Sg3[z]), 0, 0, 0, 0, 

        0, 0, Ss3[z]*Sg3[z], Ss4[z]*(1-Sg4[z]), 0, 0, 0, 

        0, 0, 0, Ss4[z]*Sg4[z], Ss5[z], 0, 0, 

        0, Ss2[z]*Sg2[z]*Sp3[z], 0, 0, 0, Ss6[z]*(1-Sg6[z]), 0, 

        0, 0, 0, 0, 0, Ss6[z]*Sg6[z], Ss7[z]), 

        nrow = 7, ncol = 7, byrow = TRUE 

        )  

} 

 

Stch_GR_Dem<- stoch.growth.rate(mats.lt, prob = NULL, maxt = 50000, verbose=TRUE)           

stoch_lambda_Dem<-exp(Stch_GR_Dem$approx) 

stoch_CI_Dem<-exp(Stch_GR_Dem$sim.CI) 

lamda_VR_Random<- c(stoch_lambda_Dem,stoch_CI_Dem)  

 

#**********        POP GROWTH (Lambda) USING IID MATRICES          *********** 

     

GR_Retro<- stoch.growth.rate(RetroMats, prob = NULL, maxt = 50000, verbose=TRUE)              

lambda_Retro<-exp(GR_Retro$approx) 

lambda_Retro_CI<-exp(GR_Retro$sim.CI)  

lambda_stoch <- c(lambda_Retro,lambda_Retro_CI) 

 

lamda_Envir<- data.frame(lambda_stoch,lamda_VR_Random)  

rownames(lamda_Envir)<-c('Lamda','CI5','CI95') 

write.table(lamda_Envir, file = paste('lamda from IID and VR 

random',Population[1],'.csv'), sep=',', quote = F, row.names = TRUE) 

                                                                                                              

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@    15. PROJECTING POPULATION SIZE       @@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section projects the population size using either vital rates 

# as random variables or random sampling of IID matrices set in 'Envir'.  

# In addition it creates a demographic projection. 

 

tmax=DampTime10[2] # number of time steps or projection intervals to predict     

# future population size 

nreps=5000        # number of iterations  

Envir<-"IID"      #"IID"  or "VR_Random".  If desired the user can run this      

# section using either IID matrices (IDD) OR the VR as random variables          

# (VR_Random) 

tmaxes<- c(10,20,30,DampTime10[2])    # Time horizons; number of years to project 

#into the future. 

 

# Colour for IID analyses output. It can be changed according to user            

# preferences. See ?palette 

IID_col<- rainbow(20)     

VRR_col<- terrain.colors(20)   

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

  

if(Envir=="IID")      {colh<-IID_col}                                       

if(Envir=="VR_Random"){colh<-VRR_col} 

if(Envir=="IID")      {SelMats<-RetroMats} 

if(Envir=="VR_Random"){SelMats<-mats.lt  } 

Project.lt <- vector("list", length(tmaxes)) # creates list 

for(i in 1:length(tmaxes)){Project.lt [[i]] <- matrix(data = NA, 

                                     nrow = nreps , 

                                     ncol = 7, 

                                     byrow = FALSE, 

                                     dimnames = NULL)} 
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for(t in 1:length(tmaxes)){ 

Project.lt [[t]]<- stoch.projection(SelMats, n0=CountsLastyear$nlastYear, tmax = 

tmaxes[t], nreps = nreps, prob = NULL, 

nmax = NULL, sumweight = rep(1, length(n0)), verbose=FALSE) 

} 

 

graphics.off()                                                                   

pdf(paste('Projections of Pop Size',Population[1],Period[1],'-

',Period[2],Envir,'.pdf'),width=10,height=8) 

par( oma=c(2,2,2,2), mar=c(1.5,2,3,2),mai=c(0.4,0.8,0.8,0.4))   

par (mfrow=c(2,2)) 

hist(apply(Project.lt[[1]],1,sum),col = colh, ylab="", xlab="", main= 

paste(tmaxes[1],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project.lt[[1]],1,sum)),0))) 

hist(apply(Project.lt[[2]],1,sum),col = colh, ylab="", xlab="", main= 

paste(tmaxes[2],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project.lt[[2]],1,sum)),0))) 

hist(apply(Project.lt[[3]],1,sum),col = colh, ylab="", xlab="", main= 

paste(tmaxes[3],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project.lt[[3]],1,sum)),0))) 

hist(apply(Project.lt[[4]],1,sum),col = colh, ylab="", xlab="", main= 

paste(tmaxes[4],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project.lt[[4]],1,sum)),0))) 

 mtext(paste('Projections of Pop Size',Envir,Population[1]),side = 3, outer = 

TRUE, col = "black", cex= 1.2) 

 mtext (text= "Population Numbers", side=1, outer=TRUE, cex=1., font = 2 ) 

 mtext (text= "Frequency", side=2,outer=TRUE, cex=1., font = 2 ) 

dev.off() 

 

 

#**************************  Demographic Projection  *************************** 

 

Dem_project<- stoch.projection(SelMats, n0=CountsLastyear$nlastYear, tmax = tmax, 

nreps = nreps, prob = NULL, 

nmax = NULL, sumweight = rep(1, length(n0)), verbose=FALSE) 

 

graphics.off()                                                                   

pdf(paste('Projection',Envir ,Population[1],Period[1],'-',Period[2] 

,'.pdf'),width=8,height=8) 

colnames(Dem_project)<-Cat2Names  

matplot(Dem_project,type = "l", lty = 1:7, lwd = 1.5, lend = par("lend"),pch = 

NULL, col = rainbow(7), xlim=c(-10,nreps), 

ylim=c(-9.5,max(Dem_project)*3/2), ylab="KW Abundances", xlab="Reps", 

main=paste('Projection',Envir, nreps , 'reps', Population[1])) 

legend(-10, max(Dem_project)*3/2, Cat2Names, lwd=2, lty=1:7, col= colh, cex=1, 

bty='n') 

dev.off() 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@   16. FISHING SCENARIOS - TERMINAL RUN  @@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section simulates fishing scenarios for chinook terminal run. The user 

# controls a multiplier for the harvest rate (HR) that affects the indicator  

# stocks.  The stock aggregate is user defined from the list of significant 

stocks 

# from the multiple regressions (SignifR). See section 2.7 Fishing scenarios for 

# more information. 

# Note: if HR_new > 1, the HR is automatically set to 1.    

 

Mult<-1.5  # User defined multiplier of Ocean HR affecting TR;  

# Mult = 0.00 for closing fisheries  

print(SignifR)   # List of significant stock aggregates 

cat('Fishing Scenario for Population', Population ,"\n")                     

# Make sure the stock is selected from the right population  

StockAggr<- "FEPS_TR_1" # Set stock aggregate FROM SignifR  e.g.: "FE_TR_1"  
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colhS<- topo.colors(20) # Colour for output. It can be changed according to user 

#preferences. See ?palette 

  

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

if(Use_F.Impacts==FALSE){   

 

if(length(subset(SignifR,Chinook_Run==StockAggr)[,1])==0){ 

addNoRun1<- paste('Error: Stock Aggregate',StockAggr,'not found in Significant TR 

Chinook Run') 

stop(print(addNoRun1)) 

} 

  

TR       <- 

read.table(paste(getwd(),'/','R_Inputs','/','Term_Run_R.csv',sep=""),header=T, 

sep=",")                         

TRE      <- 

read.table(paste(getwd(),'/','R_Inputs','/','TRE_R.csv',sep=""),header=T, 

sep=",")                          

TRE_HR   <- 

read.table(paste(getwd(),'/','R_Inputs','/','TRE_HR_R.csv',sep=""),header=T, 

sep=",")                          

ER_Stock <- 

read.table(paste(getwd(),'/','R_Inputs','/','ER_Indicators_R.csv',sep=""),header=

T, sep=",")                   

 

TR       <-  subset(TR    , Year >= Period[1] & Year <= Period[2])  

TRE      <-  subset(TRE   , Year >= Period[1] & Year <= Period[2])  

TRE_HR   <-  subset(TRE_HR, Year >= Period[1] & Year <= Period[2])  

 

TR_ChinStocks<- subset(ChinData, 

select=as.character(ChinDefs[ChinDefs$Ab_ID==1,]$TimeSeries))      

  

IndStock_HR <- subset(TRE_HR, select= 

unlist(strsplit(as.character(ER_Stock[ER_Stock$Time.series==StockAggr,]$ER.Indica

tor.Stocks), ",", fixed = TRUE))) 

IndStock_HR 

 

IndStock_HRMod <- Mult*IndStock_HR 

  

new.HR <- matrix(NA,nrow =length(IndStock_HRMod[,1]),ncol = 

length(IndStock_HRMod[1,]))  

for(i in 1:length(IndStock_HRMod)){ 

new.HR[,i]<- ifelse(IndStock_HRMod[,i]>1,1,IndStock_HRMod[,i]) 

options(warn=-1) 

} 

    

for(i in 1:length(IndStock_HRMod)){ 

ifelse(na.omit(IndStock_HRMod[,i])>=1, print(paste("Antention: At least one 

harvest  

rate is greater than 1 and have been adjusted to 1 

in",colnames(IndStock_HRMod[i]))), print(paste("values ok"))) 

} 

 

colnames(new.HR)<- names(IndStock_HRMod)  

  

TRE_sel<- subset(TRE[row.names(IndStock_HRMod),], select=colnames(new.HR))     

TR_sel <- subset(TR [row.names(IndStock_HRMod),], select=colnames(new.HR))     

as.data.frame(new.HR)      

 

N_y <- (new.HR*(TRE_sel+TR_sel))- TRE_sel   

N_y 

   

TR_scalar <- apply((TR_sel - N_y),1,sum) / apply(TR_sel,1,sum)                                
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TR_scalar[is.na(TR_scalar)]<- mean(na.omit(TR_scalar))  

TR_scalar_aggr <- cbind(TR$Year,TR_scalar) 

TR_scalar_aggr <-as.data.frame(TR_scalar_aggr)  

 

Orig_TR_Stock <- subset(ChinData,select=c('Year',StockAggr)) 

New_TR_Stock<- (Orig_TR_Stock* TR_scalar_aggr)[2]                            

New_TR_Stock 

 

identRun  <- subset(RegModPos, Chinook_Run==StockAggr) 

       

New_VR <- matrix(NA, ncol=length(identRun[,1]),nrow=length(New_TR_Stock[,1]))        

for(f in 1:length(identRun[,1])){  

New_VR[,f]  <-

beta_backtr(identRun$intercept[f],identRun$slope1[f],New_TR_Stock[,1])                  

colnames(New_VR)<- as.character(identRun$VitalRate)  

} 

New_VR<-ifelse(New_VR>1,stop(paste('Warning, scenario produced VR > 1')),New_VR) 

 

New_VR<-ifelse(colnames(New_VR)== "F1_Fecundity" & New_VR > 

max(F1_Fecundity),max(F1_Fecundity),New_VR) 

New_VR<-ifelse(colnames(New_VR)== "F2_Fecundity" & New_VR > 

max(F2_Fecundity),max(F2_Fecundity),New_VR) 

New_VR 

  

Old_VR<-  subset(allVR, select= as.character(identRun$VitalRate))  

Old_VR 

   

if(Mult<=1){ 

  Sce_VR<- matrix(NA,ncol=length(New_VR[1,]) ,nrow=length(New_VR[,1])) 

  for(v in 1: length(New_VR[1,])){ 

     Sce_VR[,v] <-ifelse(Old_VR[,v]>New_VR[,v],Old_VR[,v],New_VR[,v]) 

     }}    

 

if(Mult>1){ 

  Sce_VR<- matrix(NA,ncol=length(New_VR[1,]) ,nrow=length(New_VR[,1])) 

  for(v in 1: length(New_VR[1,])){ 

     Sce_VR[,v] <-ifelse(Old_VR[,v]<New_VR[,v],Old_VR[,v],New_VR[,v]) 

     }} 

colnames(Sce_VR)<- as.character(identRun$VitalRate)  

 

TestVR_Sc <- cbind(Old_VR[,1], New_VR[,1], Sce_VR[,1]) 

colnames(TestVR_Sc) <- c('Old_VR','New_VR','Sce_VR')  

cat(paste("Multiplier=",Mult),"VR=",as.character(identRun$VitalRate)[1]   ,"\n") 

TestVR_Sc 

 

DataT_IID_S  <- allVR 

DataT_IID_S[as.character(identRun$VitalRate)]<- Sce_VR   

  

DataT_IID_S - allVR 

  

DataT_IID_S<- cbind(year=DataT_IID$year,DataT_IID_S)                             

  

SetIID_S1<-  subset(DataT_IID_S, year>=Set1[1] & year<=Set1[2])[-1] 

SetIID_S2<-  subset(DataT_IID_S, year>=Set2[1] & year<=Set2[2])[-1] 

SetIID_S3<-  subset(DataT_IID_S, year>=Set3[1] & year<=Set3[2])[-1] 

SetIID_S4<-  subset(DataT_IID_S, year>=Set4[1] & year<=Set4[2])[-1] 

SetIID_S5<-  subset(DataT_IID_S, year>=Set5[1] & year<=Set5[2])[-1] 

SetIID_S6<-  subset(DataT_IID_S, year>=Set6[1] & year<=Set6[2])[-1] 

SetIID_S7<-  subset(DataT_IID_S, year>=Set7[1] & year<=Set7[2])[-1] 

SetIID_S8<-  subset(DataT_IID_S, year>=Set8[1] & year<=Set8[2])[-1] 

 

Mat_IID_S1<-FunMat(SetIID_S1, Set1)                                                   

Mat_IID_S2<-FunMat(SetIID_S2, Set2) 

Mat_IID_S3<-FunMat(SetIID_S3, Set3) 

Mat_IID_S4<-FunMat(SetIID_S4, Set4) 
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Mat_IID_S5<-FunMat(SetIID_S5, Set5) 

Mat_IID_S6<-FunMat(SetIID_S6, Set6) 

Mat_IID_S7<-FunMat(SetIID_S7, Set7) 

Mat_IID_S8<-FunMat(SetIID_S8, Set8) 

 

RetroMats_pre_S<- list(Mat_IID_S1, Mat_IID_S2, Mat_IID_S3, Mat_IID_S4, 

Mat_IID_S5, Mat_IID_S6, Mat_IID_S7, Mat_IID_S8 ) 

RetroMats_S<- 

RetroMats_pre_S[1:length(na.omit(unlist(lapply(RetroMats_pre_S,sum))))]            

write.table(RetroMats_S, file = paste('IID_S 

Matrices',StockAggr,Population[1],'.csv'), sep=',', quote = F, col.names=TRUE, 

row.names = FALSE) 

LambdasIID_S<- as.numeric(unlist(lapply(RetroMats_S,lambda))) 

  

Avg_Lambda_IID_S<- mean(LambdasIID_S) 

cat('Average IID_S Lambda TR',Period,'=',Avg_Lambda_IID_S,'. Number of IID_S 

Matrices=',length(RetroMats_S),"\n")  

MeanMat_S <- FunMat(DataT_IID_S[-1],Period) 

 

SdMat_S  <- matrix(NA, ncol= length(RetroMats_S[[1]][,1]),nrow= 

length(RetroMats_S[[1]][1,]))  

for(i in 1:length(RetroMats_S[[1]][,1])){ 

  for(j in 1:length(RetroMats_S[[1]][1,])){ 

    SdMat_S [i,j] = sd(sapply(RetroMats_S,function(x)x[i,j])) 

    }}  

SdMat_S  

 

write.table(MeanMat_S, file = paste('Mean Matrix 

Scenario',StockAggr,Population[1],'.csv'), sep=',', quote = F, col.names=F, 

row.names = F) 

write.table(SdMat_S,   file = paste('SD Matrix Scenario',   

StockAggr,Population[1],'.csv'), sep=',', quote = F, col.names=F, row.names = F) 

 

#**************  Stochastic Growth Rate  Scenarios  IID only   ***************** 

 

GR_Retro_S<- stoch.growth.rate(RetroMats_S, prob = NULL, maxt = 50000, 

verbose=TRUE)           

lambda_Retro_S<-exp(GR_Retro_S$approx) 

lambda_Retro_S_CI<-exp(GR_Retro_S$sim.CI)  

lambda_stoch_S <- c(lambda_Retro_S,lambda_Retro_S_CI) 

 

 

#************** Stochastic Projected Population Size Scenarios ***************** 

 

Project_S.lt <- vector("list", length(tmaxes)) # create list 

for(i in 1:length(tmaxes)){Project_S.lt [[i]] <- matrix(data = NA, 

                                     nrow = nreps , 

                                     ncol = 7, 

                                     byrow = FALSE, 

                                     dimnames = NULL)} 

for(t in 1:length(tmaxes)){ 

Project_S.lt [[t]]<- stoch.projection(RetroMats_S, n0=CountsLastyear$nlastYear, 

tmax = tmaxes[t], nreps = nreps, prob = NULL, 

nmax = NULL, sumweight = rep(1, length(n0)), verbose=FALSE) 

} 

 

graphics.off()                                                                   

pdf(paste('Projections of Pop Size',Population[1],Period[1],'-

',Period[2],StockAggr, "IID",'.pdf'),width=10,height=8) 

par( oma=c(2,2,2,2), mar=c(1.5,2,3,2),mai=c(0.4,0.8,0.8,0.4))   

par (mfrow=c(2,2)) 

hist(apply(Project_S.lt[[1]],1,sum),col = colhS, ylab="", xlab="", main= 

paste(tmaxes[1],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_S.lt[[1]],1,sum)),0))) 
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hist(apply(Project_S.lt[[2]],1,sum),col = colhS, ylab="", xlab="", main= 

paste(tmaxes[2],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_S.lt[[2]],1,sum)),0))) 

hist(apply(Project_S.lt[[3]],1,sum),col = colhS, ylab="", xlab="", main= 

paste(tmaxes[3],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_S.lt[[3]],1,sum)),0))) 

hist(apply(Project_S.lt[[4]],1,sum),col = colhS, ylab="", xlab="", main= 

paste(tmaxes[4],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_S.lt[[4]],1,sum)),0))) 

 mtext(paste('Projections of Pop Size',StockAggr, "IID",Population[1], "mult of 

HR=",Mult),side = 3, outer = TRUE, col = "black", cex= 1.2) 

 mtext (text= "Population Numbers", side=1, outer=TRUE, cex=1., font = 2 ) 

 mtext (text= "Frequency", side=2,outer=TRUE, cex=1., font = 2 ) 

 mtext(paste('Stoch. Lambda Demographic=',round(lambda_stoch[1],5),'. 

Scenario=',round(lambda_stoch_S[1],5)),side=4,outer=TRUE, cex=1., font = 2)  

dev.off() 

} 

 

if(Use_F.Impacts==TRUE){   

addFI<- paste('Fishing scenarios TR is disabled. Fishery impacts=',Use_F.Impacts) 

print(addFI)    

} 

 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@   17. FISHING SCENARIOS - OCEAN ABUNDANCE     @@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

                

          # <<< NOTE: THIS SECTION ALSO RUNS FISHERY IMPACTS >>># 

 

# This section simulates fishing scenarios for chinook Ocean Abundance. The user 

# controls an inverse multiplier for the harvest rate (HR) that affects the stock   

# aggregates directly. The stock aggregate is user defined from the list of 

#significant stocks 

# from the multiple regressions (SignifR). See section 2.7 Fishing scenarios for 

# more information. 

# Note: The multiplier MLT can take values from 0.0 to 2.0, with the latter value 

#impling HR=0.  

 

 

MLT <- 1.64    # Multiplier. In OA is directly proportional to VR; Between 1 and 

2  

#only for increases in OA. FI  is an alternative measure of OA and is also 

directly #proportional to VR 

# MLT = 0.0 to maximize HR 

print(SignifR)  # List of significant stock aggregates 

cat('OA or FI Scenario for Population', Population ,"\n")  # Make sure the stock 

is #selected from the right population  

StockAggrOA= "CW_OA_2"   # Set stock aggregate FROM SignifR. Test: "FE_OA_5YA"   

"ALL2a_FI_0" 

colhOA<- terrain.colors(20) # Colour for output. It can be changed according to 

user #preferences. See ?palette 

 

  

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

if(length(subset(SignifR,Chinook_Run==StockAggrOA)[,1])==0){ 

addNoRun<- paste('Error: Stock Aggregate',StockAggrOA,'not found in Significant 

OA or FI  Chinook Run') 

print(addNoRun) 

stop(paste('Fishery Impacts=',Use_F.Impacts))  

} 

 

OA_Stock  <- subset(ChinData,select=StockAggrOA) 
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OA_Stock_New <- OA_Stock*MLT    

  

identRunOA  <- subset(RegModPos, Chinook_Run==StockAggrOA) 

 

New_VR_OA <- matrix(NA, ncol=length(identRunOA[,1]),nrow=length(OA_Stock_New 

[,1]))        

for(f in 1:length(identRunOA[,1])){  

New_VR_OA[,f]  <-

beta_backtr(identRunOA$intercept[f],identRunOA$slope1[f],OA_Stock_New [,1])  

colnames(New_VR_OA)<- as.character(identRunOA$VitalRate)  

} 

New_VR_OA 

  

New_VR_OA<-ifelse(colnames(New_VR_OA)== "F1_Fecundity" & New_VR_OA > 

max(F1_Fecundity),max(F1_Fecundity),New_VR_OA) 

New_VR_OA<-ifelse(colnames(New_VR_OA)== "F2_Fecundity" & New_VR_OA > 

max(F2_Fecundity),max(F2_Fecundity),New_VR_OA) 

New_VR_OA 

 

Old_VR_OA<-  subset(allVR, select= as.character(identRunOA$VitalRate))  

Old_VR_OA 

  

if(MLT<1){  # 

  Sce_VR_OA<- matrix(NA,ncol=length(New_VR_OA[1,]) ,nrow=length(New_VR_OA[,1]))                

  for(v in 1: length(New_VR_OA[1,])){ 

     Sce_VR_OA[,v] <-

ifelse(Old_VR_OA[,v]>New_VR_OA[,v],New_VR_OA[,v],Old_VR_OA[,v]) 

     }}    

  

if(MLT>1){ 

  Sce_VR_OA<- matrix(NA,ncol=length(New_VR_OA[1,]) ,nrow=length(New_VR_OA[,1])) 

  for(v in 1: length(New_VR_OA[1,])){ 

     Sce_VR_OA[,v] <-

ifelse(Old_VR_OA[,v]>New_VR_OA[,v],Old_VR_OA[,v],New_VR_OA[,v])          

     }} 

 

colnames(Sce_VR_OA)<- as.character(identRunOA$VitalRate)  

  

TestVR_OA_Sc <- cbind(Old_VR_OA[,1], New_VR_OA[,1], Sce_VR_OA[,1]) 

colnames(TestVR_OA_Sc) <- c('Old_VR_OA','New_VR_OA','Sce_VR_OA')  

cat(paste("MLT OA=",MLT),"VR_OA=",as.character(identRunOA$VitalRate)[1]   ,"\n"); 

print(TestVR_OA_Sc) 

  

DataT_IID_OA  <- allVR 

DataT_IID_OA[as.character(identRunOA$VitalRate)]<-Sce_VR_OA   

  

DataT_IID_OA - allVR 

DataT_IID_OA<- cbind(year=DataT_IID$year,DataT_IID_OA)  

  

SetIID_OA1<-  subset(DataT_IID_OA, year>=Set1[1] & year<=Set1[2])[-1] 

SetIID_OA2<-  subset(DataT_IID_OA, year>=Set2[1] & year<=Set2[2])[-1] 

SetIID_OA3<-  subset(DataT_IID_OA, year>=Set3[1] & year<=Set3[2])[-1] 

SetIID_OA4<-  subset(DataT_IID_OA, year>=Set4[1] & year<=Set4[2])[-1] 

SetIID_OA5<-  subset(DataT_IID_OA, year>=Set5[1] & year<=Set5[2])[-1] 

SetIID_OA6<-  subset(DataT_IID_OA, year>=Set6[1] & year<=Set6[2])[-1] 

SetIID_OA7<-  subset(DataT_IID_OA, year>=Set7[1] & year<=Set7[2])[-1] 

SetIID_OA8<-  subset(DataT_IID_OA, year>=Set8[1] & year<=Set8[2])[-1] 

  

Mat_IID_OA1<-FunMat(SetIID_OA1, Set1)                                                   

Mat_IID_OA2<-FunMat(SetIID_OA2, Set2) 

Mat_IID_OA3<-FunMat(SetIID_OA3, Set3) 

Mat_IID_OA4<-FunMat(SetIID_OA4, Set4) 

Mat_IID_OA5<-FunMat(SetIID_OA5, Set5) 

Mat_IID_OA6<-FunMat(SetIID_OA6, Set6) 

Mat_IID_OA7<-FunMat(SetIID_OA7, Set7) 
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Mat_IID_OA8<-FunMat(SetIID_OA8, Set8) 

  

RetroMats_pre_OA<- list(Mat_IID_OA1, Mat_IID_OA2, Mat_IID_OA3, Mat_IID_OA4, 

Mat_IID_OA5, Mat_IID_OA6, Mat_IID_OA7, Mat_IID_OA8 ) 

RetroMats_OA<- 

RetroMats_pre_OA[1:length(na.omit(unlist(lapply(RetroMats_pre_OA,sum))))]            

write.table(RetroMats_OA, file = paste('IID_OA Matrices',StockAggrOA, 

Population[1],'.csv'), sep=',', quote = F, col.names=TRUE, row.names = FALSE) 

LambdasIID_OA<- as.numeric(unlist(lapply(RetroMats_OA,lambda))) 

  

Avg_Lambda_IID_OA<- mean(LambdasIID_OA) 

cat('Average IID_OA Lambda OA',Period,'=',Avg_Lambda_IID_OA,'. Number of IID_OA 

Matrices=',length(RetroMats_OA),"\n")  

  

MeanMat_OA <- FunMat(DataT_IID_OA[-1],Period)                                                                                         

SdMat_OA  <- matrix(NA, ncol= length(RetroMats_OA[[1]][,1]),nrow= 

length(RetroMats_OA[[1]][1,]))  

for(i in 1:length(RetroMats_OA[[1]][,1])){ 

  for(j in 1:length(RetroMats_OA[[1]][1,])){ 

    SdMat_OA [i,j] = sd(sapply(RetroMats_OA,function(x)x[i,j])) 

    }}  

SdMat_OA  

 

write.table(MeanMat_OA, file = paste('Mean Matrix 

Scenario',StockAggrOA,Population[1],'.csv'), sep=',', quote = F, col.names=F, 

row.names = F) 

write.table(SdMat_OA,   file = paste('SD Matrix Scenario',   

StockAggrOA,Population[1],'.csv'), sep=',', quote = F, col.names=F, row.names = 

F) 

  

#*************    Stochastic Growth Rate  Scenarios IID only     *************** 

GR_RetroS_OA<- stoch.growth.rate(RetroMats_OA, prob = NULL, maxt = 50000, 

verbose=TRUE)              

lambda_Retro_OA<-exp(GR_RetroS_OA$approx) 

lambda_Retro_OA_CI<-exp(GR_RetroS_OA$sim.CI)  

lambda_stoch_OA <- c(lambda_Retro_OA,lambda_Retro_OA_CI) 

                

#************** Stochastic Projected Population Size Scenarios ***************** 

Project_OA.lt <- vector("list", length(tmaxes))  

for(i in 1:length(tmaxes)){Project_OA.lt [[i]] <- matrix(data = NA, 

                                     nrow = nreps , 

                                     ncol = 7, 

                                     byrow = FALSE, 

                                     dimnames = NULL)} 

for(t in 1:length(tmaxes)){ 

Project_OA.lt [[t]]<- stoch.projection(RetroMats_OA, n0=CountsLastyear$nlastYear, 

tmax = tmaxes[t], nreps = nreps, prob = NULL, 

nmax = NULL, sumweight = rep(1, length(n0)), verbose=FALSE) 

} 

 

graphics.off()                                                                   

pdf(paste('Projections of Pop Size',Population[1],Period[1],'-

',Period[2],StockAggrOA, "IID",'.pdf'),width=10,height=8) 

par( oma=c(2,2,2,2), mar=c(1.5,2,3,2),mai=c(0.4,0.8,0.8,0.4))   

par (mfrow=c(2,2)) 

hist(apply(Project_OA.lt[[1]],1,sum),col = colhOA, ylab="", xlab="", main= 

paste(tmaxes[1],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_OA.lt[[1]],1,sum)),0))) 

hist(apply(Project_OA.lt[[2]],1,sum),col = colhOA, ylab="", xlab="", main= 

paste(tmaxes[2],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_OA.lt[[2]],1,sum)),0))) 

hist(apply(Project_OA.lt[[3]],1,sum),col = colhOA, ylab="", xlab="", main= 

paste(tmaxes[3],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_OA.lt[[3]],1,sum)),0))) 
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hist(apply(Project_OA.lt[[4]],1,sum),col = colhOA, ylab="", xlab="", main= 

paste(tmaxes[4],'years'));legend('topleft',bty='n', paste('Mean Pop', 

round(mean(apply(Project_OA.lt[[4]],1,sum)),0))) 

 mtext(paste('Projections of Pop Size',StockAggrOA, "IID",Population[1], "mult 

of", ifelse(Use_F.Impacts==TRUE,paste('FI'),paste('OA')),'=',MLT),side = 3, outer 

= TRUE, col = "black", cex= 1.2) 

 mtext (text= "Population Numbers", side=1, outer=TRUE, cex=1., font = 2 ) 

 mtext (text= "Frequency", side=2,outer=TRUE, cex=1., font = 2 ) 

 mtext(paste('Stoch. Lambda Demographic=',round(lambda_stoch[1],5),'. 

Scenario=',round(lambda_stoch_OA[1],5)),side=4,outer=TRUE, cex=1., font = 2)   

dev.off() 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@ 18. REGRESSIONS KW ABUNDANCE ~ CHINOOK ABUNDANCE  @@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section performs simple linear regressions with abundance data. 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

CountModsSim<- AbundFun(ChinD=ChinData0.1,SurvT=df.abundances[-

1],Chindef=Chindefs0.1,p_val=p_val)               

  

CountModsSim<- subset(CountModsSim,slope1>=0)   

  

ifelse(Population[1]=='SRKW', 

CountModsSim <- subset(CountModsSim, SR_Hyp != 'NA' & SR_Hyp !='Hybrid'),                

CountModsSim <- subset(CountModsSim, NR_Hyp != 'NA' & NR_Hyp !='Hybrid'))   

 

colnames(CountModsSim)[1]<- 'Stage' 

write.table(CountModsSim, file = paste('Abundance 

Regressions',Population[1],Period[1],"-",Period[2],'.csv'), sep=',', quote = 

FALSE, row.names = FALSE) 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@          19. CHUM MULTIPLE REGRESSIONS           @@@@@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

# This section runs analyses using chum data and performs a multiple regeression 

the 

# it is then compared to the simple regression used in chinook models. 

# NOTE: The outputs of this section may overwrite previous outputs, therefore 

# this section must be ran at the end of analyses with Chinook.  

 

#<<<requires running BetaDiagniostics Section>>> 

 

Hyp_Ind=2        # Hypothesis 1 or 2.  Used for the SELECTION OF VR for CHUM MR   

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

if(SkipBetaD == TRUE){stop(paste('ERROR, Beta Diagnostics Section is not 

enabled'))}     

 

  

ChumDefs<- 

read.table(paste(getwd(),'/','R_Inputs','/','Chum_Ab_Definitions_R.csv',sep=""),h

eader=T, sep=",") 

ChumData<- 

read.table(paste(getwd(),'/','R_Inputs','/','ChumAbundance_Data_R.csv',sep=""),he

ader=T, sep=",")  

ChumModsSim <- AllFunB(chumD=ChumData[-

1],AllvrT=AllVR,ChumDef=ChumDefs,p_val=p_val)  

ChumModsSim <- subset(ChumModsSim,slope1>=0)  

Chum_sel<-ChumModsSim[ChumModsSim$p_value %in% 

as.vector(tapply(ChumModsSim$p_value,factor(ChumModsSim$VitalRate),min)),] 

 

if(Population=='NRKW'){Chum_sel$NR_Hyp<- NULL} 

if(Population=='SRKW'){Chum_sel$SR_Hyp<- NULL} 
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ifelse(Population=="NRKW", 

SignifRcm<-RegModPos[c('VitalRate','Chinook_Run', 'NR_Hyp' ,'p_value', 

'slope1')],  

SignifRcm<-RegModPos[c('VitalRate','Chinook_Run', 'SR_Hyp' ,'p_value', 

'slope1')]) 

 

if(Population=="SRKW"){ 

SignifRcm1<- subset(SignifRcm,  SR_Hyp=='1a');SignifRcm2<- subset(SignifRcm,  

SR_Hyp=='2a')} 

 

if(Population=="NRKW"){ 

SignifRcm1<- subset(SignifRcm,  NR_Hyp=='1b');SignifRcm2<- subset(SignifRcm,  

NR_Hyp=='2b')} 

  

Sel_Hyp1<-SignifRcm1[SignifRcm1$p_value %in% 

as.vector(tapply(SignifRcm1$p_value,factor(SignifRcm1$VitalRate),min)),] 

Sel_Hyp2<-SignifRcm2[SignifRcm2$p_value %in% 

as.vector(tapply(SignifRcm2$p_value,factor(SignifRcm2$VitalRate),min)),]         

  

df.AllVR<- matrix(NA,nrow=length(allVR[,1]), ncol=length(allVR[1,])) 

for (i in 1:length(allVR[1,])){ 

   df.AllVR [,i] <- ifelse(allVR[,i]==1,0.99999,allVR[,i]) 

    } 

 

df.AllVR2<- matrix(NA,nrow=length(allVR[,1]), ncol=length(allVR[1,])) 

for (i in 1:length(allVR[1,])){ 

    df.AllVR2 [,i] <- ifelse(df.AllVR[,i]==0,0.000001,df.AllVR[,i]) 

    } 

 

AllVR <- as.data.frame(df.AllVR2) 

colnames(AllVR)<- names(allVR) 

  

if(Hyp_Ind==1){Hyp=Sel_Hyp1} 

if(Hyp_Ind==2){Hyp=Sel_Hyp2} 

                                 

                                                                   

Sel_VR<- subset(AllVR, select=as.character(factor(unique(Hyp$VitalRate))))  

  

factor(unique(Hyp$VitalRate));factor(unique(Chum_sel$VitalRate))  

Overlap_VR<-  factor(unique(Chum_sel$VitalRate))[ 

factor(unique(Chum_sel$VitalRate)) %in% factor(unique(Hyp$VitalRate)) ] 

print(Overlap_VR) 

 

#******************************************************************************* 

#**********               SELECTION OF VR for CHUM MR                *********** 

#******************************************************************************* 

VR= "F1_Fecundity"              

  

if(length(Overlap_VR[Overlap_VR==VR]) ==0){stop(paste('VR is not found in 

Overlap_VR'))} 

  

Y= as.vector(subset(Sel_VR, select=VR)) 

X1<- as.vector(subset(ChinData,select=as.character(factor(subset(Hyp, 

VitalRate==VR)$Chinook_Run)))) 

X2<- as.vector(subset(ChumData,select=as.character(factor(subset(Chum_sel, 

VitalRate==VR)$Chum_Run))))       

 

MR_CC<- betareg(Y[,1]~X1[,1]+X2[,1]) 

coefMR_CC <- coef(MR_CC)  

  

options(scipen=8) 

SlopeSR= Hyp[Hyp$VitalRate==VR,]$slope1   

SlopeMR= round(as.vector(coefMR_CC[2]),8) 

InterMR= round(as.vector(coefMR_CC[1]),8) 
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rsqrMR <- summary(MR_CC)$pseudo.r.squared                                                  

p_valueMR  <- summary(MR_CC)$coefficients$precision[4]  

  

AIC_SR= subset(AIC_Comp,VitalRate==VR & 

Chinook_Run==Hyp[Hyp$VitalRate==VR,]$Chinook_Run)$AIC_Beta 

AIC_MR= AIC(MR_CC) 

 

Table_chum<- 

data.frame(chin.stk=names(X1),chum.stk=names(X2),VR,SlopeSR,SlopeMR,AIC_SR,AIC_MR

) 

Table_chum 

write.table(Table_chum, file = paste('Simple-

Mult.Chum',VR,"H=",Hyp_Ind,Population[1],Period[1],"-",Period[2],'.csv'), 

sep=',', quote = FALSE, row.names = FALSE) 

 

options(scipen=0) 

 

if(SlopeMR>SlopeSR){                                             

RegSel<- subset(SimpleRegMods, VitalRate==VR & Chinook_Run== 

Hyp[Hyp$VitalRate==VR,]$Chinook_Run & p_value== Hyp[Hyp$VitalRate==VR,]$p_value) 

RegWin<-RegSel 

RegWin$slope1<-SlopeMR 

RegWin$intercept<-InterMR 

RegWin$R_squared<- rsqrMR 

RegWin$p_value<-  p_valueMR 

} 

 

if(SlopeMR < SlopeSR){                          

stop(print(paste('For hypothesis',Hyp_Ind,'and',VR,"no regression meets the 

conditions specified for slope and AIC")))  

} 

 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#<<<@@@@@@@@@     20. ELASTICITY OF INTERACTION FOR CHUM MR          @@@@@@@@@>>> 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

 

percIncr <- 0.1        #(0.1 =10%) Percentage increment of chinnok abundance                                                                        

Variant<- 2            # or 1 . Use 2 as default because it includes 95% CI.  

 

#_______________________________________________________________________________ 

#------------------------------------------------------------------------------- 

 

if(SlopeMR > SlopeSR){   

 

chum.stock=c(names(X2),"NA") 

Hypothesis= c(Hyp_Ind,Hyp_Ind)  

ResultChum<- funElastMR(RegWin)   

ResultChin<- funElastMR(RegSel)    

 

Compar_CC<- cbind(chum.stock,Hypothesis,rbind(ResultChum,ResultChin))  

 

Compar_CC<- 

Compar_CC[c('VitalRate','Chinook_Run','chum.stock','R_squared','intercept','slope

1','p_value','Elast.Inter','Elast.Inter95','Hypothesis')]  

Compar_CC 

write.table(Compar_CC, file = paste('Elasticity of Interactions MR 

Chum',VR,'H=',Hyp_Ind,Population[1],'.csv'), sep=',', quote = FALSE, row.names = 

FALSE)                    

} 

 

if(SlopeMR < SlopeSR){                           

stop(print(paste('For hypothesis',Hyp_Ind,'and',VR,"no regression meets the 

conditions specified for slope and AIC")))  

} 
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#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

#   @@@@@@@@@@@@                ##<<< END >>>##                   @@@@@@@@@@@@ 

#<<<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>>> 

 

 

 

R-Code written by Andres Araujo, February 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 8.2. R-code functions 

 
#**************************  FUNCTIONS  ******************************** 
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set.seed=pi*pi   

CountFun<-function(counts, factor){ 

Count<- as.integer(tapply(counts,factor(factor),sum)) 

}   

 

# Function modified from RPA code to estimate all Eigen (does not use popbio) 

eigenall <- function(A) { 

    EV <- eigen(A, symmetric=F)                                                   

          EigenVecs <- EV$vectors                                                

          lambdas <- EV$values 

    V  <- Conj(solve(EigenVecs ))                                            

                                                                               

    lambda1_dominant <- as.numeric(lambdas[1])                                  

    w <- as.numeric(EigenVecs [,1])                                              

    w <- w/sum(w)                                                                 

    v <- Re(V[1,])                                                                

    v <- v/v[1]                                                                   

 

    list(lambdas=lambdas, lambda1_dominant =lambda1_dominant, EigenVecs=EigenVecs 

, w=w, V=V, v=v) 

} 

 

lnorms <- function(means, vars, rawelems) { 

  

 

nmeans <- log(means) - 0.5*log(vars/means^2+1) 

nvars <- log(vars/means^2+1) 

normals <- rawelems*sqrt(nvars) + nmeans; 

lns <- exp(normals) 

lns 

} 

 

  

# GammaRV: See G.S. Fishman, 1973, Concepts and Methods in Discrete Event 

# Digital Simulation, Wiley, New York, pp. 208-209.  

 

gammarv <- function(Alpha, Beta, n){ 

Gamm <- matrix(NA, 1, n) 

for(i in 1:n){ 

    X <- 0 

    k <- floor(Alpha) 

    g <- Alpha - k 

    if(k > 0){ 

        X <- -log( prod( runif(k) ) ) 

    } 

    if(g == 0){ 

        Gamm[i] <- Beta*X 

    } 

    else{ 

        a <- g 

        b <- 1 - g 

        y <- 1 

        z <- 1 

        while(y + z > 1){ 

           y=runif(1)^(1/a) 

           z=runif(1)^(1/b) 

        } 

        Y <- y/(y+z)                

        Z <- -log( runif(1) )        

        Gamm[i] <- Beta*(X+Y*Z) 

    } 

} 

Gamm 

} 



 167

 

 

# betarv(m,v,n) generates a row vector of length n, the elements of which  

# are Beta random variables with mean m and variance v; 

# see G.S. Fishman, 1973, Concepts and Methods in Discrete Event 

# Digital Simulation, Wiley, New York, pp. 204-208.  

 

betarv <- function(m,v,n) { 

 

if (v==0) { 

   Beta <- matrix(m,1,n) 

} 

else if (v >= m*(1-m) ) { 

    print("Variance of Beta too large given the mean") 

} 

else { 

    a <- m*(m*(1-m)/v - 1) 

    b <- (1-m)*(m*(1-m)/v - 1) 

    Beta <- matrix(NA, 1,n) 

    for (i in 1:n) { 

        k1 <- floor(a) 

        k2 <- floor(b)  

        if (k1==0 & k2==0) { 

            Y <- 1 

            Z <- 1 

            while (Y+Z > 1) { 

                Y <- runif(1)^(1/a) 

                Z <- runif(1)^(1/b) 

            } 

        } 

        else { 

            Y <- gammarv(a,1,1) 

            Z <- gammarv(b,1,1) 

        }  

        Beta[i] <- Y/(Y+Z) 

    }     

} 

Beta 

 

} 

 

# Scaled BetaRV 

# betarv(m,v,n) generates a row vector of length n, the elements of which  

# are Beta random variables with mean m and variance v; 

# see G.S. Fishman, 1973, Concepts and Methods in Discrete Event 

# Digital Simulation, Wiley, New York, pp. 204-208. 

 

betarv <- function(m,v,n, bmin=0, bmax=1) { 

  

mbeta <- (m-bmin)/(bmax-bmin) 

vbeta <- v/(bmax-bmin)^2 

 

if (v==0) { 

   Beta <- matrix(m, 1,n) 

} 

else if (vbeta >= mbeta*(1-mbeta) ) { 

    print("Variance of Beta too large given the mean") 

} 

else { 

    a <- mbeta*(mbeta*(1-mbeta)/vbeta - 1) 

    b <- (1-mbeta)*(mbeta*(1-mbeta)/vbeta - 1) 

    Beta <- matrix(NA, 1,n) 

    for (i in 1:n) { 

        k1 <- floor(a) 

        k2 <- floor(b)  
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        if (k1==0 & k2==0) { 

            Y <- 1 

            Z <- 1 

            while (Y+Z > 1) { 

                Y <- runif(1)^(1/a) 

                Z <- runif(1)^(1/b) 

            } 

        } 

        else { 

            Y <- gammarv(a,1,1) 

            Z <- gammarv(b,1,1) 

        }  

        Beta[i] <- Y/(Y+Z) 

    } 

    Beta <- Beta*(bmax-bmin)+bmin     

} 

 

Beta 

 

} 

 

  

  

SampFun<- function(a){ 

sample(Vrtable, size=1, replace = TRUE, prob = NULL) 

} 

 

 

#Standarizing Function 

Stdz_Fun <- function(x){ 

out<- x/mean(x) ; out 

} 

 

#Survivals Function, Simple Regression 

#Produces a data.frame containing the vital rates, run name, lag, r-squared,  

#regressions coefficients based on a > specified p-value of models based on 

#Survivals. 

    

 

SurvFun<- function(ChinD, SurvT, Chindef, p_val){  

storemVR<- matrix(NA, nrow=length(ChinD), ncol=6) 

storem1<- list(storemVR,storemVR, storemVR,storemVR,storemVR,storemVR, storemVR) 

       

for (i in 1:length(SurvT[1,])){                                        

    for (j in 1:length(ChinD)){                                               

 

         y <- SurvT[,i] 

         x <- ChinD[,j] 

 

     lmSimple   <- lm( y~x)                                                     

     coefSimple <- coef(lmSimple)  

                                                    

     summSimple <- summary(lmSimple) 

                   options(digits=5)  

     rsqr <- summSimple$adj.r.squared                                          

     p_value    <- summSimple$coefficients[8]                                  

              

 

  

storemVR[j,] <- c(i,j,rsqr,coefSimple[1],coefSimple[2],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

SurvMods<- rbind(storem1[[1]],storem1[[2]], storem1[[3]],storem1[[4]], 

storem1[[5]],storem1[[6]], storem1[[7]])  
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VRnamex<- rep(colnames(SurvT), each=length(ChinD))                     

Runnamex<- rep(colnames(ChinD),length(SurvT[1,]))                     

SurvModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','p_value', 

ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))           

  

ifelse(Population[1]=='NRKW', 

 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$NR_Hyp)[,-(4:5)] 

,  

 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

SurvModsRes 

colnames(SurvModsRes)<-SurvModsnam 

 

  

SurvModsResSel<- subset(SurvModsRes, p_value <= p_val)  

} 

 

 

#Function modified to estimate regressions with abundance 

AbundFun<- function(ChinD, SurvT, Chindef, p_val){  

 

storemVR<- matrix(NA, nrow=length(ChinD), ncol=6) 

storem1<- list(storemVR,storemVR, storemVR,storemVR,storemVR,storemVR, storemVR, 

storemVR) 

       

for (i in 1:length(SurvT[1,])){                                              

     

    

    for (j in 1:length(ChinD)){                                             

 

         y <- SurvT[,i] 

         x <- ChinD[,j] 

 

     lmSimple   <- lm( y~x)                                                   

     coefSimple <- coef(lmSimple)  

                                                    

     summSimple <- summary(lmSimple) 

                   options(digits=5)  

     rsqr <- summSimple$adj.r.squared                                        

     p_value    <- summSimple$coefficients[8]                               

  

storemVR[j,] <- c(i,j,rsqr,coefSimple[1],coefSimple[2],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

SurvMods<- rbind(storem1[[1]],storem1[[2]], storem1[[3]],storem1[[4]], 

storem1[[5]],storem1[[6]], storem1[[7]],storem1[[8]] )  

   

VRnamex<- rep(colnames(SurvT), each=length(ChinD))                      

Runnamex<- rep(colnames(ChinD),length(SurvT[1,]))                      

SurvModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','p_value', 

ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))             

 

 

ifelse(Population[1]=='NRKW', 

 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$NR_Hyp)[,-(4:5)] 

,  
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 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

SurvModsRes 

colnames(SurvModsRes)<-SurvModsnam 

  

SurvModsResSel<- subset(SurvModsRes, p_value <= p_val)  

} 

 

 

#Fecundities Function, Simple Regression 

#Produces a data.frame containing the vital rates, run name, lag, r-squared,  

#regressions coefficients based on a > specified p-value of models based on 

#Fecundities 

  

 

FecFun<- function(ChinD, OffsprT, Chindef, p_val){  

#For loop 

storemVR<- matrix(NA, nrow=length(ChinD), ncol=6) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(OffsprT[1,])){                                             

    for (j in 1:length(ChinD)){                                             

 

         y <- OffsprT[,i] 

         x <- ChinD[,j] 

 

     lmSimple   <- lm( y~x)           

     coefSimple <- coef(lmSimple)  

                                                    

     summSimple <- summary(lmSimple) 

                   options(digits=5)  

     rsqr <- summSimple$adj.r.squared                

     p_value    <- summSimple$coefficients[8]       

  

storemVR[j,] <- c(i,j,rsqr,coefSimple[1],coefSimple[2],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

FecMods<- rbind(storem1[[1]],storem1[[2]])  

  

VRnamex<- rep(colnames(OffsprT), each=length(ChinD))           

Runnamex<- rep(colnames(ChinD),length(OffsprT[1,]))    

FecModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','p_value', 

ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))            

 

  

ifelse(Population[1]=='NRKW', 

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$NR_Hyp)[,-(4:5)] 

,  

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

FecModsRes 

colnames(FecModsRes)<-FecModsnam 

  

FecModsResSel<- subset(FecModsRes, p_value <= p_val)  

  

} 

 

#Fecundities Function, Multiple Regression 2 Independent Variables 

#Produces a data.frame containing the vital rates, run name, lag, r-squared,  
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#regressions coefficients based on a > specified p-value of models based on 

#Fecundities 

   

 

FecFunMR<- function(ChinD, VRateT, Chindef, p_val){   

storemVR<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=7) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(VRateT[1,])){                                                 

    for (j in 1:max(Chindef$ChinMR2)){   

         y <- VRateT[,i] 

         x1 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[1])  

         x2 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[2])                

x1<-as.vector(x1[,1]) 

x2<-as.vector(x2[,1]) 

 

       

     lmMR   <- lm( y~x1+x2)                                                   

     coefMR <- coef(lmMR)  

                                                    

     summMR <- summary(lmMR) 

                   options(digits=5)  

     rsqr <- summMR$adj.r.squared                                                

     p_value    <-  

pf(summMR$fstatistic[1],summMR$fstatistic[2],summMR$fstatistic[3],lower.tail=FALS

E)                        

  

storemVR[j,] <- c(i,j,rsqr,coefMR[1],coefMR[2],coefMR[3],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

FecMods<- rbind(storem1[[1]],storem1[[2]])  

  

VRnamex<- rep(colnames(VRateT), each=max(Chindef$ChinMR2))                   

 

storeVec<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=1) 

Chindef$TimeSeries  

F_Chindef <- factor(Chindef$ChinMR2)                                              

haha<- apply(as.data.frame(tapply(Chindef$TimeSeries, F_Chindef, list) ),2,paste) 

for (i in 1:length(haha)/2){ 

storeVec[i,]<-paste(haha[,i][1],"+",haha[,i][2]) 

} 

storeVec<-as.vector(storeVec[,1])                                                

 

Runnamex<- rep(storeVec,length(VRateT[1,]))                                 

FecModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','slope2','p_va

lue', ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))   

 

  

ifelse(Population[1]=='NRKW', 

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$NR_Hyp)[,-(4:5)] 

,  

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

FecModsRes 

colnames(FecModsRes)<-FecModsnam 

 

  

FecModsResSel<- subset(FecModsRes, p_value <= p_val)  
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} 

 

#Survivals Function, Multiple Regression 2 Independent Variables 

#Produces a data.frame containing the vital rates, run name, lag, r-squared,  

#regressions coefficients based on a > specified p-value of models based on 

#Survivals 

   

 

SurFunMR<- function(ChinD, VRateT, Chindef, p_val){   

storemVR<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=7) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(VRateT[1,])){                                                

    for (j in 1:max(Chindef$ChinMR2)){                                            

 

         y <- VRateT[,i] 

         x1 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[1])  

         x2 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[2])                

x1<-as.vector(x1[,1]) 

x2<-as.vector(x2[,1]) 

 

       

     lmMR   <- lm( y~x1+x2)       

     coefMR <- coef(lmMR)  

                                                    

     summMR <- summary(lmMR) 

                   options(digits=5)  

     rsqr <- summMR$adj.r.squared          

     p_value    <-  

pf(summMR$fstatistic[1],summMR$fstatistic[2],summMR$fstatistic[3],lower.tail=FALS

E)     

      

      

  

storemVR[j,] <- c(i,j,rsqr,coefMR[1],coefMR[2],coefMR[3],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

storem1 

SurMods<- 

rbind(storem1[[1]],storem1[[2]],storem1[[3]],storem1[[4]],storem1[[5]],storem1[[6

]],storem1[[7]])  

 

   

VRnamex<- rep(colnames(VRateT), each=max(Chindef$ChinMR2))                    

 

  

storeVec<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=1) 

Chindef$TimeSeries  

F_Chindef <- factor(Chindef$ChinMR2)                                              

haha<- apply(as.data.frame(tapply(Chindef$TimeSeries, F_Chindef, list) ),2,paste) 

for (i in 1:length(haha)/2){ 

storeVec[i,]<-paste(haha[,i][1],"+",haha[,i][2]) 

} 

storeVec<-as.vector(storeVec[,1])                                              

 

Runnamex<- rep(storeVec,length(VRateT[1,]))                                       

SurModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','slope2','p_va

lue', ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))             

 

  

ifelse(Population[1]=='NRKW', 
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 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$NR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

,  

 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$SR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

 ) 

SurModsRes 

colnames(SurModsRes)<-SurModsnam 

  

SurModsResSel<- subset(SurModsRes, p_value <= p_val)  

  

} 

 

 

#Fecundities Function, Multiple Regression 3 Independent Variables 

#Produces a data.frame containing the vital rates, run name, lag, r-squared,  

#regressions coefficients based on a > specified p-value of models based on 

#Fecundities 

  

 

FecFunMR3<- function(ChinD, VRateT, Chindef, p_val, pop){    

 

storemVR<- matrix(NA, nrow=max(Chindef$ChinMR3), ncol=8) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(VRateT[1,])){                                                  

    for (j in 1:max(Chindef$ChinMR3)){                                         

 

         y <- VRateT[,i] 

         x1 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR3==j)$TimeSeries)[1])  

         x2 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR3==j)$TimeSeries)[2])  

         x3 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR3==j)$TimeSeries)[3])               

x1<-as.vector(x1[,1]) 

x2<-as.vector(x2[,1]) 

x3<-as.vector(x3[,1]) 

       

     lmMR   <- lm( y~x1+x2+x3)                                                    

     coefMR <- coef(lmMR)  

                                                    

     summMR <- summary(lmMR) 

                   options(digits=5)  

     rsqr <- summMR$adj.r.squared                                             

     p_value    <-  

pf(summMR$fstatistic[1],summMR$fstatistic[2],summMR$fstatistic[3],lower.tail=FALS

E)          

      

  

storemVR[j,] <- c(i,j,rsqr,coefMR[1],coefMR[2],coefMR[3],coefMR[4],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

storem1 

SurMods<- rbind(storem1[[1]],storem1[[2]])  

 

   

VRnamex<- rep(colnames(VRateT), each=max(Chindef$ChinMR3))        
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storeVec<- matrix(NA, nrow=max(Chindef$ChinMR3), ncol=1) 

Chindef$TimeSeries  

F_Chindef <- factor(Chindef$ChinMR3)                                              

haha<- apply(as.data.frame(tapply(Chindef$TimeSeries, F_Chindef, list) ),2,paste) 

for (i in 1:length(haha)/3){ 

storeVec[i,]<-paste(haha[,i][1],"+",haha[,i][2],"+",haha[,i][3]) 

} 

storeVec<-as.vector(storeVec[,1])                                                 

 

Runnamex<- rep(storeVec,length(VRateT[1,]))                                 

SurModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','slope2','slop

e3','p_value', ifelse(Population[1]=="NRKW", paste('NR_Hyp'), paste('SR_Hyp')))            

  

ifelse(Population[1]=='NRKW', 

 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$NR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

,  

 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$SR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

 ) 

SurModsRes 

colnames(SurModsRes)<-SurModsnam 

 

  

SurModsResSel<- subset(SurModsRes, p_value <= p_val)  

  

} 

 

 

#Beta Regressions betareg 

 

 

SurvFunB<- function(ChinD, SurvT, Chindef, p_val){  

  

 

storemVR<- matrix(NA, nrow=length(ChinD), ncol=6) 

storem1<- list(storemVR,storemVR, storemVR,storemVR,storemVR,storemVR, storemVR) 

       

for (i in 1:length(SurvT[1,])){                                               

    for (j in 1:length(ChinD)){                                           

         y <- SurvT[,i] 

         x <- ChinD[,j] 

        y= ifelse(y==1,0.9999,y) 

        y= ifelse(y==0,0.0001,y) 

     lmSimple   <- betareg( y~x, na.action=na.omit)                            

     

     coefSimple <- coef(lmSimple)  

     summSimple <- summary(lmSimple) 

                   options(digits=5)  

     summSimple$residuals 

     rsqr <- summSimple$pseudo.r.squared                                         

     p_value    <- summSimple$coefficients$mean[8]                                

  

storemVR[j,] <- c(i,j,rsqr,coefSimple[1],coefSimple[2],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

storem1 

SurvMods<- rbind(storem1[[1]],storem1[[2]], storem1[[3]],storem1[[4]], 

storem1[[5]],storem1[[6]], storem1[[7]])  
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VRnamex<- rep(colnames(SurvT), each=length(ChinD))                    

Runnamex<- rep(colnames(ChinD),length(SurvT[1,]))                

SurvModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','p_value', 

ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))          

 

  

ifelse(Population[1]=='NRKW', 

 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$NR_Hyp)[,-(4:5)] 

,  

 SurvModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(SurvMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

SurvModsRes 

colnames(SurvModsRes)<-SurvModsnam 

 

SurvModsResSel<- subset(SurvModsRes, p_value <= p_val)  

} 

 

#Beta FecFun  

FecFunB<- function(ChinD, OffsprT, Chindef, p_val){  

storemVR<- matrix(NA, nrow=length(ChinD), ncol=6) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(OffsprT[1,])){                                              

    for (j in 1:length(ChinD)){                                        

 

         y <- OffsprT[,i] 

         x <- ChinD[,j] 

         y= ifelse(y==1,0.9999,y) 

         y= ifelse(y==0,0.0001,y) 

     lmSimple   <- betareg( y~x, na.action=na.omit)                                                    

     coefSimple <- coef(lmSimple)  

                                                    

     summSimple <- summary(lmSimple) 

                   options(digits=5)  

     rsqr <- summSimple$pseudo.r.squared                                        

     p_value    <- summSimple$coefficients$mean[8]                                

            

  

storemVR[j,] <- c(i,j,rsqr,coefSimple[1],coefSimple[2],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

storem1 

FecMods<- rbind(storem1[[1]],storem1[[2]])  

 

  

VRnamex<- rep(colnames(OffsprT), each=length(ChinD))                     

Runnamex<- rep(colnames(ChinD),length(OffsprT[1,]))                       

FecModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','p_value', 

ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))            

  

ifelse(Population[1]=='NRKW', 

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$NR_Hyp)[,-(4:5)] 

,  

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

FecModsRes 
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colnames(FecModsRes)<-FecModsnam 

  

FecModsResSel<- subset(FecModsRes, p_value <= p_val)  

} 

 

 

 

# Beta Fecundities Function, Multiple Regression 2 Independent Variables 

FecFunMRB<- function(ChinD, VRateT, Chindef, p_val){   

storemVR<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=7) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(VRateT[1,])){                                                

    for (j in 1:max(Chindef$ChinMR2)){   

         y <- VRateT[,i] 

         x1 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[1])  

         x2 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[2])                

x1<-as.vector(x1[,1]) 

x2<-as.vector(x2[,1]) 

        y= ifelse(y==1,0.9999,y) 

        y= ifelse(y==0,0.0001,y) 

 

       

     lmMR   <- betareg( y~x1+x2, na.action=na.omit)                                                      

     coefMR <- coef(lmMR)  

                                                    

     summMR <- summary(lmMR) 

                   options(digits=5)  

     rsqr <- summMR$pseudo.r.squared                                             

     p_value    <- summSimple$coefficients$precision[4]                         

      

  

storemVR[j,] <- c(i,j,rsqr,coefMR[1],coefMR[2],coefMR[3],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

storem1 

FecMods<- rbind(storem1[[1]],storem1[[2]])  

 

   

VRnamex<- rep(colnames(VRateT), each=max(Chindef$ChinMR2))                   

 

 

storeVec<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=1) 

Chindef$TimeSeries  

F_Chindef <- factor(Chindef$ChinMR2)                                              

haha<- apply(as.data.frame(tapply(Chindef$TimeSeries, F_Chindef, list) ),2,paste) 

for (i in 1:length(haha)/2){ 

storeVec[i,]<-paste(haha[,i][1],"+",haha[,i][2]) 

} 

storeVec<-as.vector(storeVec[,1])                                                 

 

Runnamex<- rep(storeVec,length(VRateT[1,]))                                     

FecModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','slope2','p_va

lue', ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))           

 

  

ifelse(Population[1]=='NRKW', 

 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$NR_Hyp)[,-(4:5)] 

,  
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 FecModsRes<-cbind(VRnamex, Runnamex, Chindef$lag, 

as.data.frame(FecMods),Chindef$SR_Hyp)[,-(4:5)] 

 ) 

FecModsRes 

colnames(FecModsRes)<-FecModsnam 

 

  

FecModsResSel<- subset(FecModsRes, p_value <= p_val)  

   

} 

 

 

# Beta Survivals Function, Multiple Regression 2 Independent Variables 

SurFunMRB<- function(ChinD, VRateT, Chindef, p_val){   

storemVR<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=7) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(VRateT[1,])){                                                 

    for (j in 1:max(Chindef$ChinMR2)){                                                

 

         y <- VRateT[,i] 

         x1 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[1])  

         x2 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR2==j)$TimeSeries)[2])                

x1<-as.vector(x1[,1]) 

x2<-as.vector(x2[,1]) 

      y= ifelse(y==1,0.9999,y) 

      y= ifelse(y==0,0.0001,y) 

       

     lmMR   <- betareg( y~x1+x2, na.action=na.omit)                                                      

     coefMR <- coef(lmMR)  

                                                    

     summMR <- summary(lmMR) 

                   options(digits=5)  

     rsqr <- summMR$pseudo.r.squared                                                  

     p_value    <- summSimple$coefficients$precision[4]                       

      

 

storemVR[j,] <- c(i,j,rsqr,coefMR[1],coefMR[2],coefMR[3],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

 

SurMods<- 

rbind(storem1[[1]],storem1[[2]],storem1[[3]],storem1[[4]],storem1[[5]],storem1[[6

]],storem1[[7]])  

 

VRnamex<- rep(colnames(VRateT), each=max(Chindef$ChinMR2))                        

  

storeVec<- matrix(NA, nrow=max(Chindef$ChinMR2), ncol=1) 

Chindef$TimeSeries  

F_Chindef <- factor(Chindef$ChinMR2)                                              

haha<- apply(as.data.frame(tapply(Chindef$TimeSeries, F_Chindef, list) ),2,paste) 

for (i in 1:length(haha)/2){ 

storeVec[i,]<-paste(haha[,i][1],"+",haha[,i][2]) 

} 

storeVec<-as.vector(storeVec[,1])                                                 

 

Runnamex<- rep(storeVec,length(VRateT[1,]))                                       

SurModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','slope2','p_va

lue', ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))            

  

ifelse(Population[1]=='NRKW', 
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 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$NR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

,  

 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$SR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

 ) 

SurModsRes 

colnames(SurModsRes)<-SurModsnam 

  

SurModsResSel<- subset(SurModsRes, p_value <= p_val)  

} 

 

# Beta Fecundities Function, Multiple Regression 3 Independent Variables 

FecFunMR3B<- function(ChinD, VRateT, Chindef, p_val, pop){    

 

storemVR<- matrix(NA, nrow=max(Chindef$ChinMR3), ncol=8) 

storem1<- list(storemVR,storemVR) 

       

for (i in 1:length(VRateT[1,])){                                                  

    for (j in 1:max(Chindef$ChinMR3)){                                          

 

         y <- VRateT[,i] 

         x1 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR3==j)$TimeSeries)[1])  

         x2 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR3==j)$TimeSeries)[2])  

         x3 <- subset(ChinD,select=as.vector(subset(Chindef, 

ChinMR3==j)$TimeSeries)[3])               

x1<-as.vector(x1[,1]) 

x2<-as.vector(x2[,1]) 

x3<-as.vector(x3[,1]) 

        y= ifelse(y==1,0.9999,y) 

        y= ifelse(y==0,0.0001,y) 

       

     lmMR   <- betareg( y~x1+x2+x3, na.action=na.omit)                                                      

     coefMR <- coef(lmMR)  

                                                    

     summMR <- summary(lmMR) 

                   options(digits=5)  

     rsqr <- summMR$pseudo.r.squared     

     p_value    <- summSimple$coefficients$precision[4]   

  

storemVR[j,] <- c(i,j,rsqr,coefMR[1],coefMR[2],coefMR[3],coefMR[4],p_value) 

storem1[[i]] <- storemVR 

   } 

   } 

 

SurMods<- rbind(storem1[[1]],storem1[[2]])  

   

VRnamex<- rep(colnames(VRateT), each=max(Chindef$ChinMR3))                   

 

storeVec<- matrix(NA, nrow=max(Chindef$ChinMR3), ncol=1) 

Chindef$TimeSeries  

F_Chindef <- factor(Chindef$ChinMR3)                                              

haha<- apply(as.data.frame(tapply(Chindef$TimeSeries, F_Chindef, list) ),2,paste) 

for (i in 1:length(haha)/3){ 

storeVec[i,]<-paste(haha[,i][1],"+",haha[,i][2],"+",haha[,i][3]) 

} 

storeVec<-as.vector(storeVec[,1])                                                 

 

Runnamex<- rep(storeVec,length(VRateT[1,]))          
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SurModsnam<- 

c('VitalRate','Chinook_Run','Lag','R_squared','intercept','slope1','slope2','slop

e3','p_value', ifelse(Population[1]=="NRKW", paste('NR_Hyp'), paste('SR_Hyp')))           

  

ifelse(Population[1]=='NRKW', 

 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$NR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

,  

 SurModsRes<-cbind(VRnamex, Runnamex, 

rep(Chindef$lag[Chindef$lag==0],length(VRateT[1,])), 

as.data.frame(SurMods),rep(Chindef$SR_Hyp[Chindef$lag==0],length(VRateT[1,])))[,-

(4:5)] 

 ) 

SurModsRes 

colnames(SurModsRes)<-SurModsnam 

  

SurModsResSel<- subset(SurModsRes, p_value <= p_val)  

} 

 

#Mean Matrices for direct perturbation. This section contains a several matrices 

#as a function of a new vital rate estimated from perturbations #of chinook 

#abundances. There is one function for each vital rate.  

 

KW.matNames<- 

c('KW.matSs1','KW.matSs2','KW.matSs3','KW.matSs4','KW.matSs5','KW.matSs6','KW.mat

Ss7','KW.matSf3','KW.matSf4') 

FunTSs1<- function(Ss1_){     

KW.matSs1_<- matrix(c( 

        0, (Ss1_^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1_^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1_^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1_^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

 

 

FunTSs2<- function(Ss2_){ 

KW.matSs2<- matrix(c( 

        0, (Ss1^0.5*(Ss2_*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2_*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2_*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2_*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSs3<- function(Ss3_){   

KW.matSs3<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3_*(1-

Sg3)))*Sf3)+(Ss3_*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3_*(1-Sg3), 0, 0, 0, 0,    

        0, 0, Ss3_*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 
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        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSs4<- function(Ss4_){ 

KW.matSs4_<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4_*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4_*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4_*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSs5<- function(Ss5_){ 

KW.matSs5<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5_, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSs6<- function(Ss6_){ 

KW.matSs6_<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6_*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6_*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSs7<- function(Ss7_){ 

KW.matSs7<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7_), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSf3<- function(Sf3_){ 

KW.matSf3<- matrix(c( 
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        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3_))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3_)+(Ss3*Sg3*Sf4)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

         

FunTSf4<- function(Sf4_){ 

KW.matSf4<- matrix(c( 

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+(Ss3*(1-

Sg3)))*Sf3)+(Ss3*Sg3*Sf4_)))/2,  (Ss1^0.5*((1+(Ss4*(1-Sg4)))*Sf4_))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, Ss3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, Ss3*Sg3, Ss4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, Ss4*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        ) 

        } 

 

 

#Testing Chinook Runs affecting Several VRs 

FunSs3_Ss4<- function(VR_o1,VR_ch1,VR_o2,VR_ch2){         

   

KW.vr_Ss3_Ss4<- list(Ss1=Ss1, Ss2=Ss2 ,Ss3_1=VR_o1, Ss3_2=VR_ch1 ,Ss4_1=VR_o2, 

Ss4_2=VR_ch2,Ss5=Ss5 ,Ss6=Ss6, Ss7=Ss7 ,Sg2=Sg2 ,Sg3=Sg3, Sg4=Sg4 ,Sg6=Sg6 

,Sp2=Sp2 ,Sp3=Sp3 ,Sf3=Sf3 ,Sf4=Sf4) 

KW.EC_Ss3_Ss4<- expression(  

        0, (Ss1^0.5*(Ss2*Sg2*Sp2*Sf3))/2, (Ss1^0.5*(((1+((Ss3_1+Ss3_2)*(1-

Sg3)))*Sf3)+((Ss3_1+Ss3_2)*Sg3*Sf4)))/2,  (Ss1^0.5*((1+((Ss4_1+Ss4_2)*(1-

Sg4)))*Sf4))/2, 0, 0, 0, 

        Ss1^0.5, Ss2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, Ss2*Sg2*Sp2, (Ss3_1+Ss3_2)*(1-Sg3), 0, 0, 0, 0,    

        0, 0, (Ss3_1+Ss3_2)*Sg3, (Ss4_1+Ss4_2)*(1-Sg4), 0, 0, 0, 

        0, 0, 0, (Ss4_1+Ss4_2)*Sg4, Ss5, 0, 0, 

        0, Ss2*Sg2*Sp3, 0, 0, 0, Ss6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, Ss6*Sg6, Ss7 

        ) 

KW2_Ss3_Ss4  <- vitalsens(KW.EC_Ss3_Ss4,KW.vr_Ss3_Ss4) 

ElasVR_3_4<- c( 

as.numeric(KW2_Ss3_Ss4["Ss3_2",][3]),as.numeric(KW2_Ss3_Ss4["Ss4_2",][3])) 

        } 

 

#Function modified from PopBio to estimate lambda only. 

lambdaPop<- function (A, zero = TRUE){ 

    ev <- eigen(A) 

    lmax <- which.max(Re(ev$values)) 

    lambda <- Re(ev$values[lmax]) 

    dr <- rle(round(Mod(ev$values), 5))$values 

    dr <- dr[1]/dr[2] 

    W <- ev$vectors 

    w <- abs(Re(W[, lmax])) 

    V <- try(Conj(solve(W)), silent = TRUE) 

    if (class(V) == "try-error") { 

        eigen.analysis <- list(lambda1 = lambda, stable.stage = w/sum(w),  

            sensitivities = A * NA, elasticities = A * NA, repro.value = w *  

                NA, damping.ratio = dr) 

    } 

    else { 



 182

        v <- abs(Re(V[lmax, ])) 

        s <- v %o% w 

        if (zero) { 

            s[A == 0] <- 0 

        } 

        e <- s * A/lambda 

        x <- dimnames(A) 

        dimnames(s) <- x 

        names(w) <- x[[1]] 

        names(v) <- x[[1]] 

        lambdaPop <- list(lambda1 = lambda) 

    } 

    lambdaPop 

} 

 

 

#Function creates a set of truncated matrixes  

FunTrunc<- function(DataTrunc,Set){ 

  

SurvDeltaTR<- as.numeric(colMeans(DataTrunc[,1:5], na.rm = TRUE, dims = 1))    

MaxAgeTR<-c(CalfAges[2],JuvsAges[2], YRFemAges[2],ORFemAges[2], NA)              

SurvGammaTR<-c(1, 1/(MaxAge[2]-MaxAge[1]), 1/(MaxAge[3]-MaxAge[2]),  

1/(MaxAge[4]-MaxAge[3]), NA) 

MuOffspTR<- c(0,0,mean(DataTrunc[,6]),mean(DataTrunc[,7]) ,0) 

  

VitalR_TR<- rbind(SurvDeltaTR,MaxAgeTR,SurvGammaTR,MuOffspTR)                    

 

Mean.Ratio.Fem 

  

Ss1tr = SurvDeltaTR[1]       

Ss2tr = SurvDeltaTR[2] 

Ss3tr = SurvDeltaTR[3] 

Ss4tr = SurvDeltaTR[4] 

Ss5tr = SurvDeltaTR[5] 

Sg2tr = SurvGammaTR[2] 

Sg3tr = SurvGammaTR[3] 

Sg4tr = SurvGammaTR[4] 

Sp2tr = Mean.Ratio.Fem 

Sf3tr = MuOffspTR [3] 

Sf4tr = MuOffspTR [4] 

MeanVRtr=c(Ss1tr,Ss2tr,Ss3tr,Ss4tr,Ss5tr,Sg2tr,Sg3tr,Sg4tr,Sp2tr,Sf3tr,Sf4tr) 

 

KW.TR.ep<- expression( 

        0, (Ss1tr^0.5*(Ss2tr*Sg2tr*Sp2tr*Sf3tr))/2, (Ss1tr^0.5*(((1+(Ss3tr*(1-

Sg3tr)))*Sp2tr*Sf3tr)+(Ss3tr*Sg3tr*Sp2tr*Sf4tr)))/2,  (Ss1tr^0.5*((1+(Ss4tr*(1-

Sg4tr)))*Sp2tr*Sf4tr))/2, 

        Ss1tr^0.5, Ss2tr*(1-Sg2tr), 0, 0, 

        0, Ss2tr*Sg2tr, Ss3tr*(1-Sg3tr), 0, 

        0, 0, Ss3tr*Sg3tr, Ss4tr*(1-Sg4tr) 

        )  

  

KW.mat.TR<- matrix(c( 

            0, (Ss1tr^0.5*(Ss2tr*Sg2tr*Sp2tr*Sf3tr))/2, 

(Ss1tr^0.5*(((1+(Ss3tr*(1-Sg3tr)))*Sp2tr*Sf3tr)+(Ss3tr*Sg3tr*Sp2tr*Sf4tr)))/2,  

(Ss1tr^0.5*((1+(Ss4tr*(1-Sg4tr)))*Sp2tr*Sf4tr))/2, 

        Ss1tr^0.5, Ss2tr*(1-Sg2tr), 0, 0, 

        0, Ss2tr*Sg2tr, Ss3tr*(1-Sg3tr), 0, 

        0, 0, Ss3tr*Sg3tr, Ss4tr*(1-Sg4tr)), 

        nrow = 4, ncol = 4, byrow = TRUE 

        )  

        

cat(paste('Mean Matrix Period',Set[1],'-

',Set[2],Population[1]),"\n");print(KW.mat.TR) 

} 
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#Function creates a set of non-truncated matrixes  

FunMat<- function(VRData,Set){ 

SurvSigmaF<- as.numeric(colMeans(VRData, na.rm = TRUE, dims = 1))        

 

MaxAge<-c(CalfAges[2],JuvsAges[2], YRFemAges[2],ORFemAges[2], 

max(PRFem[PRFem$Count>0,]$Age),YMMalAges[2],max(OMMal[OMMal$Count>0,]$Age))   

 

SurvGamma<-c(1, 1/(MaxAge[2]-MaxAge[1]), 1/(MaxAge[3]-MaxAge[2]),  1/(MaxAge[4]-

MaxAge[3]),  1/(MaxAge[5]-MaxAge[4]), 1/(MaxAge[6]-MaxAge[2]),1/(MaxAge[7]-

MaxAge[6]) ) 

  

  

Temp1.Mal<-Temp1[Temp1$Cat1=='Male',]                                          

Temp1.Fem<-Temp1[Temp1$Cat1=='Female',]  

Perc.Mal<-Temp1.Mal[3]/(Temp1.Mal[3]+Temp1.Fem[3])                                

Perc.Fem<-Temp1.Fem[3]/(Temp1.Mal[3]+Temp1.Fem[3])                                

 

Mean.Perc.Mal<- colMeans(Perc.Mal,na.rm = TRUE);Var.Perc.Mal<- var(Perc.Mal,na.rm 

= TRUE)       

Mean.Perc.Fem<- colMeans(Perc.Fem,na.rm = TRUE);Var.Perc.Fem<- var(Perc.Fem,na.rm 

= TRUE)   

 

Mean.Ratio.Mal<- sum(Temp1.Mal[3])/sum(Temp1.Mal[3]+Temp1.Fem[3])        

Mean.Ratio.Fem<- sum(Temp1.Fem[3])/sum(Temp1.Mal[3]+Temp1.Fem[3])       

 

PercentPhi<- c(NaN,NaN,as.numeric(Mean.Ratio.Fem[1]),NaN,NaN, 

as.numeric(Mean.Ratio.Mal[1]), NaN) 

MuOffspF<- c(0,0,mean(na.omit(VRData[,8])),mean(na.omit(VRData[,9])),0,0,0) 

                    

FSs1 = SurvSigmaF[1]       

FSs2 = SurvSigmaF[2] 

FSs3 = SurvSigmaF[3] 

FSs4 = SurvSigmaF[4] 

FSs5 = SurvSigmaF[5] 

FSs6 = SurvSigmaF[6] 

FSs7 = SurvSigmaF[7] 

Sg2 = SurvGamma [2] 

Sg3 = SurvGamma [3] 

Sg4 = SurvGamma [4] 

Sg6 = SurvGamma [6] 

Sp2 = Mean.Ratio.Fem    

Sp3 = PercentPhi[6] 

FSf3 = MuOffspF [3] 

FSf4 = MuOffspF [4] 

FMeanVR=c(FSs1,FSs2,FSs3,FSs4,FSs5,FSs6,FSs7,Sg2,Sg3,Sg4,Sg6,Sp2,Sp3,FSf3,FSf4) 

 

  

KW.matF<- matrix(c( 

        0, (FSs1^0.5*(FSs2*Sg2*Sp2*FSf3))/2, (FSs1^0.5*(((1+(FSs3*(1-

Sg3)))*FSf3)+(FSs3*Sg3*FSf4)))/2,  (FSs1^0.5*((1+(FSs4*(1-Sg4)))*FSf4))/2, 0, 0, 

0, 

        FSs1^0.5, FSs2*(1-Sg2), 0, 0, 0, 0, 0, 

        0, FSs2*Sg2*Sp2, FSs3*(1-Sg3), 0, 0, 0, 0, 

        0, 0, FSs3*Sg3, FSs4*(1-Sg4), 0, 0, 0, 

        0, 0, 0, FSs4*Sg4, FSs5, 0, 0, 

        0, FSs2*Sg2*Sp3, 0, 0, 0, FSs6*(1-Sg6), 0, 

        0, 0, 0, 0, 0, FSs6*Sg6, FSs7), 

        nrow = 7, ncol = 7, byrow = TRUE 

        )  

 

cat(paste('Mean Matrix',Set[1],'-',Set[2],Population[1]),"\n");print(KW.matF) 

} 
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#Functions to estimate vital rates from either a Beta or Linear regression 

coefficients 

 

#Logit 

LogitApl<- function(intercept, slope, x){ 

VR_Y <-  1/(1+exp(-intercept-(slope*x))) 

VR_Y  

} 

 

#Linear 

LinearApl<- function(intercept, slope, x){ 

VR_Y <- intercept+ (slope*x) 

VR_Y  

} 

 

# Function to estimate dependent variable based on the betareg coefficients 

beta_backtr<- function(intercept,slope,data){                                                                         

      1 /(1+exp(-intercept-(slope*data))) 

      } 

 

#Function to plot CI elasticities  

funElastCI<- function(VR, table){ 

Elast_VRa  <-  subset(table, VitalRate==VR); options(warn=-1) 

graphics.off()   

 

if(length(Elast_VRa[,1])<1){ 

addNoVR<- paste('No significant regressions with',VR) 

print(addNoVR) 

} 

 

if(Population=="SRKW"){ 

colbars<-   ifelse(Elast_VRa$SR_Hyp=='1a','blue','gray')} 

if(Population=="NRKW"){ 

colbars<-   ifelse(Elast_VRa$NR_Hyp=='1b','green','gray')} 

 

 

if(length(Elast_VRa[,1])>1){    

pdf(paste('Elasticity with upper CI',Population[1],VR,'.pdf'),width=8,height=8) 

par(mai=c(1.7,0.8,0.8,0.4)) 

dum<- barplot(Elast_VRa$Elast.Inter, col=colbars,  

names.arg=Elast_VRa$Chinook_Run, las=3, main=unique(Elast_VRa$VitalRate), 

ylim=c(0,max(Elast_VRa$Elast.Inter95)+0.005)) 

points(x=dum, y=Elast_VRa$Elast.Inter95, pch=16) 

lines(x=dum,y=Elast_VRa$Elast.Inter95,type='h',lty=2,col=colbars)  

dev.off() 

}} 

 

 

#Beta Function for Chum, all KW VRs 

 

AllFunB<- function(chumD, AllvrT, ChumDef, p_val){  

 

storemVR<- matrix(NA, nrow=length(chumD), ncol=7) 

storem1<- list(storemVR,storemVR, storemVR,storemVR,storemVR,storemVR, 

storemVR,storemVR, storemVR) 

 

 

for (i in 1:length(AllvrT[1,])){                                                 

    for (j in 1:length(chumD)){                                             

         y <- AllvrT[,i] 

         x <- chumD[,j] 

        y= ifelse(y==1,0.9999,y) 

        y= ifelse(y==0,0.0001,y) 

     BSimple   <- betareg( y~x, na.action=na.omit)                   

     coefSimple <- coef(BSimple)  
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     summSimple <- summary(BSimple) 

                   options(digits=5)  

     summSimple$residuals 

     rsqr <- summSimple$pseudo.r.squared                        

     p_value    <- summSimple$coefficients$mean[8]                           

              

     AIC_B<-  AIC(BSimple) 

 

AIC_storem[i,]<- c(AIC_B,AIC_L) 

  

storemVR[j,] <- c(i,j,rsqr,coefSimple[1],coefSimple[2],p_value, AIC_B) 

storem1[[i]] <- storemVR 

   } 

   } 

storem1 

SurvMods<- rbind(storem1[[1]],storem1[[2]], storem1[[3]],storem1[[4]], 

storem1[[5]],storem1[[6]], storem1[[7]],storem1[[8]], storem1[[9]])  

  

VRnamex<- rep(colnames(AllvrT), each=length(chumD))                       

Runnamex<- rep(colnames(chumD),length(AllvrT[1,]))                  

SurvModsnam<- 

c('VitalRate','Chum_Run','Lag','R_squared','intercept','slope1','p_value', 'AIC', 

ifelse(Population[1]=='NRKW', paste('NR_Hyp'), paste('SR_Hyp')))             

 

  

ifelse(Population[1]=='NRKW', 

 SurvModsRes<-cbind(VRnamex, Runnamex, ChumDef$lag, 

as.data.frame(SurvMods),ChumDef$NR_Hyp)[,-(4:5)] 

,  

 SurvModsRes<-cbind(VRnamex, Runnamex, ChumDef$lag, 

as.data.frame(SurvMods),ChumDef$SR_Hyp)[,-(4:5)] 

 ) 

SurvModsRes 

colnames(SurvModsRes)<-SurvModsnam 

 

  

SurvModsResSel<- subset(SurvModsRes, p_value <= p_val)  

 } 

 

 

funElastMR<- function(inputTable){ 

                                                                                   

percIncr <- 0.1                                                                                        

Variant<- 2             

            

  

VRnames_SF<- c(colnames(SurvTable2),colnames(OffsprTable2))                      

MeanVR_SF<-c(Ss1,Ss2,Ss3,Ss4,Ss5,Ss6,Ss7,Sf3,Sf4) 

MeanVR_SFnam<-c('Ss1_','Ss2_','Ss3_','Ss4_','Ss5_','Ss6_','Ss7_','Sf3_','Sf4_') 

symsNVR<- c("Ss1","Ss2","Ss3","Ss4","Ss5","Ss6","Ss7","Sf3","Sf4") 

Table_SF<- data.frame(VRnames_SF, MeanVR_SF, MeanVR_SFnam, symsNVR) 

 

RegMod<- inputTable    

 

RegMod$MatName  <- 

Table_SF$MeanVR_SFnam[match(RegMod$VitalRate,Table_SF$VRnames_SF)]  

 

 

RegMod$VR_Name <- Table_SF$symsNVR[match(RegMod$VitalRate ,Table_SF$VRnames_SF)]  

TableStc.elas <- as.data.frame(t(ElasStats.KW)) 

 

colnames(TableStc.elas)<- 

c('ElasMean.KW','ElasMed.KW','ElasMin.KW','ElasMax.KW','CI_5','CI_95') 

TableStc.elas$Sx <- rownames(TableStc.elas)   
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RegMod$E.VR_Stc <- 

TableStc.elas$ElasMed.KW[match(RegMod$VR_Name,TableStc.elas$Sx)]        

RegMod$E.VR_95  <- TableStc.elas$CI_95[match(RegMod$VR_Name,TableStc.elas$Sx)]      

 

PerturbNames  <- data.frame(KW.matNames, MeanVR_SFnam) 

RegMod$PerturbMat <- 

PerturbNames$KW.matNames[match(RegMod$MatName,PerturbNames$MeanVR_SFnam)]  

 

X_A<-colMeans(na.omit(ChinData))[-1] 

RegMod$X_A <- X_A[match(RegMod$Chinook_Run,names(X_A))]     

if (BetaQ_SR=="NO") { 

VR_A<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_A [e] <- RegMod$intercept[e]+ (RegMod$slope1[e] * RegMod$X_A[e]) 

} 

RegMod$VR_A<-VR_A  

}                                                                                 

 

if (BetaQ_SR=="YES") {   

VR_A<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_A [e] <-  1/(1+exp(-RegMod$intercept[e]-(RegMod$slope1[e] * RegMod$X_A[e]))) 

} 

RegMod$VR_A<-VR_A                                                         

} 

 

 

df.list <- vector("list", length(RegMod[,1]))  

for(i in 1:length(RegMod[,1])){df.list[[i]] <- matrix(data = NA, 

                                     nrow = 7, 

                                     ncol = 7, 

                                     byrow = FALSE, 

                                     dimnames = NULL)} 

for (f in 1:length(RegMod[,1])){ 

  

 if(RegMod$MatName[f]=='Ss1_') {df.list[[f]]<- FunTSs1(RegMod$VR_A[f])}  

 if(RegMod$MatName[f]=='Ss2_') {df.list[[f]]<- FunTSs2(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss3_') {df.list[[f]]<- FunTSs3(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss4_') {df.list[[f]]<- FunTSs4(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss5_') {df.list[[f]]<- FunTSs5(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss6_') {df.list[[f]]<- FunTSs6(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Ss7_') {df.list[[f]]<- FunTSs7(RegMod$VR_A[f])}  

 if(RegMod$MatName[f]=='Sf3_') {df.list[[f]]<- FunTSf3(RegMod$VR_A[f])} 

 if(RegMod$MatName[f]=='Sf4_') {df.list[[f]]<- FunTSf4(RegMod$VR_A[f])} 

 } 

 

RegMod$LambdaA<- as.numeric(unlist(lapply(df.list,lambda))) 

RegMod$X_B<- RegMod$X_A*(1+percIncr)   

  

if (BetaQ_SR=="NO") { 

VR_B<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_B [e] <- RegMod$intercept[e]+ (RegMod$slope1[e] * RegMod$X_B[e]) 

} 

RegMod$VR_B<-VR_B  

}                                                                                 

 

if (BetaQ_SR=="YES") {   

VR_B<- 0. 

for (e in 1:length(RegMod[,1])){ 

VR_B [e] <-  1/(1+exp(-RegMod$intercept[e]-(RegMod$slope1[e] * RegMod$X_B[e]))) 

} 

RegMod$VR_B<-VR_B                                                       

} 
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for (f in 1:length(RegMod[,1])){ 

  

 if(RegMod$MatName[f]=='Ss1_') {df.list[[f]]<- FunTSs1(RegMod$VR_B[f])}      

 if(RegMod$MatName[f]=='Ss2_') {df.list[[f]]<- FunTSs2(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss3_') {df.list[[f]]<- FunTSs3(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss4_') {df.list[[f]]<- FunTSs4(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss5_') {df.list[[f]]<- FunTSs5(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss6_') {df.list[[f]]<- FunTSs6(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Ss7_') {df.list[[f]]<- FunTSs7(RegMod$VR_B[f])}  

 if(RegMod$MatName[f]=='Sf3_') {df.list[[f]]<- FunTSf3(RegMod$VR_B[f])} 

 if(RegMod$MatName[f]=='Sf4_') {df.list[[f]]<- FunTSf4(RegMod$VR_B[f])} 

 } 

 

RegMod$LambdaB<- as.numeric(unlist(lapply(df.list,lambdaPop))) 

 

ElX_V1<-  ((RegMod$LambdaB/RegMod$LambdaA)-1)/((RegMod$X_B/RegMod$X_A)-1) 

 

ElX_V2    <-   (RegMod$E.VR_Stc*((RegMod$VR_B/RegMod$VR_A)-

1))/((RegMod$X_B/RegMod$X_A)-1)         

ElX_V2_95 <-   (RegMod$E.VR_95* ((RegMod$VR_B/RegMod$VR_A)-

1))/((RegMod$X_B/RegMod$X_A)-1)     

 

ifelse(Variant==1, 

RegMod$Elast.Inter <- ElX_V1 , 

RegMod$Elast.Inter <- ElX_V2) 

  

RegMod$Elast.Inter95<- ElX_V2_95 

   

RegModPos<- subset(RegMod, slope1>=0)   

RegModPos<- RegModPos[order(RegModPos$Chinook_Run),]    

  

RegModPos<- subset(RegModPos,MatName  != "Ss5_"& MatName  != "Ss6_"& MatName  != 

"Ss7_") 

  

ifelse(Population[1]=='SRKW', 

RegModPos <- subset(RegModPos, SR_Hyp != 'NA' & SR_Hyp !='Hybrid'),                

RegModPos <- subset(RegModPos, NR_Hyp != 'NA' & NR_Hyp !='Hybrid'))      

  

FreqVRs= as.data.frame(table(factor(RegModPos$VitalRate)) )               

UniqDF<-  unique(factor(RegModPos$VitalRate))                          

NAsdm<- rep(NA,length(UniqDF))                                        

 

RegModPos 

}  

 

                

 

 

R-Code written by Andres Araujo, February 2013. 
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A 8.3. Examples of input data 

 

 

KW Abundance Data  

Year Age Count Offspring Cat1 

1973 1 6 NA Juv 

1973 2 5 NA Juv 

1973 3 9 NA Juv 

1973 4 2 NA Juv 

1973 5 3 NA Juv 

1973 6 2 NA Juv 

1973 7 3 NA Juv 

1973 8 4 NA Juv 

1973 9 5.5 NA Juv 

1973 10 4 NA Male 

1973 10 0.5 0 Female 

1973 11 1 NA Male 

1973 11 0.5 0 Female 

1973 12 2 NA Male 

1974 1 8.5 NA Juv 

1974 2 5 NA Juv 

1974 3 5 NA Juv 

1974 4 9 NA Juv 

1974 5 2 NA Juv 

1974 6 3 NA Juv 

1974 7 2 NA Juv 

1974 8 2 NA Juv 

1974 9 4 NA Juv 

1974 10 4 NA Male 

1974 10 1.5 0 Female 

1974 11 4 NA Male 

1974 11 0.5 0 Female 

1974 12 1 NA Male 

1974 12 0.5 0 Female 

1974 13 1 NA Male 

1974 13 0.5 0 Female 
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Chinook/Chum Abundance Data  

 

 

Stock Group_Run Type_Lag 

Year FE_TR_0 FE_TR_1 FE_TR_2 FE_TR_5YA 

1983 82641 90670 73741 89780 

1984 112697 82641 90670 89484 

1985 136405 112697 82641 99231 

1986 160271 136405 112697 116537 

1987 144071 160271 136405 127217 

1988 149717 144071 160271 140632 

1989 117553 149717 144071 141603 

1990 152585 117553 149717 144839 

1991 128548 152585 117553 138495 

1992 143685 128548 152585 138418 

1993 120905 143685 128548 132655 

1994 161964 120905 143685 141537 

1995 157329 161964 120905 142486 

1996 216402 157329 161964 160057 

1997 233918 216402 157329 178104 

1998 204364 233918 216402 194795 

1999 154677 204364 233918 193338 

2000 169405 154677 204364 195753 

2001 223299 169405 154677 197133 

2002 262677 223299 169405 202884 

2003 283475 262677 223299 218707 

2004 234716 283475 262677 234714 

2005 197047 234716 283475 240243 

2006 285212 197047 234716 252625 

2007 151099 285212 197047 230310 

2008 223888 151099 285212 218392 

2009 207228 223888 151099 212895 

2010 263036 207228 223888 226093 

2011 NA NA NA NA 
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Definitions Files 

     

       

 

KW Demographics 

     TimeSeries Stock Ab.Type lag SR_Hyp NR_Hyp Ab_ID 

FE_TR_0 Fraser Early (Spring and Summer) Terminal run 0 1a 2b 1 

FE_TR_1 Fraser Early (Spring and Summer) Terminal run 1 1a 2b 1 

FE_TR_2 Fraser Early (Spring and Summer) Terminal run 2 1a 2b 1 

FE_TR_5YA Fraser Early (Spring and Summer) Terminal run 5YA 1a 2b 1 

       

       

 

Fishing Scenarios 

     Time 

series Stock or stock aggregate Lag ER Indicator Stocks 

 FE_TR_0 Fraser Early (Spring and Summer) 0 DOM,NIC,SHU   

 FE_TR_1 Fraser Early (Spring and Summer) 1 DOM,NIC,SHU   

 FE_TR_2 Fraser Early (Spring and Summer) 2 DOM,NIC,SHU   

 FE_TR_5YA Fraser Early (Spring and Summer) 5YA DOM,NIC,SHU   
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TRE_Harvest Rates (same format for TR and TRE) 

 

Indicator Stock 

Year KLM ATN PPS QUI 

1982 0.4442 NA 0.4332 0.347306 

1983 0.0043 NA 0.4746 0.4831385 

1984 0.1066 NA 0.2827 0.3294556 

1985 0.2148 NA 0.4779 0.3020232 

1986 0.149 NA 0.483 0.3268915 

1987 0.1931 NA 0.3647 0.3057604 

1988 0.1046 NA 0.3585 0.2241371 

1989 0.1941 NA 0.3235 0.2980182 

1990 0.1747 0.0244 0.2335 0.3325402 

1991 0.2525 0.0551 0.4201 0.3735121 

1992 0.2524 0.1074 0.4327 0.4009146 

1993 0.1945 0.1349 0.6162 0.338489 

1994 0.1717 0.0883 0.5143 0.2763701 

1995 0.1151 0.0618 0.3701 0.2554541 

1996 0.0802 0.0402 0.2624 0.1383983 

1997 0.195 0.0796 0.1466 0.3123559 

1998 0.0944 0.0872 0.1906 0.2268675 

1999 0.3144 0.0821 0.0932 0.2617231 

2000 0.1575 0.0862 0.0286 0.1675622 

2001 0.1689 0.0822 0.0815 0.1243823 

2002 0.2907 0.1382 0.2539 0.2661888 

2003 0.2126 0.2613 0.1002 0.3214712 

2004 0.2212 0.2019 0.1354 0.2369916 

2005 0.2272 0.2511 0.2609 0.300341 

2006 0.1971 0.1859 0.1702 0.2617753 

2007 0.218 0.2616 0.2991 0.3789272 

2008 0.1935 0.0096 0.1901 0.1392628 

2009 0.0951 0.075 0.149 0.236773 

2010 NA 0.1678 NA NA 

2011 NA NA NA NA 
 

 

 

 


