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ABSTRACT 

For determining of Muskingum model coefficients, requires to an output hydrograph. Such 

hydrograph is not available in most rivers. In this research, the Muskingum’s new coefficients are 
determined by the method that which is not require to output hydrograph and its accuracy is high. This 

coefficient is determined based on kinematic wave model with suitable scheme. The comparison 

between results of Muskingum model with new coefficients and dynamic wave model, showed that 

the new coefficients, are valid at special conditions. The new coefficients were adjusted by 
optimization technique for all conditions. The new adjusted coefficients are function of bed slop, 

bottom width and Manning’s roughness coefficient for the river. The results of these coefficients were 

validated by dynamic wave model. 
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1 INTRODUCTION 

The flood flow in rivers is an unsteady flow and its characteristic is varied with time. These 

variations are made by human or natural factors. The flow variations are described by a hydrograph in 

hydrology. The flood routing investigates the variations of depth and discharge flow in rivers or 
channels. The methods or models of flood routing are different. The full dynamic model is the most 

accurate of them, in which the continuity and momentum equations are solved completely. Other 

methods such as kinematic wave, the continuity equation and summarized form of momentum 
equation are solved. These methods were compared by Samani and Shayannejad (Samani, 2000). 

The kinematic wave method is valid if the local and convection accelerations are negligible and slopes 

of surface water and bed are same (Chaudhry, 1993).  The generated error in results of kinematic wave 

model is due to basic assumptions and finite difference numerical solution (Weinmann, 1979). An 
usual and simple method for flood routing in rivers is Muskingum’s method. This method was based 

on continuity equation and its equation is following: 

 

1312212 ICOCICO                                                                                                                     (1)  

 

where 1I  and 2I  =input discharges at 1t 2t و   time steps ; 1O 2O و  =output discharge  at 1t 2t و   time 

steps. 321 ,, CCC =constant coefficients are which determined by a given input and output hydrograph. 

The disadvantages of this method are: 
1. It requires to an output hydrograph for calculating of its constant coefficients. 

2. It determines an output hydrograph only at one point of river. 

3. The applied assumptions in this method cause low its accuracy. 
The many of researchers have presented coefficients for Muskingum’s method to remove above 

disadvantages. For example Cunge (Cunge, 1965), Ponce (Ponce, 1986) and Bowen and Koussis 

(Bowen, 1989) presented a series of coefficients, but the accuracy was still low. 
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     In this paper the Muskingum’s method with new adjusted coefficients have been derived of 

kinematic wave and then they have been adjusted by full dynamic model. This model validates the 

result of the new method. 

 
2 MATERIALS AND METHODS 

     The kinematic wave method is combination of continuity equation and an equation for flow 

resistance as Chezy-Manning equation. These equations are: 
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Where Q =discharge;. A =area cross-section; x =distance; t =time,
5
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Where P =wetting perimeter; n =roughness Manning’s coefficient; 0S =bed slope. 

K  in equation 4 is determined by considering a given discharge (base flow) and calculation of wetting 
perimeter for this discharge.  

The derivative of equation 3 is: 
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The combination of equations 2 and 5 is: 
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For solving equation 6 by numerical method, its terms are discrete following form (Chow, 1988): 
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Where i =local step number; J =time step number; t =time between two sequential time step; 

x =distance between two sequential local step. 

By substituting equations 7, 8 and 9 into equation 6 gives following equation: 
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Where: 
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     Equation 10 is Muskingum’s method with new coefficients and a coefficient is equal to zero. In 

spite of old Muskingum’s method, this new coefficients are not constant during time step calculations, 

because the coefficients depend on 0C  and it is not constant. Besides for calculating of the new 

coefficients do not require to a given output hydrograph and flood routing can be carried out at any 

point of river.  

 
     The grid size calculation must choose so that the Courant number is equal or less than one. This 

number is:  
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Where C =Courant number; KC =celerity (velocity of wave transport). It is determined from equation 

3:  
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     The result of this new method is compared with the results of full dynamic model that its accuracy 

has been validated by real data. The equation 2 and following equation (momentum) constitute full 

dynamic model:  
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     Where V =flow velocity; y =depth of flow; g =gravitational acceleration; fS =slope of energy 

grade line.Equations 2 and 16 are Saint –Venant equation and are solved by numerical method. For 

this work, they are discrete by Preissmann scheme (Li, 1975). Then for each reach of river, two 
equations with four unknown variables are constituted. These variables are depth and velocity of flow 

at two ends of any reach. Thus for M reach (with M+1 nodes), 2M nonlinear equation with 2m+2 

unknown variables are constituted. Thus two equations are required, that are gained from boundary 

conditions. For example, the downstream boundary condition is rating curve and upstream boundary 
condition is an input hydrograph. The nonlinear equation is linearized by Newton-Raphson method. 

Finally depth and velocity of flow (and then discharge) are determined at any node and any time. 

In this paper, the coefficients of equation 10 were adjusted in order to increasing of the new method 
accuracy, by nonlinear optimization technique with using full dynamic model. Firstly, these 

coefficients were changed to following form: 
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222 CKC                                                                                                                               (18) 

  

030 CKC                                                                                                                                (19)  

   

Instead of 1C , 2C and 0C  at equation 10, 1C  , 2C   and 0C   were applied. Secondly 1K , 2K and 

3K were determined by nonlinear optimization technique according to following objective function: 
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Where F =objective function; Qm =output discharge calculated by full dynamic wave; Qc =output 

discharge calculated by equation 10 with new adjusted coefficients (equation 17, 18 and 19) and 

N =number of time step.  

Thirdly were determined relationship between 1K , 2K , 3K  and  characteristic of river 

 

3 RESULTS AND DISCUSION 

Figure 1 shows the output hydrograph at a distance one kilometer, calculated by full dynamic 

model and Muskingum’s method with new coefficients ( 1C , 2C and 0C ) for a hypothetic input 

hydrograph and following input data: 

n =0.035; 0S =0.001; bottom width= 20m; min1t ; mx 100  

 

     Figure 1 shows that there is different between results of two methods. In this research was 

concluded that with increasing of bed slop and decreasing of bottom width and slope of input 
hydrograph, the results of two methods were similar. On the other hand, in these cases, the kinematic 

wave is dominated. 

 
     For  increasing of accuracy of equation 10 its coefficients were adjusted by optimization technique 

and values of 1K , 2K  and 3K  were determined. These coefficients were not constant and were 

depended on characteristic of river. K (Equation 4) was chosen as preventative of characteristic of 

river, because it depends on bed slope, wetting perimeter (depends on bottom width) and roughness 

Manning’s coefficient. 

 
 

Figure 1: Comparison of results of full dynamic and Muskingum with new coefficients methods 
 

Figure 2 shows the relationship between 1K , 2K , 3K  and K . The statistical analysis gives following 

equation:  
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0289.10391.01  LnKK                                                                                                     (21) 

                           

956.00577.02  LnKK                                                                                                        (22)  

                            

4705.159961.03  LnKK                                                                                                   (23)                           

 

 

Figure 2: Variations of 1K
و 2K

و 3K
related to K  

 

     Figure 3 validates Muskingum’s method with new adjusted coefficient. The following data were 

used in this figure are: 
 

 n =0.02; 0S =0.003; bottom width= 30m; min1t ; mx 100  

 

     The accuracy of the new adjusted coefficients is more than Cunnge, Ponce and Bowen ones. Figure 

3 shows results of Cunge coefficients for example. Thus Muskingum’s method with new adjusted 
coefficients is acceptable in rivers. 

 

Figure 3: Comparison of output hydrograph by different methods 
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