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Carbon regeneration in the Cariaco Basin, Venezuela

The carbon regeneration in the water column of 
the Cariaco Basin (Venezuela) was investigated 
using a regression model of total alkalinity (TA) 
and the concentration of total inorganic carbon 
(TCO2). Primary productivity (PP) was determined 
from the inorganic carbon fraction assimilated 
by phytoplankton and the variation of the 22 and 
23°C isotherm was used as an indicator of coastal 
upwelling. The results indicate that CO2 levels were 
lowest (1962 µmol/kg) at the surface and increased 
to 2451 µmol/kg below the oxic-anoxic redox 
interface. The vertical regeneration distribution of 
carbon was dominated (82%) by organic carbon 
originating from the soft tissue of photosynthetic 
organisms, whereas 18% originated from the 
dissolution of biogenic calcite. The regeneration 
of organic carbon was highest in the surface layer 
in agreement with the primary productivity values. 
However, at the oxic-anoxic interface a second more 
intense maximum was detected (70-80%), generated 
by chemotrophic respiration of organic material 
by microorganisms. The percentages in the anoxic 
layers were lower than in the oxic zone because 
aerobic decomposition occurs more rapidly than 
anaerobic respiration of organic material because 
more labile fractions of organic carbon have already 
been mineralized in the upper layers.
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A regeneração de carbono na coluna de água da Ba-
cia de Cariaco (Venezuela) foi investigada utilizando 
um modelo de regressão de alcalinidade total (TA) e 
a concentração de carbono inorgânico total (TCO2). 
Produtividade primária (PP) foi determinada a partir 
da fracção de carbono inorgânico assimilável pelo 
fitoplâncton e a variação da isotérmica de 22 e 23°C 
foi utilizada como um indicador de ressurgência cos-
teira. Os resultados indicam que os níveis de CO2 
eram os mais baixos (1962 µmol/kg) na superfície e 
aumentado para 2451 µmol/kg redox abaixo da in-
terface ico-anóxica. A distribuição vertical de rege-
neração de carbono foi dominada (82%) por carbono 
orgânico originário do tecido mole de organismos 
fotossintéticos, enquanto 18% foram originados da 
dissolução de calcite biogênica. A regeneração do 
carbono orgânico foi maior na camada superficial 
de acordo com os valores de produtividade primária. 
No entanto, na interface ico-anóxica foi detectado 
um segundo máximo mais intenso (70-80%), gerado 
pela respiração quimiotrófica de material orgânico 
por microrganismos. As percentagens nas camadas 
anóxicas foram menores porque a decomposição ae-
róbica ocorre mais rapidamente do que a respiração 
anaeróbica de matérias orgânicas, pois as fracções 
mais lábeis de carbono orgânico já foram minerali-
zadas nas camadas superiores.
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INTRODUCTION
Oceans play a central role in modulating climate 

through the absorption and exchange of carbon dioxide 
from the atmosphere and its sequestration into the oceans’ 
interior. At the same time, the mechanisms of exchange and 
assimilation of heat make the oceans important reservoirs 
of CO2 that can influence climatic changes (STEINBERG 
et al., 2001; SITCH et al., 2015; MCKINLEY et al., 2016). 
The magnitude of the oceanic CO2 sink is influenced by the 
biological pump, that is, the sequestration of atmospheric 
CO2 by phytoplankton during primary production and the 
subsequent export by the sinking of particulates out of the 
mixed layer. Only a fraction of the sinking particles reach 
the sea floor; ~1% of organic carbon that sinks out of the 
surface mixed layer reaches the sediment (BERGER et 
al., 1988; THUNELL et al., 2000; SMOAK et al., 2004; 
THUNELL et al., 2007).

The continental margins are sites of active physical 
and biogeochemical processes that are relevant to the 
global carbon cycle (LIU et al., 2000; ASTOR et al., 2003; 
ASTOR et al., 2013; BAUER et al., 2013). These include 
regions of coastal upwelling where intermediate and deep 
water masses rise to the surface, degas, and generate a 
flux of CO2 into the atmosphere (SMITH, 1994; COBO-
VIVEIROS et al., 2013). In addition, limiting nutrients 
for the biota are transported by the upwelling waters to 
the surface layers and help sustain primary productivity 
(HUTCHINGS et al., 1994; IANSON, 2003; CAPONE; 
HUTCHINS, 2013; SCRANTON et al.; 2014). The 
transport of biological material to the ocean’s interior is 
the main driver of the non-zero gradient of many dissolved 
species in seawater and an important regulator of 
atmospheric CO2 on millennial timescales (LOUANCHI; 
NAJJAR, 2000; SIPPO et al.; 2016). In the open ocean, 
the fluxes of carbon through the water column decease 
exponentially with water depth due to aerobic respiration 
by microorganisms (PACE et al., 1987; PACKARD et al., 
2015).

Atmospheric carbon dioxide (CO2) has increased from 
278 to 400 parts per million (ppm) over the industrial 
period and, together with the increase of other greenhouse 
gases, has driven a series of major environmental changes 
(GATTUSO et al., 2015). Approximately 30% of the 
anthropogenic carbon emitted from fossil fuels is removed 
from the atmosphere by the ocean, which may lead to an 
uncertain future for the planet’s climate (OCCC, 2004; 
JOHN et al., 2007). Biogeochemical ocean circulation 

models suggest that the ocean absorbed approximately 
37 Pg C of anthropogenic C between 1994 and 2010, 
increasing the inventory from 118±20 Pg C to 155±31 
Pg C. This is equivalent to a mean annual uptake rate of 
approximately 2.3 Pg C year, or approximately 27% of 
the total anthropogenic C emissions over this time period 
(KHATIWALA et al., 2013).

The present investigation was carried out within the 
framework of the Cariaco Time-Series Program (Carbon 
Retention in a Colored Ocean) with the objective of 
estimating the percentages of organic and inorganic 
regenerated carbon in the Cariaco Basin.

MATERIAL AND METHODS
Study area 

The Cariaco Basin (Figure 1) is the largest anoxic 
and truly marine pelagic system (MADRID et al., 2001). 
It forms a depression ca. 160 km long and 70 km wide 
on the Venezuelan continental shelf with an approximate 
maximum water depth of 1400 m (MULLER-KARGER et 
al., 2001; ASTOR et al., 2013). A pronounced seasonality 
can be observed in water column physical parameters at 
the start of the year caused by the seasonal displacement 
of the Inter-Tropical Convergence Zone (ITCZ) that 
generates significant variability in wind regime, currents 
and river discharge (RICHARDS, 1960; HERRERA; 
FEBRES ORTEGA, 1975; MULLER-KARGER; 
APARICIO, 1994; ASTOR et al., 1998; RUEDA-ROA; 
MULLER-KARGER, 2013). These changes lead to an 
increase in primary production that exceeds 500 gCm-

2 yr-1 (MULLER-KARGER et al., 2001). The surface 
water layers within the basin also experience a decrease 
in temperature, mainly due to the influence of coastal 
upwelling (MULLER-KARGER et al., 2001). Below 200 
m, the water mass is isolated and is characterized by near-
constant temperature, salinity and total anoxia (ASTOR 
et al., 1998; SCRANTON et al., 2002, ASTOR et al., 
2013). Due to the geomorphology of the basin, advection 
is confined to the surface layers of the water column, from 
which biogenic material and detritus rich in opal, organic 
carbon and lithogenic material are exported to the deeper 
waters (THUNELL et al., 2000; MULLER-KARGER et 
al., 2001). The laminated sediments underlying the anoxic 
water mass serve as an important repository for past 
variability of inter- and extra-tropical climate (REUER et 
al., 2003; MULLER-KARGER et al., 2001; SCRANTON 
et al., 2014).
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Figure 1. Northeastern Venezuela showing the Cariaco Basin. The sampling station (CARIACO) is indicated 
(10º30’ N, 64°40’ W).

The data presented in this study originate from 
samples that were collected monthly from January 2006 
to September 2007 at the Cariaco sampling station (Figure 
1) at 18 water depths from the surface down to 1310 m (1, 
7, 15, 25, 35, 55, 75, 100, 130, 160, 200, 250, 300, 350, 
400, 500, 750, 1310 m). Water samples were recovered 
with a CTD (SBE 25) rosette equipped with 12 Niskin 
bottles (8 L) and dissolved oxygen, fluorescence and light 
attenuation sensors. The upper layers of the basin present 
the most pronounced changes in temperature due to the 
influence of coastal upwelling and lateral advection of 
cooler water masses from the Caribbean Sea (ASTOR et 
al., 1998; MULLER-KARGER et al., 2001; ASTOR et al., 
2003). Vertical mixing below 100 m is inhibited by the 
presence of a strong pycnocline (SCRANTON et al., 1987; 
SCRANTON et al., 2014). Temperatures were only used 
down to 200 meters. Below 200 m, the waters are isolated 
and acquire anoxic characteristics with almost constant 
temperature and salinity (ASTOR et al., 1998; ASTOR et 
al., 2013; SCRANTON et al., 2014). Primary productivity 
(PP) was determined from the inorganic carbon fraction 
assimilated by phytoplankton using 14C bicarbonate 
following the method of STEEMAN-NIELSEN (1952) 
with modifications by KNAP et al. (1997) and UNESCO 
(1994). The procedure is derived from that employed in 
BATS (Bermuda Atlantic Time-series Study, KNAP et 
al., 1997) adjusted for the elevated productivity of the 
sampling station. The minimum incubation time of the 

samples was between 4 and 5 h, which detects C fixation 
rates of 0.05 to 100 mg C m-3 h-1. Analysis of total alkalinity 
(TA) was performed following BRELAND and BYRNE 
(1993). Certified reference materials (supplied by A. 
Dickson) were used. Water samples for the determination 
of TA were siphoned from the Niskin bottles into dark 250 
ml borosilicate containers and fixed with 50 ml saturated 
HgCl2 (equivalent to 50 µM Hg). The samples were 
stored at 4 ºC until analysis. In the laboratory, samples 
were acidified by titration to the inflexion point using 
bromocresol indicator. TA concentrations were calculated 
using absorbance readings at 444 nm and 616 nm, with a 
precision of ± 4 µmol kg-1. Samples for the determination 
of pH were taken directly from the Niskin bottles and 
measured within 1 h by spectrophotometry (Ocean Optics 
SD-1000) using 10 cm cells (CLAYTON; BYRNE, 1993; 
DICKSON; GOYET, 1994). The procedure measures the 
absorbance at 434 nm and 578 nm before and after the 
addition of the purple indicator m-cresol. The cells were 
placed in a water bath at 25 ºC for 15 minutes prior to 
measurement. This methodology is used for the CARIACO 
time-series project and more details are given in ASTOR 
et al. (2005). The precision was ± 0.003 pH units.

TCO2 concentrations were calculated using the 
program CO2SYS (LEWIS; WALLACE, 1995) from pH 
and TA using the equilibrium constants of MERHBACH 
et al. (1973) and MILLERO (1995). This program allows 
the components of the carbon dioxide system to be 
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determined using two variables only. The precision of this 
approach was 5.6 µmol/ kg (ASTOR et al., 2005; ASTOR 
et al., 2013).

The regeneration of carbon in the water column was 
calculated from TA and TCO2 using equations (1) and (2) 
in BROECKER and PENG (1982). This method calculates 
the levels of organic and inorganic carbon regenerated 
in the water column from the slope of the TA vs TCO2 

regression where TCO2=∑CO2. The model considers that, 
in the case of dissolution of calcareous skeletons (CaCO3), 
TA increases twice as much as ∑CO2. Similarly, when 
biogenic tissue is mineralized, TA decreases by one unit for 
each mole of nitrate formed by the nitrification of organic 
nitrogen with a corresponding increase in ∑CO2 set by 
the C:N ratio of the organic material (RÍOS et al., 1989). 
Based on equations used by (BROECKER; PENG,1982) 
on inorganic carbon derived from calcareous test and 
organic carbon from soft tissue (REDFIELD, 1963), is the 
slope of the TA vs TCO2 relationship (RÍOS et al., 1995).

m depth and is relatively cool (22 to 23ºC; Figure 3) and 
enriched in nutrients (ASTOR et al., 1998; MULLER-
KARGER et al., 2001; ASTOR et al., 2003; SCRANTON 
et al., 2014). Despite the high productivity, TCO2 
concentrations were relatively low in the photic zone (< 200 
m), with values between 1968 and 2300 µmol kg-1. Below 
the anoxic chemocline (> 250 m), TCO2 concentrations 
increased to 2451 µmol kg-1 (Figure 4).The monthly 
and annual percentages of organic and inorganic carbon 
regenerated in the Cariaco Basin showed no significant 
seasonal differences at a significance level of p<0.05. 
The p-values test the statistical significance of each of the 
factors. Since no p-values were less than 0.05, none of the 
factors had a statistically significant effect on organic and 
inorganic carbonic at the 95% confidence level. The mean 
percentages of inorganic and organic carbon over the 
study period were 24% and 76%, respectively (Figure 5).

Figure 3. Distribution of temperature (oC) at the sampling station in 
Cariaco Basin from January 2006 to September 2007. Gray contours 
show the variability in the 23oC isotherm during coastal upwelling.
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The percentage of organic and inorganic carbon was 
determined for each month in order to investigate possible 
seasonal changes in the regeneration of carbon in the 
regression model. Monthly profiles of TA and TCO2 were 
regressed to obtain the slope. Thus, all the TA and TCO2 
were averaged at each depth and used in the regression 
model.

To validate the data and determine if monthly and 
annual variations existed in the percentages of regenerated 
carbon, multifactor ANOVA (analysis of variance type III) 
was used at a significance level of 5%. Homogeneity of 
variance was checked using the Cochran test for 18 months 
and 306 observations. To identify the homogeneous groups 
in the analysis, the multiple range LSD test was used 
at a level of 5% (SOKAL; ROHLF, 1969, JOHNSON; 
WICHERN, 1992). The ANOVA analysis was made using 
the statistical package Statgraphics plus 5.1.

RESULTS
Primary production in the Cariaco Basin presented 

strong seasonality, with higher rates during the upwelling 
season that occurs from November until April (Figure 2). 
At this time, water ascends to the surface from ~ 100-120 

Figure 2. Distribution of primary productivity (mg C m-3 h-1) at the 
sampling station in Cariaco Basin from January 2006 to September 
2007.

DISCUSSION
Coastal upwelling systems account for approximately 

half of the global ocean’s primary production and 
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Figure 4. Distribution of TCO2 (µmol/kg) at the sampling station in 
Cariaco Basin from January 2006 to September 2007.

Figure 5. Monthly percentages of depth-integrated regenerated 
carbon (inorganic and organic) at the sampling station in Cariaco 
Basin from January 2006 to September 2007.

contribute disproportionately to biologically driven 
carbon sequestration (ABRANTES et al., 2016). 
Diatoms, silica-precipitating microalgae, constitute the 
dominant phytoplankton in these productive regions, 
and their abundance and assemblage composition in the 
sedimentary record is considered one of the best proxies 
for primary productivity (ABRANTES et al., 2016). In 
the Cariaco Basin primary production is dominated by 
diatoms (THUNELL et al., 2000; ROMERO et al., 2009) 
and is mainly confined to the upper 50 m of the water 
column (Figure 2). Production is relatively higher in the 
upper 7 m, with values exceeding 4 mg C m-3 h-1. However, 
levels of 1 mg C m-3 h-1 were detected between 25 and 50 
m throughout the study period. The highest rates measured 
in this study were 17 mg C m-3 h-1 between January and 
March. An interesting finding was that in non-upwelling 
months, for example July 2002, uncharacteristically high 
values (5 mg C m-3 h-1) were measured. These values are 

influenced by a secondary upwelling caused by the regional 
geostrophic flow FEBRES-ORTEGA; HERRERA, 1975; 
HERRERA; FEBRES-ORTEGA, 1975; MULLER-
KARGER et al., 2001; LORENZONI et al., 2013). The 
high productivity is reflected in the annually integrated 
values which exceed 600 g C m-3 h-1. These agree with 
the rates of 540 to 690 g C m-3 h-1 reported by MULLER-
KARGER et al. (2001). MULLER-KARGER et al. (2001) 
and ASTOR et al. (2003) further indicate that, besides 
upwelling, ventilation processes in this zone also induce 
an increase in productivity. Temporal variability in the 
production and export of diatoms in the Cariaco Basin 
is primarily controlled by the seasonal cycle of primary 
production in the surface waters. When the ITCZ reaches 
its southernmost position during the boreal winter, strong 
E-NE trade winds enhance the upwelling of nutrients into 
surface waters, which in turn results in increased fluxes of 
diatoms and bulk biogenic components to the seafloor. The 
ITCZ moves northward in the boreal summer, resulting in 
weakened E-NE trades (ASTOR et al., 2003), decreased 
input of nutrients to the surface water and reduced primary 
production. Diatom and opal fluxes reach their lowest 
values during boreal summers off Venezuela (ROMERO 
et al., 2009).

The regeneration of the monthly organic carbon 
fraction varied between 60 and 82% (Figure 5), between 
January and June 2006 and then decreased to 68% in 
July 2006. Thereafter, the variability was low and was 
maintained between 70% and 83% during the following 
months. The variation oscillated between 18% and 40% 
for inorganic carbon, with decreases from 40% to 18% 
from January to June 2006 and a secondary maximum 
of 32% in July 2006. The decrease in the percentage of 
regenerated organic carbon, although lower in the first 
months of the year -particularly in 2006, coincides with 
upwelling intensity, which was less intense in 2006 than 
2007 (Figure 3). In July 2006, the decrease was lower 
than in July 2007 due to a stronger increase of the 23 
ºC isothermal. FEBRES-ORTEGA (1974) indicated that 
the geostrophic flow in the Cariaco Basin has a notable 
influence in the upwelling of cold water to the surface. 
The upwelling events are characteristic of the central and 
eastern coast of Venezuela, originating when the Trade 
winds blow from NE-E-SE to NW-W-SW (MULLER-
KARGER; APARICIO, 1994; ASTOR et al., 1998; 
ASTOR et al., 2003; ALVERA-AZCARATE et al., 2009; 
RUEDA-ROA; MULLER- KARGUER, 2014). However, 
lateral advection also has an influence, transporting water 
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masses from the regions of greatest upwelling, such 
as the north coast of Sucre State (FEBRES-ORTEGA, 
1974; RUEDA-ROA; MULLER-KARGUER, 2014). 
The regeneration of organic carbon is a source of marine 
dissolved organic matter (DOM), which is one of the 
largest reservoirs of reduced carbon in the ocean. Thus 
small changes in the cycling of DOM can have dramatic 
impacts on the magnitude of CO2 released or sequestered 
by marine systems (~662 Pmol C) (HANSELL et al., 
2009; LORENZONI et al., 2013).

The slope of the regression curve of the TA vs TCO2 
(Eq. 2) was 0.22 (Figure 6). Accordingly, when the 
variation of organic carbon produced by the decomposition 
of soft tissue (∆Corg) is equal to 1, the variation of inorganic 
carbon generated by the dissolution of hard or calcareous 
skeletons (∆CCaCO3) is 0.22. The sum of both fractions is 
1.22; therefore the percentage of regenerated inorganic 
carbon is equal to (0.22/1+0.22) × 100 = 18%. Similarly, by 
difference, the regeneration of organic carbon, dominated 
by soft or organic material, is 82%.

Figure 6. TA versus TCO2 at the sampling station in Cariaco Basin 
from January 2006 to September 2007.

the maximum in primary productivity. However, the 55 m 
peak suggests mineralization of organic material. Other 
mechanisms that cannot be ruled out are contributions 
from the vertical migration of mesozooplankton and 
nekton such as Bregmaceros cantori which migrates 
between the oxic water layers to anoxic layers deeper than 
500 m (MARÍN et al., 1989), as well as lateral advection 
that produces anomalies in the sedimentation of particulate 
material (TAYLOR et al., 2000). These migrations, along 
with the microbial production in situ, have important 
consequences in the anomalies of the vertical flux of 
carbon in the Cariaco Basin, and may enrich the carbon 
fluxes below 275 m, in particular in the proximity of 455 
m water depth (TAYLOR et al., 2000). On the other hand, 
at depths between 7 and 35 m the values of regenerated 
organic carbon oscillated between approximately 44% and 
64%, respectively. Between 55 m and 250 m there was little 
variation, with values between 52% and 64%. Below the 
anoxic threshold, located between 250 and 350 m, a third 
maximum of 70 - 80% was detected, which is lower than 
those in the photic zone. Most previous studies have found 
the oxic/anoxic interface in the Cariaco Basin (usually 
defined by the appearance of sulfide) to be at between 250 
m and 300 m water depth (MCPARLAND et al., 2013; 
SCRANTON et al., 2014). REIMERS and SUESS (1983), 
EMERSON (1985) and THUNELL et al. (2000) note 
that the degradation and preservation of organic carbon 
in marine ecosystems is commonly associated with the 
availability of dissolved oxygen, whereby decomposition 
under aerobic conditions is usually more efficient 
than under anaerobic conditions (BLAIR et al., 2012; 
MEHRBACH et al., 1973, KEELLER et al., 2002). This 
is corroborated by the proportions of regenerated organic 
C determined in the oxic and anoxic layers of the Cariaco 
Basin. This appears to be different from observations made 
in the Black Sea, where mineralization is a sink for organic 
matter and DOC, even under anoxic conditions, obviates 
any associated DOC accumulation. Some workers have 
also suggested that concentrations are high relative to 
oceanic levels because, unlike the ocean, the Black Sea 
receives a proportionately large amount of terrigenous 
DOC from rivers such as the Danube (MARGOLIN et al., 
2016).

The two maxima at the surface are in agreement with 
the high productivity which attains values of 17 mgC 
m-3 h-1 (Figure 2). The third peak at 300 m is associated 
with intense chemotrophic microbial activity that utilizes 
reduced sulfur species and methane as energy sources 

These values are similar to those reported by 
BROECKER and PENG (1982), who obtained 1 mol 
CaCO3 per 4 moles Corg using a slope of ∑CO2 versus TA 
with surface data and Antarctic bottom water. The results 
in this investigation are in agreement with reports by RÍOS 
et al. (1995) in the northeastern Atlantic, which indicated 
that the regeneration of carbon in water layers between 0 
and 1000 m and > 2300 m is controlled by the fraction of 
soft tissue in the surface layer (86%), with the contribution 
of inorganic or hard calcareous tests being only 14%.

The vertical distribution of regenerated organic carbon 
in the Cariaco Basin (Figure 7) shows highest variability in 
the photic zone, with two maxima of 81.1% and 84.1% at 
1m and 55 m, respectively. The 81.1% value coincides with 
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the fraction regenerated from hard calcareous skeletons 
increases to 51% at depths >2300 m due to the increase in 
TCO2 and decrease in temperature. In the Cariaco Basin, 
despite the temperature at the surface’s reaching 28 ºC and 
decreasing gradually from 17 ºC at 250 m to the seafloor 
(Figure 2), no increases in inorganic carbon are observed.

Primary productivity in the Cariaco Basin is high 
throughout the year and shows a seasonal trend with 
maximum values of 17 mgC m-3 h-1. Productivity is 
influenced by the upwelling of cold nutrient rich waters 
beginning in January. Dissolved CO2 increases with depth 
from 1968 - 2300 µmol kg-1 at the surface to 2451 µmol kg-

1 at the sea floor due to the degradation of organic material. 
An influence of alkalinity was observed on the dissociation 
and regeneration of carbon dioxide, leading to percentages 
in the inorganic and organic fractions regenerated in the 
water column of 18 and 82%, respectively. No seasonal 
variation in the regeneration of carbon in Cariaco Basin 
was observed. Consequently, regenerated carbon in 
the Cariaco Basin was dominated by the soft tissues of 
planktonic organisms. The regeneration of organic carbon 
below the oxic-anoxic interface partly originates from 
chemotrophic respiration pathways.
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