
Decision Tree - Overview

Huyen Do

May 11, 2010

1 Decision Tree - General framework

Decision tree learning is a method for approximating discrete valued target
functions [it is also extended for continuous values], in which the learned function
is represented by a decision tree. Learned trees can also be represented as sets
of if-then rules (to improve human readability). Decision tree learning methods
search a completely expressive hypothesis space and thus avoid the difficulties
of restricted hypothesis spaces. The hypothesis spaces of DT is defined over
feature set, which is all possibility to assign class to each partitions of a feature
space, creating by feature values. In discrete case, the number of all partitions
in case of having m features, each feature has fi discrete values, i = 1..m, is:
Πm

i=1(fi + 1). Therefore if there are c classes, the hypothesis space contains
cΠm

i=1(fi + 1) different hypothesis. The continuous value can be reduced to
discrete case using threshold. Obviously, discrete search in this complete space
is a combinatorial optimization problem. Moreover with a small number of
training instances, there are a lot of hypothesis which are consistent with the
training set, and may be not consistent with the test set. Therefore Decision
Tree adds some more inductive bias. DTs prefer hypothesis which optimize some
criteria. Different criteria lead to different DT algorithms. The most popular
optimizing criterion is: minimize the entropy of the instance sets.

The final goal is to minimize misclassification cost. One of the cost can be
least squared mean error:

min
h∈H

n∑
i

(h(x)− y(x))2

where H is hypothesis space, y(x) is class label, n is number of instances.
Least squared error is proportional to Entropy. (proof?)
Still, optimizing the least squared error is combinatorial. Different greedy

search methods have been developed to solve the problem. Greedy search bases
on some criteria such as Information Gain or Information Gain Ratio,...

Decision Tree ’prefers’ smaller tree (simpler theories) over larger ones. This
bias, in fact, reflects the greedy search strategy while finding a (heuristic) opti-
mal tree which maximizes entropy.

Because the partitions can be expressed by geometric regions (with support
of box constraint), or set of rules (if-then), or in form of a partitioning tree,
decision function of Decision Tree algorithms can be expressed as a decision

1

tree, or equivalent set of rules or as following functional form:

ŷ = T (x) =
M∑

m=1

cmI(x ∈ R̂m)

where

• R̂m is hyperrectangles in input space induced by tree cuts

• cm estimated response within each rectangle. It can be class labels.

• I(.) indicator function.

We can also convert DT decision function to a common form of decision
boundary function: f(x) = 0. For example, in a simple case: x ∈ class 1 if
f(x) < 0 and x ∈ class 2 if f(x) > 0. The box constraints (to describe regions
or partitions) can be always converted to continuous function. For example.
−a < x < a and −b < y < b is equivalent to x2 + y2 = R2.

Therefore model structure of Decision Tree can be:

• sequence of rules

• function ŷ = T (x)

• regions

• function of decision boundary

and respectively the model parameter of Decision Tree can be:

• rules parameters

• cm and R̂m

• box constraint for regions

• params of function of decision boundary

With a complete (big) hypothesis space, we mostly suffer from overfitting.
The hypothesis which fit perfectly to the training set may be completely wrong
with the test set. To overcome this overfitting problem, some pruning tech-
niques have been developed. The pruning process is similar to the process of
choosing hyperparameter C of SVM, using cross validation. However it is more
complicated then cross validation, because at each validation step, we have to
decide how to prune the tree.

One may raise a question: pruning tree should bring a bigger entropy. Our
goal is to minimize the entropy, so why do we prune tree? A possible answer
for this may be: the entropy we try to maximize is, in fact, only an empirical
entropy, which is computed using only the training instances. It is not the real
entropy in the population.

There are many selection measures such as Information Gain, Information
Gain Ratio, [Mingers(1989)- An empirical comparison of selection measure
for decision tree induction. Machine Learning.]: provides an experimental anal-
ysis of the relative effectiveness of several selection measures over a variety of
problems . He reports significant differences in the sizes of the unpruned trees
produces by the different selection measures.

In following subsections we describe entropy and information gain/information
gain ration, to see why they are chosen as optimization criteria in decision tree.

2

1.1 Entropy

Entropy is a measure of how organized or disorganized a system is. The entropy
of random variable X with values in C is defined by:

H(X) = −
∑
x∈C

p(x)log2p(x)

.
Given a random variable Y with value in C = positive, negative. The

entropy of Y is:

H(Y) = −ppositivelog2ppositive − pnegativelog2pnegative

Multiclass : c classes: |C| = c:

H(Y) =
c∑

i=1

−pilong2pi

where pi is the probability p(Y = Ci)
Entropy is maximized if p is uniform.

H(X) ≤ log(|S|)

with equality iff pi = 1/|S|,∀i = 1..c
Because we have only limited number of training instances, we compute pi

approximately by the proportion of class i in the training set.
For any multidimensional random variable X = (X1, X2, ..., Xm) we have:

H(X) ≤
m∑

i=1

H(Xi)

Equality holds if and only if the variables X1, X2, ...Xm are mutually indepen-
dent.

Conditional entropy:

H(X|Y) =
∑

y

pY (y)H(X|y)

Mutual Information between random variables X and Y is defined as the
reduce of entropy H(X) when Y is known (how much knowing one of these
variables reduces our uncertainty about the other).

I(X, Y) =
∑

y

pY (y)(H(X)−H(X|y)) = H(X)−H(X|Y)

I(X, Y) = I(Y,X)

In context of Decision Tree, Mutual Information is called Information Gain.
Decision Tree algorithm tries to partition in order of mutual information of

target variable Y and features (attributes) A

3

1.2 Information Gain

Information gain of an attribute A, relative to a set of samples S is defined as:

IG(S, A) = H(S)−H(S|A) = H(S)−
∑

a

pA(a)H(S|a)

where pA(a) = P (A = a) is approximated by propotion of instances which
has value A == a over the total number of instances: pA(a) = |Sa|

|S|

IG(S, A) = H(S)−
∑

v∈V alues(A)

|Sv|
|S|

H(Sv)

In fact, it is an approximated mutual information between Y - class label and
attribute A

I(Y, A) = H(Y)−H(Y |A) = H(Y)−
∑

a∈V aluesA

pA(a)H(Y |a)

If attributes A1, A2,An are independent, we have following equality:

H(Y |A1, A2, An) =
∑

i

H(Y |Ai)

where V alues(A) is the set of all possible values for attribute A, and Sv is
the subset of S for which attribute A has value v (i.e: Sv = s ∈ S|A(x) = v).
Note the the first term is just the entropy of the original set S, an the second
term is the expected value of the entropy after S is partitioned using attribute
S. IG(S, A) is therefore the expected reduction in entropy caused by knowing
the value of attribute A.

1.3 Information Gain Ratio

Split Information: measure how broadly and uniformly the attribute A splits
the data

SplitInformation(S, A) =
c∑

i=1

|Si|
|S|

log2
|Si|
|S|

Note that SplitInformation is actually the entropy of S with respect to the
values of attribute A. The GainRatio measure is defined in terms of the earlier
Information Gain measure, as well as this SplitInformation, as follows:

GainRatio(S, A) =
IG(S, A)

SplitInformation(S, A)

Notice that the SplitInformation term discourages the selection of at-
tributes with many uniformly distributed values.

Information Gain Ratio is also called Normalized Information Gain.

4

1.4 Gini Index

Another way to measure impurity degree is using Gini index: GiniIndex =
1−

∑c
j p2

j Value of Gini index is always between 0 and 1, regardless the number of

classes.

2 Some examples of Decision Tree algorithms

2.1 ID3

• Split criterion: Information Gain or Information Gain Ratio

• Optimization problem: Optimize the Entropy of the training set

• Optimization strategy: greedy discrete search

2.2 C4.5

• Split criterion: Information Gain Ratio

• Optimization problem: Optimize the Entropy of the training set

• Optimization strategy: greedy discrete search

• Handle both continuous and discrete attributes. C4.5 creates a thresh-
old and then splits the list into those whose attribute value is above the
threshold and those that are less than or equal to it.

• Handle training data with missing attribute values (missing attribute val-
ues are simply not used in gain and entropy calculations).

• Prune tree

5

2.3 CART

Classification and Regression Tree.

2.4 LTree

2.5 Random Forest

2.6 Other notes

Sequential covering can be considered as a special case of Decision Tree.

2.7 Advantages

Decision Tree is easy to interpret, especially for discrete value. It is proved to
be efficient in many applications.

2.8 Disadvantages

1. High variance caused by greedy search strategy (local optima)

2. Use univariate feature selection/criteria→ not good if the target depends
on multi variables.

3. Linear function is the worst function for trees.

3 Tree pruning

6

