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Abstract 
 
The k-means clustering algorithm and neural network 
batch training becomes computationally intensive when 
the manipulated data is large. One way to reduce the 
computational demand of such techniques is to execute 
them in a concurrent manner. Unfortunately, the effort 
required to implement these techniques in a distributed 
computing environment remains daunting. Much of the 
work takes place when partitioning and distributing 
workloads over processors in the distributed computing 
environment. To alleviate this task, we present a data 
parallel interface called Distributed Data Partitioning 
Interface (DDPI). Its simple interface permits parallel 
implementation of k-means type clustering algorithms 
and neural network batch training even by users with 
little understanding of parallel computing technicalities. 
In this work we demonstrate that it is possible to achieve 
near ideal speedups when k-means and k-harmonic 
means clustering algorithms and multilayer perceptron 
batch training are parallelized with DDPI. 
 
Keywords: data partitioning interface, parallel k-means, 
parallel k-harmonic means, parallel batch training 
 
1 Introduction 
 
The k-means clustering algorithm and neural network 
batch training becomes computationally intensive when 
the manipulated data is large. One way to reduce the 
computational demand of such techniques is to execute 
them in a concurrent manner. Although commodity 
clusters and parallel computers are becoming widespread 
now, the effort required to write efficient parallel 
programmes or to parallelize these techniques remains 
daunting. Much of the work takes place when 
partitioning and distributing workloads over processors 
in the distributed computing environment. There are two 

main approaches to relieve this effort off of the user: 
automatic parallelizing compilers (Agarwal et al., 1995; 
Prechelt and Hänßgen, 2002) and workload distributing 
libraries or tools (Carpenter et al., 1997; Karypis and 
Kumar, 1998; Boniface et al., 1999; Chen and Taylor, 
2002). Unfortunately in the former, even though it is a 
well-established research field, the fundamental issue of 
optimal partitioning remains unsolved. On the other 
hand, for data clustering and neural network batch 
training, the libraries and tools appear to be either 
overkills (Carpenter et al., 1997; Karypis and Kumar, 
1998) or too specialized (Boniface et al., 1999; Chen and 
Taylor, 2002). For these reasons, we are motivated to 
look at a general solution and derive the following 
requirements in this work: 
1. Low learning threshold. Ideally, in order to reduce 

the effort required for parallelization, it is not 
expected of the user to acquire additional skills 
pertaining to parallelism nor to learn extraneous 
language constructs. Hence, the low level 
parallelization details should be hidden from the 
user. 

2. Simple implementation. The overall structure of the 
data clustering and neural network batch training 
should be preserved such that the user would be able 
to focus on the original algorithm flow of the 
problem even after parallelization. 

3. Portability. The system should be implemented in a 
widely accepted and standard programming language 
to ensure portability to all target platforms and 
machines. For better portability, assumptions about 
the distributed computing environment’s specific 
network topology should be avoided. Nonetheless, 
the system should cater for homogeneous processors 
and networks since they are more commonly 
available. 

4. Maintainability. Although initially the solution may 
be intended for data clustering and neural network 
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batch training, it should however have the facility to 
be extended for more complicated problems. 

5. Effectual. The system’s performance should be 
comparable to more specialized and sophisticated 
implementations. 

 
It was found that an interface using the data parallel 
approach fulfills the above requirements. In the data 
parallel approach, the computational workload is spread 
to processors by distributing partitions of the large 
manipulated data. The design and implementation of the 
interface, referred to as the Distributed Data Partitioning 
Interface (DDPI), will be presented in the following 
sections. 
 
2 Scope and Limitations 
 
DDPI is targeted for users with little or no prior 
experience in parallel programming. It is implemented in 
an object oriented fashion in C++ and utilizes the 
Message Passing Interface (MPI) (MPI Forum, 1998). 
Even though one of the objectives is to avoid learning 
additional language constructs, it is still reasonable to 
expect the user to know the basic MPI functions since 
they are also implemented in both C and C++. This tool, 
which addresses the problem of data partitioning in data 
clustering and neural network batch training algorithms, 
assumes that a single processor with sufficient memory 
is available to partition the complete data. 
 
3 Design of DDPI 
 
Table 1 lists the description of symbols used in this 
work. Figure 1 displays the three major parallelization 
steps with the DDPI programming interface. In order to 
distribute the computational workload, DDPI provides a 
small set of routines to spread data across the processes. 
The data, which can be either locally or globally 
accessible, is contained in a two-dimensional matrix 
constructor. It is partitioned according to one of several  
 

Table 1: Description of Symbols 

Symbol Description 
nProcs total number of processes 
prRows total process rows 
prCols total process columns 
prRow process row coordinate 
prCol process column coordinate
gblRows global rows 
gblCols global columns 
lclRows local rows 
lclCols local columns 
rowBlk row block size 
colBlk column block size 
startPrRow starting process row 
startPrCol starting process column 
nSamples number of data samples 
nDimension dimension size 
contxt context of the process grid

 
 

available techniques in DDPI and shipped to the 
processes in the process grid. Each process will then be 
able to perform computations concurrently using their 
local data. When required, the processes can 
communicate with each other using existing MPI 
functions. During the computational procedure, there 
will be situations in which information pertaining to the 
distributed data is needed. DDPI provides a convenient 
access to this information through several essential 
routines. Finally, the local data can also be gathered and 
reduced for global use with MPI or DDPI routines. 
Specific details of the above steps will be explored in the 
following sections. 
   

 
Figure 1: The three main parallelization steps of DDPI 

 
3.1 Step 1: Initializing, Partitioning and 

Distributing Data 
 
The first parallelization step with DDPI relieves most of 
the effort from the user by automatically partitioning and 
distributing a given set of computational workload to the 
processors. The user begins the parallelization procedure 
with a one time initialization step of MPI and DDPI 
libraries: 
 
MPI_Init(); 
DDPI_Init(); 
 
This is followed by allocating the data using the DDPI’s 
Matrix object constructor 
 
Matrix::Matrix(i,j,data); 
 
where, i and j are the row and column sizes of the source 
data respectively. If the source data is locally owned, it 
should belong to the root process (process 0) because 
DDPI will distribute the data to other processes from the 
root process. The root process can be verified using the 
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MPI function, MPI_Comm_rank which returns the process 
label of the calling process. The data can now be 
distributed by issuing the DDPI scatter command: 
 
Matrix::scatter(partition); 
 
In the above command, partition represents one of 
DDPI’s three identifiers for the partitioning technique 
that will be used to distribute the data. Table 2 lists the 
identifiers and their corresponding partitioning 
techniques. The three methods are commonly used in 
general parallel computing applications. 
 

Table 2: Identifiers for data partitioning techniques 

Identifier Partitioning Technique 
ROW Row Striped 
COL Column Striped 
UNI Block Cyclic 

 
The data matrix is partitioned by mapping blocks of 
rows of size rowBlk and blocks of columns of size 
colBlk to the process grid. The partitioning techniques 
can be classified based on the block sizes and the mesh 
of the process grid. In the row and column striped 
partitioning techniques, the data matrix is divided into 
groups of complete rows or columns (Figure 2). Each  
 

 

Parameter Size 
gblRows 9 
gblC

prRo
prC

ols 7 
nProcs 6 

ws 6 
ols 1 

rowBlk 2 

9 1 1int
1
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rowBlk + −⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

7 6 1int
6

2

colBlk + −⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

 

colBlk 7 
Note: 
Shaded block indicates the workload assigned to the root 
process. 
 

Figure 2: Row striped partitioning distribution 

process is allocated these contiguous rows or columns as 
workloads. DDPI employs the following functions to 
determine the block sizes: 
 

1int gblRows prRowsrowBlk
prRows

⎛ ⎞+ −
= ⎜

⎝ ⎠
⎟
   (1)  

1int gblCols prColscolBlk
prCols

⎛ ⎞+ −
= ⎜

⎝ ⎠
⎟    (2) 

 
In these functions, gblRows and gblCols are the total 
number of rows and columns in the undistributed data 
matrix respectively. The block sizes can be computed 
using the process row and column sizes listed in Table 3. 
 

Table 3: Process grid meshes for striped partitioning 

Process Grid Row  Column 
process rows (prRows) nProcs 1 
process columns (prCols) 1 nProcs 

 
An example of row striped partitioning is displayed in 
Figure 2. The example illustrates the partitioned layout 
of a data matrix E of size 9×7 that is distributed over 6 
processes. In addition to striped partitioning, DDPI can 
also be used to distribute data using a partitioning 
strategy called checkerboard block cyclic partitioning. 
This technique will not be discussed in this work 
because it is not used for either of the data clustering or 
neural network batch training algorithms. 
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3.2 Step 2: Computing concurrently using 

Distributed Data 
 
Once the data is partitioned and distributed, each process 
can use its local data matrix to perform computations. 
Nevertheless, each process will require essential 
information pertaining to the distributed data such as the 
local rows and columns, the corresponding global matrix 
cell of its local cell, its location on the process grid, etc. 
DDPI accommodates this by providing several routines 
that return such information. Table 4 lists the summary 
of available DDPI routines. Although these routines  
 

Table 4: Summary of DDPI routines 

Routine Function 

getGblRows
getGblCols

Returns the global rows/columns, 
gblRows/gblCols of the partitioned matrix. 

getLclRows
getLclCols

Returns the local rows/columns, 
lclRows/lclCols of the partitioned matrix. 

gbl2lclRow
gbl2lclCol

Converts a global row/column into its 
corresponding local row/column and returns 
the process row/column, prRow/prCol in 
which the global row/column is located. 
Another overloaded version of these 
routines returns a predefined identifier, 
OUTSIDE if the global row/column to be 
converted resides out of the local matrix.   

lcl2gblRow
lcl2gblCol

Converts the process’ local row/column 
into its corresponding global row/column. 
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gbl2lcl 

Converts a global coordinate 
(gblRow,gblCol) of a matrix cell into its 
corresponding local coordinate 
(lclRow,lclCol) and returns the coordinate 
of the process (prRow,prCol) that locally 
owns the matrix cell.  

getContxt 

Returns the context, contxt of the process 
grid in which the matrix is distributed. The 
contxt serves as a reference for the unique 
process grid and the partitioning technique 
used by the processes. Two sets of data can 
be distributed in an identical fashion by 
using the context of one of them as the 
partitioning technique identifier for the 
scatter method of the other: 
Matrix::scatter(contxt); 

descriptor 

A one-dimensional array containing 
information about the distributed matrix: 
contxt, gblRows, gblCols, rowBlk, colBlk, 
startPrRow, startPrCol and lclRows. 

 
 

Table 5: Summary of MPI routines. 

Routine Function 

MPI_Send 
Sends data from the calling process to 
another process identified by the process 
label. 

MPI_Receive 

Inverse operation of MPI_Send. Data is 
received by the calling process from 
another process identified by the process 
label. 

MPI_Scatter 

Distributes distinct uniform-sized blocks 
of data in an array from the calling 
process to distinct members of a process 
group. It is a primitive form of the 
DDPI’s scatter method; it neither 
partitions disingenuously nor maps the 
data onto a process grid. 

MPI_Gather 

Inverse operation of MPI_Scatter. 
Collects distinct uniform-sized blocks of 
data from all members of a process 
group into an array of the calling 
process. It is a primitive form of the 
DDPI’s gather method; it does not take 
into account the partitioning technique 
or the process grid. 

MPI_Bcast 
Sends local data from the root process to 
all members of a process group. 

MPI_Reduce 

Reduces data elements from all 
members of a process group into a 
single value and places the result on the 
root process. 

MPI_Allreduce 
Similar to MPI_Reduce but the reduced 
result is distributed to all members of a 
process group. 

 
provide complete information pertaining to the 
distributed data, fundamental message passing functions 
may still be needed for more elaborate parallel 

programming. These functions are available from MPI 
(Table 5). 
 
3.3 Step 3: Assembling Local Computational 

Results 
 
At the completion of local computations, the processes 
may need to synchronize, gather and reduce their local 
computation outcomes to reflect the overall result of the 
parallel computation. To synchronize the processes, the 
function MPI_Barrier can be used. The data gathering 
procedure can be as simple as assembling the local data 
of processes into a single array while the reduction 
process may include operations such as multiplication 
and summation. For the former, MPI provides a data 
assembler routine called MPI_Gather. Alternatively, 
DDPI provides an advanced version of this function 
which is also the inverse operation of its scatter routine: 
 
Matrix::gather(); 
 
The routine assembles the previously partitioned and 
distributed data matrix into its original form and places it 
on the root process. The reduction process on the other 
hand can be executed using two of the MPI reduction 
routines listed in Table 5 (MPI_Reduce and 
MPI_Allreduce). Finally, the resources allocated for the 
parallel computation can be released and the 
computation can be terminated by issuing the exit 
commands of both MPI and DDPI libraries: 
 
DDPI_Exit(); 
MPI_Finalize(); 
 
The presented three major steps of parallelization are a 
simple outline of the parallelization strategy with DDPI. 
DDPI can be extended for more complex parallel 
computing solutions such as in cases with multiple sets 
of distributed data, multiple types of partitioning 
techniques and multiple topologies of process grids. 
 
4 Experimental Results and Discussion 
 
In this section, parallelization results of data clustering 
and neural network batch training are presented. The 
experiments were conducted on a Linux cluster 
consisting of two computers with each having two 1.6 
GHz Athlon SMP CPUs interconnected by a 1 Gbps 
gigabit ethernet switch. The computers have 2 GB and 1 
GB of memory respectively. The cluster’s performance 
reached 6.435 Gflops when measured using the Linpack 
benchmark (Dongarra, 2002) with Basic Linear Algebra 
Subprograms (BLAS) library (Dongarra et al., 1990) 
optimized by Automatically Tuned Linear Algebra 
Software (ATLAS) (Whaley et al., 2001). Its maximum 
performance could not be measured because it was 
limited by the amount of physical memory. 
 
4.1 Concurrent Data Clustering 
 
Data clustering, which is an NP-complete problem 
(Garey et al., 1982) of finding groups in heterogeneous 
data by minimizing some measure of dissimilarity, is one 
of the fundamental tools in data mining, machine 
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learning and pattern classification solutions. Of all the 
many available clustering techniques, the k-means center 
 

Input 
k : number of clusters 
X : data set  nSamples nDimension×∈ℜ
Output 
centers : cluster centers  k nDimension×∈ℜ

Step 1: Initialization 
Select a set of k starting points, the initial cluster centers 

 where: 
j

centers
uuuuur

1, ,j k= L  

( )1 , ,
j Tj j k n

nDimensioncenters centers centers ×= L
uuuuur

Dimension∈ℜ The 
selection may be done using the Forgy or the random 
partitioning technique. 

Forgy technique: 

• set  as k random samples of the data set 
j

centers
uuuuur

Random partitioning technique: 
• partition the data set into k segments randomly 

• assign each  as the centroid of those 
segments, where centroid is the mean value of 
the samples assigned to it 

j

centers
uuuuur

Step 2: Data membership computation 
For each sample nX

r
,  

1, ,n nSamples= L  

( )1 , ,
Tn n n nSamples nDimension

nDimensionX X X ×= ∈ℜ
r

L  
compute its membership: 

2

1; arg min
( | )

0 ;

n j
j n

jif l X centers
m centers X

otherwise

= −
=
⎧⎪
⎨
⎪⎩

r uuuuur
uuuuur r

 
Step 3: Data membership weight assignment 

For each sample nX
r

, set its weight to unity: 
( ) 1nw X =
r

 
Step 4: Center recalculation 

For each center , recalculate its location from all 
samples 

j

centers
uuuuur

nX
r

, according to their membership and weights: 

1

1

( | ) ( )

( | ) (

nSamples j n n

j
n

nSamples j n n

n

m centers X w X X
centers

m centers X w X

=

=

=
∑

∑

uuuuur r r r
uuuuur

uuuuur r r
)

n

 

Step 5: Convergence condition 
Repeat steps 2 to 4 until convergence. The objective 
function that the k-means algorithm minimizes is: 

( )
{ }

2

1...1

| min
nSamplesn j n

KM
j kn

Perf X centers X centers
∈=

= −∑
r uuuuur r uuuuur j

 

 
Figure 3: The sequential k-means clustering algorithm 

based clustering algorithm, despite of its local minimum 
solutions, stands out as a popular tool due to its low 
computational complexity and straightforward 

implementation (Estivill-Castro and Houle, 2001). 
Figure 3 depicts the k-means clustering algorithm which 
finds k clusters in a data set of size 
nSamples×nDimension. For a single iteration of the 
search space (steps 2 to 4), the k-means algorithm has 
the computational complexity of 
 
( )O nSamples nDimension k× ×  

 
The k-means primary advantage of low computational 
complexity will therefore be inhibited when the number 
of samples is large. Motivated by this shortcoming when 
using k-means with large databases, several parallel 
implementations of the technique have been introduced 
(Dhillon and Modha, 1999; Kantabutra and Couch, 
2000; Ng, 2000; Zhang et al., 2000). According to the 
analysis by Kantabutra and Couch, their algorithm 
requires heavy network loading due to rebroadcasts of 
the data set and therefore only about half of the CPU 
time is utilized. On the other hand, the data parallel 
approaches adopted by the other three implementations 
are superior since only essential local statistics are 
broadcasted at each iteration, which substantially 
reduces the interprocessor communication latency. 
Figure 4 lists the steps in the data parallel approach. 
 
Step 1: Initialization 

Partition the data set into nProcs partitions and 
distribute them to the local memory of the 
respective processes. On the root process, initialize 
centers values and make them global values by 
broadcasting them to all processes. 

Step 2: Local computation 
On each process, compute local data memberships, 
local centers and local performance using local data 
sets and global centers. 

Step 3: Global center recalculation 
Compute new global centers using summed local 
centers and summed local data memberships. 
Compute the global performance by summing local 
performances. 

Step 4: Convergence condition 
If global performance has converged, terminate 
computation and return global centers, otherwise 
start next iteration from step 2. 

 
Figure 4: The data parallel approach to parallelize k-
means type clustering algorithms 
 
With this approach, it is possible to reduce the k-means 
computational costs of each iteration (steps 2 to 4) to 
 

nSamples nDimension kO
nProcs
× ×⎛ ⎞

⎜ ⎟
⎝ ⎠

 

 
provided that nSa  (Zhang et al., 2000). 
By exploiting the similarity of the data parallel approach 
adopted by DDPI, a parallel k-means algorithm can be 
implemented in a straightforward manner using DDPI. 

mples nProcs>>

 



 6
Figure 5 compares the sequential implementation of k-
means with its parallel counterpart which is implemented 
via DDPI’s row striped partitioning interface. It is 
evident that with only several additional lines, the k-
means algorithm can be converted for concurrent 
computations with DDPI. The original algorithm flow is 
still preserved which permits further modifications of the 
algorithm even by users with little understanding of 
parallel computing. 
 

Input 
k             : number of clusters   
X             : data set matrix 
nSamples : number of data samples 
nDimension : data dimension 
Output 
centers   : cluster centers 
Variable 
meanSE     : the k-means performance 

sequential k-means parallel k-means 
data = X; 
// intialize centers 
 
meanSE = BIG_NUM; 
do { 
  oldMeanSE = meanSE; 
  nSE = 0;   mea   
  for j = 1 to k 
    dataCntj = 0; 
    for col = 1 to 
nDimension 
      centers_j,col = 0; 
    endfor 
  endfor 
  for row = 1 to nSamples 
    minDistancerow = 
BIG_NUM; 
    for j = 1 to k 
      sumDistance = 0; 
      for col = 1 to 
nDimension 
        sumDistance = 
sumDistance + 
              (datarow,col – 
center )sj,col

      endfor 

2; 

      if (sumDistance < 
minDistance ) row

        minDistancerow = 
sumDistance; 
        centerLabel  = j; row

      endif  
  
    endfor   
    crow = centerLabelrow; 
    for col = 1 to 
nDimension 
      centers_crow,col = 
centers_crow,col + 
            datarow,col; 
    endfor 
    dataCntcrow = dataCntcrow 
+ 1; 
    meanSE = meanSE + 
minDistancerow; 
  endfor; 
  
  for j = 1 to k 
    for col = 1 to 
nDimension 
      centersj,col =  
                    
centers_j,c

  endfor 
ol/max(dataCntj,1); 

  
  endfor 
} while (meanSE < 
oldMeanSE); 

MPI_Init(); 
DDPI_Init(); 
Matrix::Matrix(nSamples,nDimension,X); 
Matrix::scatter(ROW); 
data = Matrix::data; 
myNode = MPI_Comm_rank(); 
if (myNode == 0) 
  
endif 
// intialize centers 

MPI_Bcast(center , k); s
a SE = BIG_NUM; me n

do { 
  oldMeanSE = meanSE; 
  meanSE_ = 0;   
  for j = 1 to k 
    dataCnt_  = 0; j

    for col = 1 to nDimension 
      centers_j,col = 0; 
    endfor 
  endfor 
  for row = 1 to Matrix::getLclRows(); 
    Dis ancmin t ero
    for j = 1 to k

w = BIG_NUM; 
 

      sumDistance = 0;  
      for col = 1 to nDimension  
        sumDistance = sumDistance + 
              (datarow,col – centersj,col)2; 
      endfor 
      if (sumDistance < minDistance ) row

        minDistancerow = sumDistance; 
        centerLabel  = j; row

      endif    
    endfor   
    crow = centerLabelrow; 
    for col = 1 to nDimension 
      centers_crow,col = centers_ 
            data

crow,col + 
row,col; 

    endfor 
    dataCnt_cr
    meanSE_ = meanSE_ + minDistance

ow = dataCnt_crow + 1; 
row; 

  endfor; 
  MPI_Barrier(); 
  
MPI_Allreduce(centers_,centers,MPI_SUM); 
  
MPI_Allreduce(dataCnt_,dataCnt,MPI_SUM); 
  MPI_Allreduce(meanSE_,meanSE,MPI_SUM); 
  for j = 1 to k 
    for col = 1 to nDimension 
      centersj,col =  
            centersj,col/max(dataCntj,1); 
  endfor   
 endfor  

} while ( nSE < oldMeanSE); mea
DDPI_Exit(); 
MPI_Finalize(); 

 
Figure 5: Sequential and parallel k-means comparison 

In order to empirically evaluate the performance of the 
parallel k-means, several experiments were conducted 
with varying number of data samples. For this purpose, 
synthetic data sets were generated using an algorithm 
presented by Zhang (Zhang, 2001). The number of 
clusters (k = 8), the dimension size (nDimension = 8) 
and the data set sizes are similar to the ones adopted by 
Ng (Ng, 2000) since his hardware performance is within 
the range of the Linux cluster used in this research. The 
speedup (3) with respect to the execution time of the 
sequential implementation is shown in Figure 6. 
 

( )
( )

executionTime 1
executionTime

nProcs
speedup

nProcs
=

=   (3) 

 
It can be observed that the speedups gained from the 
parallel k-means are almost equal to the ideal case which 
indicates linear speedup. In the largest data set 
(nSamples = 640,000), the speedup is 3.76 on 4 
processors. The speedup is only impaired when the data 
set is relatively small (nSamples = 80,000). 
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Figure 6: The k-means speedup after parallelization 
 
Recently, Hamerly and Elkan have evaluated another 
center based clustering algorithm called k-harmonic 
means and found it to be superior to the k-means 
algorithm in terms of the computed centers’ quality 
(Hamerly and Elkan, 2002). It appears from their 
findings that, on the contrary to the k-means algorithm, 
the k-harmonic means algorithm (Zhang, 2001) is robust 
to initial starting points of the centers. A parallel 
implementation of the k-harmonic means technique with 
DDPI is conducted to evaluate the consistency of the 
DDPI’s performance in varied clustering problems. 
Hence, a concurrent k-harmonic means algorithm was 
implemented with the DDPI’s row striped partitioning 
interface and a set of experiments was executed similar 
to that of the k-means algorithm. Figure 7 shows the 
results of this set of experiments. The results also 
demonstrate that it is possible to achieve almost linear 
speedups with the DDPI’s parallelizing interface for 
other clustering techniques such as the k-harmonic 
means algorithm. 
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Figure 7: The k-harmonic means parallelization speedup 
 

4.3 Concurrent Batch Learning for Neural 
Networks 

 
The learning phase of a neural network is 
computationally intensive especially when the batch 
training is employed as opposed to the stochastic 
technique. With batch training, at each iteration, the 
entire data set needs to be considered in order to 
compute the parameters’ gradient for an iterative 
gradient based optimization scheme (such as the 
commonly used error backpropagation algorithm). 
Conversely, for the stochastic training, at each iteration, 
the gradient is computed after considering only a single 
sample of the data set. There are however, some 
instances when the batch learning is preferred over the 
stochastic technique (LeCun et al., 1996).  
 
When large data sets are considered for batch training, 
the training phase can be parallelized to reduce the 
computational costs. Parallelization strategies that are 
available include training each network of a multi-neural 
network architecture on a dedicated processor, 
parallelization at the neuron or synapse level, and 
parallelization using the data parallel approach 
(Sundararajan and Saratchandran, 1998). Interestingly, 
akin to the data clustering problem, the data parallel 
approach appears to be the most favourable technique 
due to its simplicity and performance (Schikuta and 
Weidmann, 1997; Rogers and Skillicorn, 1998). The 
parallelization steps of a general neural network batch 
training algorithm with the DDPI’s interface are shown 
in Figure 8. In addition to saving memory space by only 
allocating a portion of the data set on the local 
memories, the approach can also be applied for both 
single and multiple neural network architectures. 
 
Step 1: Initialization 
• Let nProcs be equivalent to the number of 

processors available in the homogeneous parallel 
computing environment. 

• Place the training data set on an 
nSamples×nDimension matrix accessible by the 
root process. Partition the matrix into nProcs 
partitions using DDPI’s row striped partitioning 
technique and distribute them to all processes. 

• On the root process, initialize the neural network 
parameter values and make them global values by 

broadcasting them to all processes. 
Step 2: Local gradient computation 
• On each process, compute local empirical error and 

local accumulated gradients using the local data 
and global parameter values. 

Step 3: Global parameter value adjustment 
• Sum all local accumulated gradients and divide 

them by the total number of samples (nSamples) to 
obtain the effective global gradient. 

• Sum all local empirical errors to obtain global 
empirical error. 

• Adjust the parameter values using the global 
gradients through an iterative gradient based 
optimization procedure. 

• Broadcast the new global parameter values to all 
processors. 

Step 4: Convergence condition 
• If global empirical error has converged, terminate 

computation and return global parameter values, 
otherwise start next iteration from step 2. 

 
Figure 8: Parallelization steps of batch training 

  
In order to assess the performance of the parallel batch 
training algorithm, a set of experiments was conducted 
with the classic Multilayer Perceptron (MLP) and the 
error backpropagation algorithm. The training was done 
on a data set with varying number of data samples and 
fixed number of iterations. The batch training speedup 
with respect to the execution time of the sequential 
implementation is shown in Figure 9. It is clear that 
DDPI’s performance is also consistent in the batch 
training problem. Furthermore, a dedicated neural 
network parallelization library by Boniface et al. 
(Boniface et al., 1999) was reported to only achieve 
speedup of 3.6 on 8 processors whereas with DDPI it is 
possible to attain speedup up to 3.87 on only 4 
processors (nSamples = 247731). However it should be 
noted that their experiment was conducted with the 
Kohonen Self-organizing Map on a network system 
more than 3 years ago. Their poor performance is also 
possibly due to their neuron parallelism strategy which 
causes heavy network loading. 
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Figure 9: The MLP batch training speedup 
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5 Conclusion 
 
A simple yet effective interface for parallelizing k-means 
type clustering algorithms and neural network batch 
training has been described in this work. DDPI’s almost 
ideal speedup performances appear to be consistent on 
large data which are comparable to dedicated hand 
coded implementations or other existing sophisticated 
solutions. DDPI’s simplicity of implementation, 
promotes adoption by users with little understanding of 
parallel computing technicalities. In the future, DDPI 
can be extended for applications on a heterogeneous 
cluster by partitioning the workload according to the 
performance and resources of the individual nodes in the 
cluster. 
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