

Aerospace, Information Technology, and Communications Seminar (SEMASITT'03).
May 7, 2003. Johore Bahru, Malaysia.

DISTRIBUTED DATA PARTITIONING INTERFACE FOR
HOMOGENEOUS CLUSTERS IN PROTEIN SECONDARY

STRUCTURE PREDICTION

Satya Nanda Vel Arjunan1, Safaai Deris1, Rosli Md Illias2, Mohd Saberi Mohamad1

1Department of Software Engineering, Faculty of Computer Science and Information Systems
Universiti Teknologi Malaysia, 81310 Skudai, Johore, Malaysia

Tel: 07-553243, E-mail : Safaai@fsksm.utm.my, satyanandavel@hotmail.com, berie_ext2@lycos.com
2 Department of Bioprocess Engineering, Faculty of Chemical and Natural Resources Engineering

Email : r-rosli@utm.my

Abstract : The effort required to write efficient parallel programmes or to parallelize existing sequential
algorithms remains daunting. This is true even for regularly structured problems. Much of the work takes place
when partitioning and distributing workloads over processors in a distributed computing environment. To
alleviate this task, we present a data parallel interface called Distributed Data Partitioning Interface (DDPI). Its
simple interface permits parallel implementation even by users with little understanding of parallel computing
technicalities. In this work we evaluate the performance of DDPI in several computationally intensive problems
such as matrix multiplication, data clustering and neural network batch training. Through these problems, we
demonstrate that it is possible to achieve almost ideal speedups when they are parallelized with DDPI.

Keywords: data partitioning interface, parallel k-means, parallel k-harmonic means, parallel batch training

1. Introduction
Although commodity clusters and parallel

computers are becoming widespread now, the effort
required to write efficient parallel programmes or to
parallelize existing algorithms remains daunting.
This is true even for regularly structured problems.
Much of the work takes place when partitioning
and distributing workloads over processors in the
distributed computing environment. There are two
main approaches to relieve this effort off of the
user: automatic parallelizing compilers (Agarwal et
al., 1995; Prechelt and Hänßgen, 2002) and
workload distributing libraries or tools
(Hendrickson and Leland, 1994; Carpenter et al.,
1997; Karypis and Kumar, 1998; Boniface et al.,
1999; Chen and Taylor, 2002). Unfortunately in the
former, even though it is a well-established
research field, the fundamental issue of optimal
partitioning remains unsolved. On the other hand,
for regularly structured problems, the libraries and
tools appear to be either overkills (Hendrickson and
Leland, 1994; Carpenter et al., 1997; Karypis and
Kumar, 1998) or too specialized (Boniface et al.,
1999; Chen and Taylor, 2002), and therefore are
substantially cumbersome when they are used to
parallelize existing sequential algorithms. Certainly
the problem at hand should be the center of focus
instead of being concerned with the intricacies of
parallel programming. Moreover, even for
experienced parallel programmers, the development
of good parallel implementations with these tools is
still more tedious than writing efficient serial
programmes. For these reasons, we are motivated to

look at a general solution and derive the following
requirements in this work:

(i) Low learning threshold. Ideally, in order
to reduce the effort required for
parallelization, it is not expected of the
user to acquire additional skills pertaining
to parallelism nor to learn extraneous
language constructs. Hence, the low level
parallelization details should be hidden
from the user.

(ii) Simple implementation. The overall
structure of the sequential program should
be preserved such that the user would be
able to focus on the original algorithm
flow of the problem even after
parallelization.

(iii) Portability. The system should be
implemented in a widely accepted and
standard programming language to ensure
portability to all target platforms and
machines. For better portability,
assumptions about the distributed
computing environment’s specific
network topology should be avoided.
Nonetheless, the system should cater for
homogeneous processors and networks
since they are more commonly available.

(iv) Maintainability. Although initially the
solution may be intended for regularly
structured problems, it should however
have the facility to be extended for more
complicated problems.

(v) Effectual. The system’s performance
should be comparable to more specialized
and sophisticated implementations.

It was found that an interface using the data parallel
approach fulfills the above requirements. The
design and evaluation of the interface, referred to as
the Distributed Data Partitioning Interface (DDPI),
will be presented in the following sections.

2. Scope and Limitations
DDPI is designed to parallelize problems

dealing with regularly distributed data or iterative
in nature. Although it can still be used with
irregularly structured problems, the performance
may not be optimal because it may bring about
communication overhead to distribute workloads
evenly. DDPI is targeted for users with little or no
prior experience in parallel programming. It is
implemented in an object oriented fashion in C++
and utilizes the Message Passing Interface (MPI)
(MPI Forum, 1998). Even though one of the
objectives is to avoid learning additional language
constructs, it is still reasonable to expect the user to
know the basic MPI functions since they are also
implemented in both C and C++. This tool, which

addresses the problem of data partitioning, assumes
that a single processor with sufficient memory is
available to partition the complete data.

3. Design of DDPI
Table 1 lists the description of symbols used in

this work. Figure 1 displays the three major
parallelization steps with the DDPI programming
interface. In order to distribute the computational
workload, DDPI provides a small set of routines to
spread data across the processes. The data, which
can be either locally or globally accessible, is
contained in a two-dimensional matrix constructor.
It is partitioned according to one of several
available techniques in DDPI and shipped to the
processes in the process grid. Each process will
then be able to perform computations concurrently
using their local data. When required, the processes
can communicate with each other using existing
MPI functions. During the

Table 1: Description of Symbols.

Symbol Description Symbol Description

nProcs total number of
processes lclCols local columns

prRows total process
rows rowBlk row block size

prCols total process
columns colBlk column block size

prRow process row
coordinate startPrRow starting process row

prCol process column
coordinate startPrCol starting process column

gblRows global rows nSamples number of data samples
gblCols global columns nDimension dimension size
lclRows local rows contxt context of the process grid

computational procedure, there will be situations in
which information pertaining to the distributed data
is needed. DDPI provides a convenient access to
this information through several essential routines.
Finally, the local data can also be gathered and

reduced for global use with MPI or DDPI routines.
Specific details of the above steps will be explored
in the following sections.

Fig 1: The three main parallelization steps of DDPI

3.1 Step 1: Initializing, Partitioning and
Distributing Data

The first parallelization step with DDPI
relieves most of the effort from the user by
automatically partitioning and distributing a given
set of computational workload to the processors.
The user begins the parallelization procedure with a
one time initialization step of MPI and DDPI
libraries:

MPI_Init();
DDPI_Init();

This is followed by allocating the data using the
DDPI’s Matrix object constructor

Matrix::Matrix(i,j,data);

where, i and j are the row and column sizes of the
source data respectively. If the source data is
locally owned, it should belong to the root process
(process 0) because DDPI will distribute the data to
other processes from the root process. The root
process can be verified using the MPI function,
MPI_Comm_rank which returns the process label
of the calling process. The data can now be
distributed by issuing the DDPI scatter command:

Matrix::scatter(partition);

In the above command, partition represents one of
DDPI’s three identifiers for the partitioning
technique that will be used to distribute the data.
Table 2 lists the identifiers and their corresponding
partitioning techniques. The three methods are
commonly used in general parallel computing
applications.

Table 2: DDPI identifiers for data partitioning
techniques.

Identifier Partitioning Technique
ROW Row Striped
COL Column Striped
UNI Block Cyclic

The data matrix is partitioned by mapping blocks of
rows of size rowBlk and blocks of columns of size
colBlk to the process grid. The partitioning
techniques can be classified based on the block
sizes and the mesh of the process grid. In the row
and column striped partitioning techniques, the data
matrix is divided into groups of complete rows or
columns (Figure 2). Each process is allocated these
contiguous rows or columns as workloads. DDPI

employs the following functions to determine the
block sizes:

1int gblRows prRowsrowBlk
prRows

⎛ + −
= ⎜

⎝

⎞
⎟
⎠

 (1)
1int gblCols prColscolBlk

prCols
⎛ + −

= ⎜
⎝

⎞
⎟
⎠

 (2)

In these functions, gblRows and gblCols are the
total number of rows and columns in the
undistributed data matrix respectively. The block
sizes can be computed using the process row and
column sizes listed in Table 3.

Table 3: Process grid meshes for striped
partitioning techniques.

Process Grid Row Striped Column
Striped

process rows
(prRows) nProcs 1

process columns
(prCols) 1 nProcs

An example of each scheme is displayed in Figure
2. The examples illustrate the partitioned layouts of
a data matrix E of size 9×7 that is distributed over 6
processes. It can be observed from both of the
examples that not all of the 6 processes receive the
distributed matrix. Nevertheless, there is a
partitioning strategy which can distribute the same
data matrix E to all the processes yet achieve better
load balancing. This technique, called checkerboard
block cyclic partitioning, is illustrated in Figure 3.

The checkerboard block cyclic partitioning
scheme, which has also been incorporated in the
High Performance Fortran standard (High

Performance Fortran Forum, 1997), distributes
blocks of rows and columns among the processes in
a wraparound manner. Unlike the striping
techniques, the block cyclic partitioning technique
does not have rigid process grid meshes.
Furthermore, the row and columns blocks can be of
any size as well. Small block sizes in this scheme
will provide better load balancing but at the cost of
frequent interprocessor communications.
Conversely, large block sizes will reduce the
communication latency but may cause load
imbalance among the processes. With DDPI, by
default the block sizes are computed using the
following conventions:

int gblRowsrowBlk
prRows

⎛ ⎞
= ⎜

⎝ ⎠
⎟

 (3)

int gblColscolBlk
prCols

⎛ ⎞
= ⎜

⎝ ⎠
⎟

 (4)

The sizes however, can be changed to suit the
computational problem. In Figure 3 the data matrix
E is partitioned into 4×2 blocks and mapped onto a
2×3 row-major order process grid. The largest
workload assigned to a process is a 15-element
matrix owned by the root process (Figure 3 (a)).
Comparing this workload with the largest one from
the example in Figure 3 (b) (18-element matrix), it
is evident that the block cyclic partitioning scheme
achieves better load balancing than the column
striped partitioning technique. It should be noted
however, as it will be demonstrated in the
experimental results section, in some problems the
striping techniques perform better than the
checkerboard block cyclic scheme.

 MATRIX COLUMN
 0 1 2 3 4 5 6

 0 E00 E01 E02 E03 E04 E05 E06

 1 E10 E11 E12 E13 E14 E15 E16

0

 2 E20 E21 E22 E23 E24 E25 E26

 3 E30 E31 E32 E33 E34 E35 E36

1

 4 E40 E41 E42 E43 E44 E45 E46

m
at

rix
 ro

w

5 E50 E51 E52 E53 E54 E55 E56

2

 6 E60 E61 E62 E63 E64 E65 E66

 7 E70 E71 E72 E73 E74 E75 E76

3

row
block

(rowBlk
)

 8 E80 E81 E82 E83 E84 E85 E86 4

pr
oc

es
s l

ab
el

column block (colBlk)

Parameter Size
gblRows 9
gblCols 7
nProcs 6
prRows 6
prCols 1
rowBlk 2
colBlk 7

9 6 1introwBlk

6
2

+ −

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

7 1 1i

7

lB nt
1

co lk + −⎛ ⎞=

Note: Shaded block indicates the workload assigne root process

Fig 2 (a) : Example of a row striped partitioning distr n

⎜ ⎟
⎝ ⎠

=
d to the

ibutio

Param eter Size
gblRow s 9
g ol
nProcs
p w
prCols
r lk
c

blC s 7

s

6
1 rRo

6
9 owB

olBlk 2

9 1 1inwBl t
1

9

ro k + −
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
7 6 1intcolBlk

6
2

+ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

Shaded block indicates t signed to the root process.

Figure 2 (b): Exampl artitioning distribution.

COLUMN BLOCK
(COLBLK

=
Note:

he workload as

e of a column striped p

)

 matrix column

 0 1 2 3 4 5 6

0 E00 E01 E02 E03 E04 E05 E06

1 E10 E11 E12 E13 E E15 E16 14

2 E20 E21 E22 E23 E24 E25 E26

3 E30 E31 E32 E33 E34 E35 E36

4 E E E E E41 42 E43 E44 45 4640

m
at

rix
 ro

w

5 E E E E E E E50 51 52 53 54 55 56

6 E60 E61 62 63 64 65 66

row
lock

(rowBlk)

E E E E E

b

7 E70 E71 72 73 74 75 76E E E E E

8 E80 E81 82 83 84 86 E E E E85 E

 0 1 2 3
 process label

Parameter Size
gblRows 9
gblCols 7
nProcs

prCols

6
2
3

rowBlk 4
colBlk 2

prRows

9
2

rowBlk ⎛ ⎞
⎜ ⎟
⎝ ⎠

int

4

=

=
7intcolBlk ⎛ ⎞= ⎜ ⎟3⎝ ⎠

2=
ExampFigure 3 (a): le layout of the checkerboard partitioning scheme.

MATRIX
COLUMN

 0 1 2 3 4 5 6

0 E00 E01 E02 E03 E04 E05 E06

1 E10 E11 E12 13 14E E E15 E16

2 E20 E21 22 23 24 25E E E E E26

3 E30 E31 32 33 34 35E E E E E36

row block
(rowBlk)

4 E 41 42 43 44 45 4640 E E E E E E

m
at

rix
 ro

w

5 E E51 52 53 54 55 56 50 E E E E E

6 E E61 62 63 64 65 66 60 E E E E E

7 E E71 72 73 74 75 76 70 E E E E E

8 E80 E81 82 83 84 85E E E E E86

column block (col lk)

Note:
×7 matrix partitioned into 4×2 blocks. Shaded blocks are sent to the

B

A 9
root process of a 2×3 process grid.

 PROCESS COLUMN (PRCOL)
 0 1 2

E00 E01 E06 E02 E03 E04 E05

E10 E11 E16 E12 E13 E14 E15

E20 E21 E26 E22 E23 E24 E25

E30 E31 E36 E32 E33 E34 E35

0

E80 E81 E86 E82 E83 E84 E85

E E E E E E E40 41 46 42 43 44 45

E50 E51 E56 E52 E53 E54 E55

E60 E61 E66 E62 64 E65E63 E

pr

1

oc
es

s r
ow

 (p
rR

ow
)

E70 E71 E76 E72 E73 E74 E75

 Note:
 ma

Figure 3 (b): e.

3.2 Step 2: Computing
Distributed Data

Once the data is parti
each pro its
perform c Nev
will require essential inform
distribute s the l
the correspo obal matrix
cell, its l e pr

ral routines
turn such information. Table 4 lists the

Although
formation
ndamental

 needed for
gramming. These

.

Routine Function

 A 9×7
 ordered p

trix partitioned into 4×2 blocks partition mapped onto 2×3 row-major
rocess grid. Shaded blocks are on the root process.
Distributed matrix of the checkerboard partitioning exampl

 concurrently using accommodates this by providing seve

that re

tioned and distributed,
local data matrix to

ertheless, each process
ation pertaining to the

summaries of available DDPI routines.
these routines provide complete in
pertaining to the distributed data, fu
message passing functions may still be
more elaborate parallel pro

cess can use
omputations.

d data such a
nding gl

ocal rows and columns, functions are available from MPI (Table 5) cell of its local
ocess grid, etc. DDPI ocation on th

Table 4: Summary of DDPI routines.

getGblRows
getGblCols

Returns the global rows/co
matrix.

lumns, gblRows/gblCols of the partitioned

getLclRows
getLclCols

Returns the local rows/
matrix.

columns, lclRows/lclCols of the partitioned

gbl2lclRow
gbl2lclCol

Converts a global row/
and returns the process
row/column is located.
Another overloaded versi
identifier, OUTSIDE if
out of the local matrix.

column
row/co

on o turns a predefined
 the gl al row/column to sides

 into its corresponding local row/column
lumn, prRow/prCol in which the global

these routines ref
ob be converted re

lcl2gblRow
lcl2gblCol

Converts the process’ l
row/column.

ocal ro /column into its corresponding global w

gbl2lcl

Converts a global coord
corresponding local co
coordina

inate (
ordinat

te of the process (prR
cell.

gblRow,gblCol) of a matrix cell into its
e (lclRow,lclCol) and returns the
ow,prCol) that locally owns the matrix

getContxt distributed. The contxt
grid and the partitionin

Returns the context, contxt of matrix is
 serves a reference for the unique process
g technique used by the processes. Two sets of

 the process grid in which the
as

data can be distributed
one of them as the partit
method of the other:
Matrix::scatter(contxt);

 in an identical fashio
ioning technique identifier for the scatter

n by using the context of

descriptor

A one-dimensional arra
matrix: contxt, gblRows
startPrCol and lclRows
ScaLAPACK parallel lin

y cont
, gblC
. Anal

ear a

aining information about the distributed
ols, rowBlk, colBlk, startPrRow,
ogous to the descriptor used by the
lgebra library (Blackford et al., 1997).

Table 5: Summ

Routine

ary of MPI routines.

Function

MPI_Send Sends data from the calli
process label.

ng process to another process identified by the

MPI_Rec Inverse operation of MPeive I_Send
from another process identified

. Data is received by the calling process
by the process label.

MPI_Scatter ss to distinct m
form of the DDPI’s scatt
n

Distributes
calling proce

distinct uniform-siz
em

er met
or maps the data onto a proces

ed blocks of data in an array from the
bers of a process group. It is a primitive
hod; it neither partitions disingenuously
s grid.

MPI

peration of MPI_Scatt
of data om all members of a p
process. It is a primitive form o

nin id.

_Gather

Inverse o
fr

er. Collects distinct uniform-sized blocks
rocess group into an array of the calling
f the DDPI’s gather method; it does not
g technique or the process grtake into account the partitio

MPI_Bcast Sends local data from the root process to all members of a rocess group. p

MPI_Reduce om all members of a process gro nto a single
value and places the result on the root process.
Reduces data elements fr up i

MPI_Allreduce Similar to MPI_Reduce but the reduced result is distributed to all
members of a process group.

3.3 Step 3:
Results

At the com
processes may
reduce their lo

can
procedure can be as sim

The routine assembles the previously partitioned
and distributed data matrix into its original form
and places it on the root process. The reduction
process on the other hand can be executed using
two of the MPI reduction routines listed in Table 5
(MPI_Reduce and MPI_Allreduce). Finally, the

resources allocated for the parallel computation can
be released and the computation can be terminated
by issuing the exit commands of both MPI and
DDPI libraries:

DDPI_Exit();

of parallelization

are a simple outline of the parallelization strategy

ocess grids.

4. Experimental Results and Discussion
In this section, parallelization results of three

problems, namely matrix multiplication, data
clustering and neural network batch training are
presented. The experiments were conducted on a
Linux cluster consisting of two computers with
each having two 1.6 GHz Athlon SMP CPUs
interconnected by a 1 Gbps gigabit ethernet switch.

Assembling Local Computational

pletion of local computations, the
 need to synchronize, gather and
cal computation outcomes to reflect

the overall result of the parallel computation. To
synchronize the processes, the function
MPI_Barrier

MPI_Finalize();

be used. The data gathering
ple as assembling the local The presented three major steps

data of processes into a single array while the
reduction process may include operations such as
multiplication and summation. For the former, MPI
provides a data assembler routine called
MPI_Gather. Alternatively, DDPI provides an
advanced version of this function which is also the
inverse operation of its scatter routine:

Matrix::gather();

with DDPI. They can be extended for more
complex parallel computing solutions such as in
cases with multiple sets of distributed data, multiple
types of partitioning techniques and multiple
topologies of pr

The co t
respect y.
6.435 G p
benchm (2) with Basic Linear
Algebra b S) library (Dongarra et
al., 19 Tuned
Linear e y et al.,
2001). m not be
measur e ited by the amount of
physica m

4.1 Con r
Conven a as the
comput

where
matrice
reduce t o
2002):

mpu ers have 2 GB and 1 GB of memory
ivel The cluster’s performance reached

red using the Linpack flo s when measu
ark Dongarra, 200
 Su programs (BLA
90) optimized by Automatically

leAlg bra Software (ATLAS) (Wha
aximum performance could Its

ed b cause it was lim
l me ory.

cur ent Matrix Multiplication
tion l dense matrix multiplication h
ational complexity of

()3O nDimension

nDimension is the dimension of the square
s. With parallelization, it is possible to
he c mplexity to (Comino and Narasimhan,

3⎛ ⎞

dense matrix
died quite

 to its
prominent role in scientific computing applications,
new algorithms and implementations are also
continuously being developed (Valsalam and
Skjellum, 2002; Whaley et al., 2001; Aberdeen and
Baxter, 2001; Gunnels et al., 2001; Chatterjee et al.,
1999). The PBLAS (Parallel Basic Linear Algebra
Subprograms) library, a subset of the ScaLAPACK
(Scalable Linear Algebra Package) library
(Blackford et al., 1997), is widely used to compute
matrix multiplication in a parallel computing

wo real matrices is
m (parallel double
 multiply) routine

l workload to
o matrices to

eforehand using the block cyclic
 4 depicts the block
the matrices with a

process running on each of

nDimensionO ⎜ ⎟
nProcs⎝ ⎠

Even though parallelization of
multiplication algorithm has been stu
extensively (Kumar et al., 1994), due

environment. The product of t
computed using its pdgem

atrixprecision generalized m
through either its Fortran or C/C++ interfaces. In
order to distribute the computationa

, PBLAS requires the twthe processes
be partitioned b
partitioning technique. Figure
cyclic partitioning layout for

× =

Note:T a ces are mapped onto 2×2 row-major order process grid. The number in each block indicates the
p

Fig 4: Parallel matrix multipli cyclic partitioned matrices.

he m tri
rocess label.

cation with block

the four processors in the cluster. In this
illustration, the multiplicands A and B are square
matrices of dimensions nDimension×nDimension
that produce a solution matrix C of the same size.

For the Fortran interface, users can utilize the
existing directives in the High Performance Fortran
to partition and distribute the workload prior to
calling the pdgemm routine. However, for the users

employing the C/C++ interface, they need to
separately set up the data partitioning and spreading
procedures. This would impose a significant
amount of effort on the users without parallel
programming

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

28
29
30
31
32
33
34
35
36
37

// function executes C <-- A×B using PBLAS pdgemm routine with DDPI interface
void execute_pdgemm(int nDimension) { // for square matrix, rows=cols=nDimension
 Matrix *A;
 Matrix *B;
 Matrix *C;
 int rows = nDimension;
 int cols = nDimension;

 MPI_Init();
 DDPI_Init();
 A = new Matrix(rows,cols);
 B = new Matrix(rows,cols);
 C = new Matrix(rows,cols);
 A->scatter(UNI); // partition multiplicand A block cyclically and distribute
 B->scatter(UNI); // partition multiplicand B block cyclically and distribute
 C->scatter(UNI); // partition product C block cyclically and distribute

 // convert C <-- alpha×A×B+beta×C of PBLAS pdgemm routine into C <-- A×B
 char transposeA = 'N'; // set matrix A as not transposed

emm
, rows

r,
 B
 C

 C->gath
 delete A
 delete B
 delete C
 DDPI_E
 MPI_
}

22
23
24
25
26
27

 double alpha = 1.0;
 double beta = 0.0;

 // execute C <-- A×B using PBLAS pdg
 pdgemm_(&transposeA, &transposeB
 A->data, p1, p1, A->descripto

 char transposeB = 'N'; // set matrix B as not transposed
 int p1 = 1; // increment index for traversin the elements in the matrices g

routine
, cols, rows, alpha,

->data, p1, p1, B->descriptor, beta,
->data, p1, p1, C->descriptor);

er(); // local results are assembled to form complete product matrix C
;
;
;
xit();

Finalize();

Fig 5: Function execu emm routine and

expertise. In fact, this dra
has motivated the deve
but with a simp
PLAPACK (van
Unfortunately, PLAP
amount of user
ScaLAPACK has in hi
applications. DDPI add
ScaLAPACK elegantly
shown in Figure 5. Furt

 fully compatible
aLAPACK. Therefore,

e precision routines in
 use DDPI as the interface to

ta across processes.

DDPI interface was
fferent dimensions of
lays the results of the

lying the matrices with
rs. The execution time

te_pdgemm that partitions, distributes and multiplies using PBLAS pdg
DDPI interface.

wback in ScaLAPACK
lopment of a similar library

ler MPI like interface called
de Geijn et al., 1997).

ACK does not have the
base and influence which

gh performance computing
resses this requirement in
with its simple interface as

hermore, the matrix

descriptor used in DDPI is also
with the one required by Sc
over 100 remaining doubl
ScaLAPACK can also
partition and distribute da

The pdgemm routine with
experimented with four di
multiplicands. Figure 6 disp
execution time when multip
varying number of processo
indicates the

matrix dimension
(nDimension)

0

20

40

60

80

100

120

140

160

180

200

220

1 2 3 4
Number of processors (nProcs)

Ex
ec

ut
io

n
tim

e
(s

)
6000
5000
4000
2000

: Execution times of parallel matrix multiplication using pdgemm and DDPI interface.

t to partition, distribute, compute and
e matrices. Generally, it can be

at the computation time decreases when
rs are added. However, there is an

 in the execution time when

Fig 6

time spen
assemble th
observed th
the processo
unanticipated increase

two processors are utilized as compared to only
one. This is possibly due to the communication
latency when multiplying local data across the two
processors in the block cyclic partition as indicated
in Figure 7.

× =

× +

× =

× =

=× ×+

× × =+

× + × =

Note: The matrices are mapped on
Fig 7: Communication latency when m

To verify this conjecture, another set of
experiments is conducted with the row striped
partitioning technique that eliminates the need to
communicate at the indicated sections. This

to a 1× w
ultiply b

i ws
 or
m

2 ro -major order process grid.
lock cyclic partitioned matrices ing

part tioning layout, illustrated in Figure 8, sho

it is unnecessary for further interprocessthat
com unication once the data has been distributed

e processors. to th

× =

× =

× =

In th
have
Appa
simul
differe
conseq
sequ
(doub
which
illu
ev
algo

are illu

the
two.
the comm
computation speed. How r, the reduction in the
execution speed is not lin y proportionate to the
addition of processors b ause the time spent to
transfer the whole matrix B to each processor also
increases with the number of processors. It can also
be seen that when the size of matrix is small
(nDimension = 2000), the speedup (ratio of the
execution time on 1 processor to the execution time
on nProcs processors) is almost negligible. This is
due to the small granularity of the problem, in
which, the speedups gained from the higher number

of processors are negated by the amount of time
spent to transfer the data to each processor.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

17
18

9

21
22
23
24
25
26

// function executes C <-- A×B using BLAS
dgemm routine with DDPI interface
void execute_dgemm(int nDimension) { // for
square matrix, rows=cols=nDimension
 Matrix *A;
 Matrix *B;
 Matrix *C;
 int rows = nDimension;
 int cols = nDimension;

 MPI_Init();
 DDPI_Init();
 A = new Matrix(rows,cols);
 B = new Matrix(rows,cols);

ltiplicand
A using row striping d distribute
 B->scatter(WHOLE); / distribute whole
matrix B
 C->scatter(A->getContxt()); // partition and
distribute product C indentical to A

 // convert C <-- alpha×A×B+beta×C of
BLAS dgemm routine into C <-- A×B
 char transposeA = 'N'; // set matrix A as
not transposed

Fig 8: Concurrent multiplication of a row striped matrix with a whole matrix without interprocessor
communications.

e proposed technique, multiplicands A and B
nProcs×1 and 1×1 process grids respectively.
rently, the PBLAS library prohibits
taneous operations on matrices having
nt process grids (conflicting contexts). As a
uence, the experiment is conducted using the

ential version of the pdgemm routine, dgemm
le precision generalized matrix multiply),
 is available from the BLAS library. Figure 9

strates the simplicity of DDPI in parallelizing
en such sequential matrix multiplication

rithm.

The timing results of the proposed technique
strated in Figure 10. As expected, the

execution time decreased by almost twofold when
number of processors increased from one to
 This outcome clearly exhibits the influence of

unication latency in the overall
15
16

 C = new Matrix(rows,cols);
 A->scatter(ROW) // partition mu

eve
earl
ec 1

20

;
 an

/

27
28
29
30
31
32
33
34
35
36
37
38

 d

 char transposeB = 'N'; // set matrix B as
not transposed
 int p1 = 1; // increment index for
traversing the elements in the matrices
 double alpha = 1.0;
 double beta = 0.0;

 // execute C <-- A×B using BLAS dgemm
routine
 dgemm_(transposeA, transposeB, C-
>getLclRows(), C->getLclCols(),
 A->getLclCols(), alpha,
 A->data, C->getLclRows(),
 B->data, C->getLclCols(), beta,
 C->data, C->getLclRows());

 C->gather(); // local results are assembled
to form complete product matrix C
 delete A;
 delete B;

elete C;
 DDPI_Exit();
 MPI_Finalize();
}

Fig 9: Function execute_dgemm that partitions,
distributes and multiplies using BLAS dgemm

routine and DDPI interface.

matrix dimension
 (nDimension)

0

20

40

60

80

1 2
Number of

100

120

140

160

180

200

220

3 4
processors (nProcs)

Ex
ec

ut
io

n
tim

e
(s

)

6000
5000
4000
2000

ultiplication using dgemm and DDPI interface.

Fig 10: Execution times of parallel matrix m

7

6 3

1 2 0

2 1

6 2

0

2 0

6 0

2 0 0 0

Ex
ec

ut
io

n
tim

e
(s

)

3 5 3 8
4 0

4

8 0

1 0 0

1 2 0

1 4 0

4 0 0 0 5 0 0 0 6 0 0 0

M a t r i x d i m (n D i m e n s i o n)e n s i o n

b l o c k c y c l i c p d g e m m

s t r i p e d d g e m m

Figure 11: Comparison of .

Figure 11 com ares the pe nce of
parallel multipli n all fo
processors of the cluster are utilized. In terms of the
execution time, it is evident that the stri
technique outperforms the block cycli
scheme by almost twofold for all the matrix si
The result demonstrates th
possible to implement a p
multiplication procedure that out
parallel implementations such
pdgemm
PBLAS ro
process grid to
manipulated in the operation.

4.2 Concurrent Data Clustering
Data cluste

problem (Garey et
heterogeneous data by minimizing so
dissimilarity, is one of the fundament
mining, machine learning and pattern
solutions. Of all the many availab
techniques, the k-m ustering
algorith
stands out as
computational
implementation (Estivill-Castro
Figure 12 depicts the k-means cl
which finds k clusters in a d
nSamples×nDimension. For a
search space (steps 2 to k-means algorithm

as the computational complexity of

 execution times between block cyclic pdgemm and striped dgemm

p a the two rform
cation techniques whe ur

ped dgemm
c partitioning

zes.
at with DDPI it is

arallel matrix
performs dedicated
 as the PBLAS

. It appears that the drawback of the
utine is in its restriction to use identical

pologies for all the matrices

ring, which is an NP-complete
 al., 1982) of finding groups in

me measure of
al tools in data
 classification
le clustering

eans center based cl
m, despite of its local minimum solutions,

a popular tool due to its low
complexity and straightforward

 and Houle, 2001).
ustering algorithm

ata set of size

()O nSamples nDimension k× ×

The k-means primary advantage of low
computational com lexity will therefore be

n the number of samples is large.
y this shortcoming when using k-means

with large databases, several parallel
implementations of the echnique have been
introduced (Dhillon and Modha, 1999; Kantabutra
and Couch, 2000; Ng, 2000; Zhang et al., 2000).

 their algorithm requires heavy network
 due to rebroadcasts of the data set and

therefore only about half of the CPU time is
utilized. On the oth and, the data parallel

b r three
implementations are superior since only essential
local statistics are broadcasted at each iteration,
which substantially reduces the interprocessor
communication latenc . Figure 13 lists the steps in
the data parallel appro

 single iteration of the
4), the

h

p
inhibited whe
Motivated b

t

According to the analysis by Kantabutra and
Couch,
loading

er h
approaches adopted y the othe

y
ach.

Input
k : number of clusters
X : data set nSamples nDimension×∈ℜ
Output
centers : cluster centers k nDimension×∈ℜ

Step 1: Initialization

ts, the initial c centersSelect a set of k starting poin luster centers
juuuuur
 where:

1, ,j k= L

(1 , ,

)Tj
j j k nDimension

nDimensionenters ×∈ℜ
 or the random partitioning technique.

om samples of the data set

into k segments randomly

centers centers c= L

 using the Forgy

j

s as k rand
oning technique:

• partition the data set
j

ters

uuuuur

The selection may be done
Forgy technique:

• set center
uuuuur

 Random partiti

• assign each cen
uuuuur

mean v

For each sample n

 as the centroid of those segments, where
alue of the samples assigned to it centroid is the

Step 2: Data membership computation
X
r

,
1, ,n nSamples= L

, ,
Tn n n nSamples nDimension

nDimensionX X X ×= ∈ℜ
r

L
ute its m

()1

comp embership:
2

1;
(|)

0 ;

j n if l
m centers X

oth
=
⎪
⎨
⎪⎩

arg min
n j

j X centers

erwise

= −⎧ r uuuuur
uuuuur r

signment
For each sample n

Step 3: Data membership weight as
X
r

, set its weight to unity:

() 1nw X =
r

Step 4: Center recalculation

For each center
j

centers
uuuuur

, recalculate its location from all samples nX
r

, according to
d weights: their membership an

1

1

(|) ()

(|) ()

nSamples j n n n

j
n

nSamples j n n

n

m centers X w X X

m centers X w X

=

=

=
∑

∑
centers

uuuuur r r r
uuuuur

uuuuur r r

n
Repeat steps 2 to 4 until convergence. The objective function that the k-means
algor :

Step 5: Convergence conditio

ithm minimizes is

()
{ }

2

1

nSamplesn j n j

n

s
=

r uuuuur r uuuuur

1...

| minKM
j k

Perf X centers X center
∈

= −∑

Fig 12: The sequential k-means clustering al

gorithm.

Step
Partition the data set into nProcs partitions
and distribute them to the local memory of

ses. On the root
ocess, initialize centers values and make

roadcasting them

Step utation
ess, compute local data

 and local
g local data sets and

enters.
Step l center recalculation

nters using
med local

ships. Compute the global
ming local

Step
verged,

e computation and return global
n from

1: Initialization

the respective proces
pr
them global values by b
to all processes.

2: Local comp
On each proc
memberships, local centers
performance usin
global c

3: Globa
Compute new global ce
summed local centers and sum
data member
performance by sum
performances.

4: Convergence condition
If global performance has con
terminat
centers, otherwise start next iteratio
step 2.

Fig 1
mean

le to reduce the
k-me ea iteration
(step

3: The data parallel approach to parallelize k-
s type clustering algorithms.

With this approach, it is possib
fans computational costs o ch

s 2 to 4) to

nSamples nDimensionO × k×
nProcs

⎛ ⎞
⎜ ⎟

prov es nProcs>> (Zhang et
al., 2 00). By exploiting the similarity of the data
parallel approach adopted by DDPI, a parallel k-
mean can be implemented in a
straig .

sequential implementation
 its parallel counterpart which is

PI’s row striped partitioning
ent that with only several
 k-means algorithm can be

nt computations with DDPI.
 flow is still preserved which

odifications of the algorithm even
h little understanding of parallel

y evaluate the
the parallel k-means, several

ents were conducted with varying number
synthetic data

ithm presented
ber of clusters (k

 (nDimension = 8) and the
the ones adopted by Ng

e performance is
luster used in this

respect to the
plementation is

)
()

⎝ ⎠

ided that nSampl
0

s algorithm
htforward manner using DDPI

Figure 14 compares the
k-means withof

implemented via DD
dinterface. It is evi

ditional lines, thead
converted for concurre

rithmThe original algo
her mpermits furt

by users wit
computing.

o to empiricallIn rder
ance of perform

mexperi
of data samples. For this purpose,

en algorsets were g erated using an
hang, 2001). The numby Zhang (Z

= 8), the dimension size
data set sizes are similar to
(Ng, 2000) since his hardwar

Li cwithin the range of the nux
. The speedup (5) with research

execution time of the sequential im
re 1shown in Figu 5.

(executionTime nProc 1s

nProcsexecutionTime
speedup

=
=

 (5)

ned from
means are almost equal to the ideal

edup. In the largest
p dup is 3.76

ppressed
 set is relatively small (nSamples =

: number of clusters
: data set matrix

 samples
nDimension : data dimension
Output
centers : cluster centers
Variable
meanSE

d that the speedups gaiIt can be observe

llel k-the para
case which indicates linear spe
data set (nSamples = 640,000), the s ee

rocessors. The speedup is only suon 4 p
when the data
80,000).

Input
k
X
nSamples : number of data

: the k-means performance, based on its objective function

sequential k-means parallel k-means

data = X;

MPI_Init();
DDPI_Init();
Matrix::Matrix(nSamples,nDimension,X);
Matrix::scatter(ROW);
data = Matrix::data;
myNode = MPI_Comm_rank();
if (myNode == 0)

// intialize centers

meanSE = BIG_NUM;
do {
 oldMeanSE = meanSE;
 meanSE = 0;
 for j = 1 to k
 dataCntj = 0;
 for col = 1 to nDimension
 centers_j,col = 0;
 endfor
 endfor
 for row = 1 to nSamples
 minDistancerow = BIG_NUM;
 for j = 1 to k
 sumDistance = 0;
 for col = 1 to nDimension
 sumDistance = sumDistance +
 (datarow,col – centersj,col)2; (data
 endfor

 // intialize centers
endif
MPI_Bcast(centers, k);
meanSE = BIG_NUM;
do {
 oldMeanSE = meanSE;
 meanSE_ = 0;
 for j = 1 to k
 dataCnt_j = 0;
 for col = 1 to nDimension
 centers_j,col = 0;
 endfor
 endfor
 for row = 1 to Matrix::getLclRows();
 minDistancerow = BIG_NUM;
 for j = 1 to k
 sumDistance = 0;
 for col = 1 to nDimension
 sumDistance = sumDistance +

;

 c

 crow
 eanSE_ + minDistancerow;
 endfor;
 MPI_Barrier();
 MPI_Allreduce(centers_,centers,MPI_SUM);
 MPI_Allreduce(dataCnt_,dataCnt,MPI_SUM);

MPI_Allreduce(meanSE_,meanSE,MPI_SUM);
 for j = 1 to k
 for col = 1 to nDimension
 centersj,col =
 centersj,col/max(dataCntj,1);
 endfor
 endfor
} while (meanSE < oldMeanSE);
DDPI_Exit();
MPI_Finalize();

 if (sumDistance < minDistancerow)
 minDistancerow = sumDistance;
 centerLabelrow = j;
 endif
 endfor
 crow = centerLabelrow;
 for col = 1 to nDimension
 centers_crow,col = centers_crow,col +
 datarow,col;
 endfor
 dataCntcrow = dataCntcrow + 1;
 meanSE = meanSE + minDistancerow;
 endfor;

 for j = 1 to k
 for col = 1 to nDimension
 centersj,col =
 centers_j,col/max(dataCntj,1);
 endfor
 endfor
} while (meanSE < oldMeanSE);

row,col – centersj,col)2

 endfor
 if (sumDistance < minDistancerow)
 minDistancerow = sumDistance;
 centerLabelrow = j;
 endif
endfor
row = centerLabelrow;

for col = 1 to nDimension
 centers_crow,col = centers_crow,col +
 datarow,col;
endfor
dataCnt_crow = dataCnt_ + 1;

eanSE_ = mm

Fig 14: Comparison of sequential and parallel implementations of k-means

number of data samples
(nSamples)

2

3

4

5
Sp

ee
du

p

1
1 2

Number of processo
3 4

rs (nProcs)

640K

320K

160K

80K

ideal

lization with DDPI

formance in varied clustering problem
oncurrent k-harmonic

Figure 15: The k-means speedup a

Recently, Hamerly and Elkan have evaluated
another center based clustering algorithm called k-
harmonic means and found it to be superior to the
k-means algorithm in terms of the computed
centers’ quality (Hamerly and Elkan, 2002). It
appears from their findings that, on the contrary to
the k-means algorithm, the k-harmonic means
algorithm (Zhang, 2001) is robust to initial starting
points of the centers. A parallel implementation of
the k-harmonic means technique with DDPI is
conducted to evaluate the consistency of the

fter paralle

DDPI’s per s.
Hence, a c means algorithm
was implemented with e DDPI’s row striped
p
e

f this set of

th
artitioning interface and a set of experiments was
xecuted similar to that of the k-means algorithm.

s the results oFigure 16 show
experiments. The results also demonstrate that it is
possible to achieve almost linear speedups with the
DDPI’s parallelizing interface for other clustering
techniques such as the k-harmonic means
algorithm.

number of data samples
(nSamples)

3 4
ocessors (nProcs)

Sp
ee

du
p

1
1 2

Number of pr

2

3

4

5
640K

320K

160K

80K

ideal

Figure 16: The k-harmonic means speedup after parallelization with DDPI.

4.
Netw

com

in orde

algo

consid
There
learnin

trainin

strat
etwork of
edicated processor, parallelization at the neuron or

nd parallelization using the data
para

• Place the training data set on an
Samples×nDimension matrix

accessible by the root process. Partition

ork parameter values and make

3 Concurrent Batch Learning for Neural
orks

The learning phase of a neural network is
putationally intensive especially when the

batch training is employed as opposed to the
stochastic technique. With batch training, at each
iteration, the entire data set needs to be considered

r to compute the parameters’ gradient for an
iterative gradient based optimization scheme (such
as the commonly used error backpropagation

rithm). Conversely, for the stochastic training,
at each iteration, the gradient is computed after

ering only a single sample of the data set.
 are however, some instances when the batch
g is preferred over the stochastic technique

(LeCun et al., 1996).

When large data sets are considered for batch
g, the training phase can be parallelized to

reduce the computational costs. Parallelization
egies that are available include training each

a multi-neural network architecture on a n
d
synapse level, a

llel approach (Sundararajan and Saratchandran,
1998). Interestingly, akin to the data clustering
problem, the data parallel approach appears to be
the most favourable technique due to its simplicity
and performance (Schikuta and Weidmann, 1997;
Rogers and Skillicorn, 1998). The parallelization
steps of a general neural network batch training
algorithm with the DDPI’s interface are shown in
Figure 17. In addition to saving memory space by
only allocating a portion of the data set on the local
memories, the approach can also be applied for
both single and multiple neural network
architectures.

Step 1: Initialization
• Let nProcs be equivalent to the number

of processors available in the
homogeneous parallel computing
environment.

n

the matrix into nProcs partitions using
DDPI’s row striped partitioning
technique and distribute them to all
processes.

• On the root process, initialize the neural
netw
them global values by broadcasting

them to all processes.
Step 2: Local gradient computation

• On each process, compute local
empirical error and local accumulated
gradients using the local data and global
parameter values.

Step 3: Global parameter value adjustment
• Sum all local accumulated gradients and

divide them by the total number of
samples (nSamples) to obtain the
effective global gradient.

• Sum all local empirical errors to obtain
global empirical error.

• Adjust the parameter values using the
global gradients through an iterative
gradient based optimization procedure.

• Broadcast the new global parameter
values to all processors.

Step 4: Convergence condition
onver d,

terminate computation and return global
parameter values, otherwise start next

• If global empirical error has c ge

iteration from step 2.

Fig 17: Parallelization steps of batch training with

DDPI’s interface.

n order to assess thI e performance of the parallel

h tra

with respect

Boniface et al., 1999) was reported to only

is also possibly due to their
on

batc ining algorithm, a set of experiments was
conducted with the classic Multilayer Perceptron
(MLP) and the error backpropagation algorithm.
The training was done on a data set with varying
number of data samples and fixed number of
terations. The batch training speedup i

to the execution time of the sequential
implementation is shown in Figure 18. It is clear
that DDPI’s performance is also consistent in the
batch training problem. Furthermore, a dedicated
neural network parallelization library by Boniface
t al. (e

achieve speedup of 3.6 on 8 processors whereas
with DDPI it is possible to attain speedup up to
3.87 on only 4 processors (nSamples = 247731).
However it should be noted that their experiment
was conducted with the Kohonen Self-organizing
Map on a network system more than 3 years ago.

heir poor performance T
neur parallelism strategy which causes heavy
network loading.

number of data samples
(nSamples)

5

1
1 2

Number of proce

2

Sp

3

3 4
sso

ee
d

4

up

rs (nProcs)

247731

120K

60K

30K

ideal

 speedup after parallelization with DDPI

Fig 18: The Multilayer Perceptron batch training

 described

sophisticated

 workload according to the
m

en

ultiply using

.
2

R. C. (1997).
ScaLAPACK Users’ Guide.” Philadelphia, USA:

oc. of the 5th International
uro-Par Conference on Parallel Processing (Euro-

9)

7726. Center for
esearch on Parallel Computation, Rice University,

(1999). “Recursive Array
ayouts and Fast Parallel Matrix Multiplication.”

of

 Distributed
ystems.” IEEE Transactions on Parallel and

an, V. L. (2002).
A Novel Data Distribution Technique for Host-

2.6 Conclusion
A simple yet effective solution for parallelizing

terative or large data problems has beeni
in this work. DDPI’s parallelization versatility has
been demonstrated through a wide range of
problems. Its almost linear speedup performances
appear to be consistent on large data problems
which are comparable to dedicated hand coded
mplementations or other existing i

solutions. DDPI’s simplicity of implementation,
demonstrated through some of the studied
problems, promotes adoption by users with little
understanding of parallel computing technicalities.
In the future, DDPI can be extended for
applications on a heterogeneous cluster by
artitioning thep

perfor ance and resources of the individual nodes
in the cluster. Additionally, DDPI can also be
improved by providing support for complex and
irregularly structured problems.

Refer ces

[1] Aberdeen, D. and Baxter, J. (2001).
Emmerald: a fast matrix-matrix m“

Intel’s SSE instructions.” Concurrency and
Computation: Practice and Experience. Vol. 13 No.
2, pp. 103-119.

[2] Agarwal, A., Kranz, D. A. and Natarajan,
V. (1995). “Automatic Partitioning of Parallel
Loops and Data Arrays for Distributed Shared-
Memory Multiprocessors.” IEEE Transactions on

arallel and Distributed Systems. Vol. 6 No. 9, ppP
943-96 .

[3] Blackford, L. S., Choi, J., Cleary, A.,
D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra,
J. J., Hammarling, S., Henry, G., Petitet, A.,
Stanley, K., Walker, D. and Whaley,
“
SIAM Publications.

[4] Boniface, Y., Alexandre, F. and Vialle, S.
(1999). “A Library to Implement Neural Networks
on MIMD Machines.” Pr
E
Par ‘9 . Toulouse, France. 935-938.

[5] Carpenter, B., Zhang, B. and Wen, Y.
(1997). “NPAC PCRC Runtime Kernel Definition.”
Technical Report CRPC-TR9
R
USA.

[6] Chatterjee, S., Lebeck, A. R., Patnala, P.
K. and Thottethodi, M.
L
Proc. the 11th ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’99). Saint-
Malo, France. 222-231.

[7] Chen, J. and Taylor, V. E. (2002). “Mesh
Partitioning for Efficient Use of
S
Distributed Systems. Vol. 13 No.1, pp. 67-79.

[8] Comino, C. and Narasimh
“
Client Type Parallel Applications.” IEEE
Transactions on Parallel and Distributed Systems.
Vol. 13 No. 2, pp. 97-110.

[9] Dhillon, I. S. and Modha, D. S. (1999). “A

0] Dongarra, J. J., Croz, J. D., Hammarling,

[12] Estivill-Castro, V. and Houle, M. E.
(2001). “Robust Distance-Based Clustering with
Applications to Spatial Data Mining.”
Algorithmica. Vol. 30 No. 2. 216-242.

[13] Garey, M. R., Johnson, D. S. and
Witsenhausen, H. S. (1982). “The Complexity of
the Generalized Lloyd-Max Problem.” IEEE Trans.
Inform. Theory. Vol. 28 No. 2. 255-256.

[14] Gunnels, J. A., Henry, G. M. and van de
Geijn, R. A. (2001). “A Family of High-
Performance Matrix Algorithms.” Part 1,
Computational Science – 2001. Lecture Notes in
Computer Science. Vol. 2073. 51-60.

[15] Hamerly, G. and Elkan, C. (2002).
“Alternatives to the k-means algorithm that find
better clusterings.” Proc. of the 11th ACM
International Conference on Information and
Knowledge Management (CIKM 2002). McLean,
USA. 600-607.

[16] Hendrickson, B. and Leland, R. (1994).
“The Chaco User's Guide: Version 2.0.” Technical
Report SAND94-2692. Sandia National
Laboratory, USA.

[17] High Performance Fortran Forum. (1997).
“High Performance Fortran language specification,
Version 2.0.” Center for Research on Parallel
Computation, Rice University, USA.

[18] Kantabutra, S. and Couch, A. L. (2000).
“Parallel K-means Clustering Algorithm on
NOWs.” NECTEC Technical Journal. Vol. 1 No. 6.

[19] Karypis, G. and Kumar, V. (1998). “A
Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs.” SIAM Journal on
Scientific Computing. Vol. 20 No. 1, pp. 359-392.

[20] Kumar, V., Grama, A., Gupta, A. and
Karypis, G. (1994). “Introduction to Parallel

Computing.” Redwood City, USA:
Benjamin/Cummings.

[21] LeCun, Y., Bottou, L., Orr, G. B. and
Müller, K-R. (1996). “Effiicient BackProp.” Neural
Networks: Tricks of the Trade. 9-50.

[22] MPI Forum. (1998). “Special Issue: MPI2:
A Message-Passing Interface Standard.” The
International Journal of High Performance
Computing Applications. Vol. 12 No. 1-2, pp. 1-
299.

[23] Ng, M. K. (2000). “K-Means-Type
Algorithms on Distributed Memory Computer.”
International Journal of High Speed Computing.
Vol. 11 No. 2, pp. 75-91.

[24] Prechelt, L. and Hänßgen, S. U. (2002).
“Efficient Parallel Execution of Irregular Recursive
Programs.” IEEE Transactions on Parallel and
Distributed Systems. Vol. 13 No. 2, pp. 167-178.

[25] Rogers, R.O. and Skillicorn, D.B. (1998).
“Using the BSP Cost Model to Optimize Parallel
Neural Network Training.” Future Generation
Computer Systems. Vol. 14. 409-424.

[26] Rost, B. (2002). “Rising Accuracy of
Protein Secondary Structure Prediction.” Protein
structure determination, analysis and modeling for
drug discovery. Chasman, D. (Ed.). New York,
USA: Dekker. 207-249.

[27] Schikuta, E. and Weidmann, C. (1997).
“Data Parallel Simulation of Self-organizing Maps
on Hypercube Architectures.” Proc. of the
Workshop on Self-Organizing Maps (WSOM ‘97).
Helsinki, Finland. 142-147.

[28] Sundararajan, N. and Saratchandran, P.
(1998). “Parallel Architectures for Artificial Neural
Networks.” Los Alamitos, USA: IEEE Computer
Society Press.

[29] Valsalam, V. and Skjellum, A. (2002). “A
framework for high-performance matrix
multiplication based on hierarchical abstractions,
algorithms and optimized low-level kernels.”
Concurrency and Computation: Practice and
Experience. Vol 14 No. 10. 805-839.

[30] van de Geijn, R. A. (1997). “Using
PLAPACK: Parallel Linear Algebra Package.”
Massachusetts, USA: MIT Press.

[31] Whaley, R. C., Petitet, A. and Dongarra, J.
J. (2001). “Automated Empirical Optimization of
Software and the ATLAS Project.” Parallel
Computing. Vol. 27 No. 1-2. 3-25.

Data-Clustering Algorithm on Distributed Memory
Multiprocessors.” Large-Scale Parallel Data
Mining. Lecture Notes in Computer Science. Vol.
1759. 245-260.

[1
S. and Duff, I. S. (1990). “A Set of Level 3 Basic
Linear Algebra Subprograms.” ACM Transactions
on Mathematical Software. Vol. 16 No. 1, pp. 1-17.

[11] Dongarra, J. J. (2002). “Performance of
Various Computers Using Standard Linear
Equations Software.” Technical Report CS-89-85.
University of Tennessee, USA.

[32] Zhang, B. (2001). “Generalized K-
Harmonic Means – Boosting in Unsupervised
Learning.” Proc. of the 1st SIAM International
Conference on Data Mining (SDM ‘01). Chicago,
USA.

[33] Zhang, B., Hsu, M. and Forman, G.
(2000). “Accurate Recasting of Parameter
Estimation Algorithms Using Sufficient Statistics
for Efficient Parallel Speed-Up: Demonstrated for
Center-Based Data Clustering Algorithms.” Proc.
of the 4th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD
2000). Lyon, France. 243-254.

