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Abstract : The effort required to write efficient parallel programmes or to parallelize existing sequential
algorithms remains daunting. This is true even for regularly structured problems. Much of the work takes place
when partitioning and distributing workloads over processors in a distributed computing environment. To
alleviate this task, we present a data parallel interface called Distributed Data Partitioning Interface (DDPI). Its
simple interface permits parallel implementation even by users with little understanding of parallel computing
technicalities. In this work we evaluate the performance of DDPI in several computationally intensive problems
such as matrix multiplication, data clustering and neural network batch training. Through these problems, we
demonstrate that it is possible to achieve almost ideal speedups when they are parallelized with DDPI.
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1. Introduction

Although commodity clusters and parallel
computers are becoming widespread now, the effort
required to write efficient parallel programmes or to
parallelize existing algorithms remains daunting.
This is true even for regularly structured problems.
Much of the work takes place when partitioning
and distributing workloads over processors in the
distributed computing environment. There are two
main approaches to relieve this effort off of the
user: automatic parallelizing compilers (Agarwal et
al.,, 1995; Prechelt and HanRgen, 2002) and
workload  distributing  libraries or  tools
(Hendrickson and Leland, 1994; Carpenter et al.,
1997; Karypis and Kumar, 1998; Boniface et al.,
1999; Chen and Taylor, 2002). Unfortunately in the
former, even though it is a well-established
research field, the fundamental issue of optimal
partitioning remains unsolved. On the other hand,
for regularly structured problems, the libraries and
tools appear to be either overkills (Hendrickson and
Leland, 1994; Carpenter et al., 1997; Karypis and
Kumar, 1998) or too specialized (Boniface et al.,
1999; Chen and Taylor, 2002), and therefore are
substantially cumbersome when they are used to
parallelize existing sequential algorithms. Certainly
the problem at hand should be the center of focus
instead of being concerned with the intricacies of
parallel  programming. Moreover, even for
experienced parallel programmers, the development
of good parallel implementations with these tools is
still more tedious than writing efficient serial
programmes. For these reasons, we are motivated to

look at a general solution and derive the following
requirements in this work:

(i) Low learning threshold. Ideally, in order
to reduce the effort required for
parallelization, it is not expected of the
user to acquire additional skills pertaining
to parallelism nor to learn extraneous
language constructs. Hence, the low level
parallelization details should be hidden
from the user.

(if) Simple implementation. The overall
structure of the sequential program should
be preserved such that the user would be
able to focus on the original algorithm
flow of the problem even after
parallelization.

(iii) Portability. The system should be
implemented in a widely accepted and
standard programming language to ensure
portability to all target platforms and
machines.  For  better  portability,
assumptions  about the  distributed
computing environment’s specific
network topology should be avoided.
Nonetheless, the system should cater for
homogeneous processors and networks
since they are more commonly available.

(iv) Maintainability. Although initially the
solution may be intended for regularly
structured problems, it should however
have the facility to be extended for more
complicated problems.

(v) Effectual. The system’s performance
should be comparable to more specialized
and sophisticated implementations.



It was found that an interface using the data parallel
approach fulfills the above requirements. The
design and evaluation of the interface, referred to as
the Distributed Data Partitioning Interface (DDPI),
will be presented in the following sections.

2. Scope and Limitations

DDPI is designed to parallelize problems
dealing with regularly distributed data or iterative
in nature. Although it can still be used with
irregularly structured problems, the performance
may not be optimal because it may bring about
communication overhead to distribute workloads
evenly. DDPI is targeted for users with little or no
prior experience in parallel programming. It is
implemented in an object oriented fashion in C++
and utilizes the Message Passing Interface (MPI)
(MPI' Forum, 1998). Even though one of the
objectives is to avoid learning additional language
constructs, it is still reasonable to expect the user to
know the basic MPI functions since they are also
implemented in both C and C++. This tool, which

addresses the problem of data partitioning, assumes
that a single processor with sufficient memory is
available to partition the complete data.

3. Design of DDPI

Table 1 lists the description of symbols used in
this work. Figure 1 displays the three major
parallelization steps with the DDPI programming
interface. In order to distribute the computational
workload, DDPI provides a small set of routines to
spread data across the processes. The data, which
can be either locally or globally accessible, is
contained in a two-dimensional matrix constructor.
It is partitioned according to one of several
available techniques in DDPI and shipped to the
processes in the process grid. Each process will
then be able to perform computations concurrently
using their local data. When required, the processes
can communicate with each other using existing
MPI functions. During the

Table 1: Description of Symbols.

Symbol Description Symbol Description

nProcs total number of IclCols local columns
processes

prRows total process rowBlk row block size
rows

prCols total process colBIk column block size
columns

prRow Process row startPrRow starting process row
coordinate

prCol process column startPrCol starting process column
coordinate

gblRows global rows nSamples number of data samples

gblCols global columns  nDimension dimension size

IcIRows local rows contxt context of the process grid

computational procedure, there will be situations in
which information pertaining to the distributed data
is needed. DDPI provides a convenient access to
this information through several essential routines.
Finally, the local data can also be gathered and

reduced for global use with MPI or DDPI routines.
Specific details of the above steps will be explored
in the following sections.
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Fig 1: The three main parallelization steps of DDPI

3.1 Step 1: Initializing, Partitioning and
Distributing Data

The first parallelization step with DDPI
relieves most of the effort from the user by
automatically partitioning and distributing a given
set of computational workload to the processors.
The user begins the parallelization procedure with a
one time initialization step of MPI and DDPI
libraries:

MPI_Init();
DDPI_Init();

This is followed by allocating the data using the
DDPI’s Matrix object constructor

Matrix::Matrix(i,j,data);

where, i and j are the row and column sizes of the
source data respectively. If the source data is
locally owned, it should belong to the root process
(process 0) because DDPI will distribute the data to
other processes from the root process. The root
process can be verified using the MPI function,
MPI_Comm_rank which returns the process label
of the calling process. The data can now be
distributed by issuing the DDPI scatter command:

Matrix::scatter(partition);

In the above command, partition represents one of
DDPI’s three identifiers for the partitioning
technique that will be used to distribute the data.
Table 2 lists the identifiers and their corresponding
partitioning techniques. The three methods are
commonly used in general parallel computing
applications.

Table 2: DDPI identifiers for data partitioning

techniques.

Identifier Partitioning Technique
ROW Row Striped
CoL Column Striped
UNI Block Cyclic

The data matrix is partitioned by mapping blocks of
rows of size rowBlk and blocks of columns of size
colBlk to the process grid. The partitioning
techniques can be classified based on the block
sizes and the mesh of the process grid. In the row
and column striped partitioning techniques, the data
matrix is divided into groups of complete rows or
columns (Figure 2). Each process is allocated these
contiguous rows or columns as workloads. DDPI



employs the following functions to determine the
block sizes:

rowBlk = int[ gblRows + prRows —1j
prRows
(1)
colBlk = int| gPICols + prCols -1
prCols
2

In these functions, gblRows and gblCols are the
total number of rows and columns in the
undistributed data matrix respectively. The block
sizes can be computed using the process row and
column sizes listed in Table 3.

Table 3: Process grid meshes for striped
partitioning techniques.

. . Column
Process Grid Row Striped Striped
process rows NProcs 1
(prRows)
process columns
(prCols) 1 nProcs

An example of each scheme is displayed in Figure
2. The examples illustrate the partitioned layouts of
a data matrix E of size 9x7 that is distributed over 6
processes. It can be observed from both of the
examples that not all of the 6 processes receive the
distributed matrix. Nevertheless, there is a
partitioning strategy which can distribute the same
data matrix E to all the processes yet achieve better
load balancing. This technique, called checkerboard
block cyclic partitioning, is illustrated in Figure 3.

The checkerboard block cyclic partitioning
scheme, which has also been incorporated in the
High Performance Fortran standard (High

Performance Fortran Forum, 1997), distributes
blocks of rows and columns among the processes in
a wraparound manner. Unlike the striping
techniques, the block cyclic partitioning technique
does not have rigid process grid meshes.
Furthermore, the row and columns blocks can be of
any size as well. Small block sizes in this scheme
will provide better load balancing but at the cost of
frequent interprocessor communications.
Conversely, large block sizes will reduce the
communication latency but may cause load
imbalance among the processes. With DDPI, by
default the block sizes are computed using the
following conventions:

rowBIk = int {Mj
prRows
®)
colBlk = int(mj
prCols
(4)

The sizes however, can be changed to suit the
computational problem. In Figure 3 the data matrix
E is partitioned into 4x2 blocks and mapped onto a
2x3 row-major order process grid. The largest
workload assigned to a process is a 15-element
matrix owned by the root process (Figure 3 (a)).
Comparing this workload with the largest one from
the example in Figure 3 (b) (18-element matrix), it
is evident that the block cyclic partitioning scheme
achieves better load balancing than the column
striped partitioning technique. It should be noted
however, as it will be demonstrated in the
experimental results section, in some problems the
striping techniques perform better than the
checkerboard block cyclic scheme.



MATRIX COLUMN
0 1 2 3 4 5 6

Ol Eo Eos Ewe Eos Eos Eos Eos
0
1l Evw En Ep Eis Ew Eis Ess
2| Exy Ex Exn Ex Exm Ex Ex
1
> 3| En Ea En Ess Esu Esxs Es Fl
<] <
X 4 Ep En Ex Esxs Eu Ess Es a
: ¢
5| Eso Esi Es; Es3 Ess Ess Ess =
row | .
block 6| Eso Eer Eeso Esz Ees Egs  Egs
(rowBIk 3
) 7 E70 E71 E72 E73 E74 E75 E76
8| Eso Esi Esp Egs Egs Egs Eg |4

Fs
v

column block (colBIk)

Parameter Size
gblRows 9
gblCols 7

nProcs 6
prRows 6
prCols 1
2

7

rowBIk
colBIk

rowBIk = int(wj
6
=2

colBIk = int(%j

=7
Note: Shaded block indicates the workload assigned to the root process

Fig 2 (a) : Example of a row striped partitioning distribution



COLUMN BLOCK

(COLBLK)
' matrix column
0 1:2 3 4 5 6
0| Eoo Eo: | Eoo Eos | Esa  Eos | Eos
1/ Exo En | Bz Eis | Ea Eis | Egs
2 EZO E21 E22 E23 E24 E25 E26
; 3 EBO E31 E32 E33 E34 E35 E36
o
E 4 E4O E41 E42 E43 E44 E45 E46
©
e
5 ESO E51 E52 E53 E54 E55 E56
6| Eco Ee1 | Eso Ees | Ees Egs | Egs
7| Ezo En | Ero Esz | Ema Egs | Egs
8 ESO E81 E82 E83 E84 E85 E86
0 3
process label
Parameter Size
gblRows 9
gblCols 7
nProcs 6
prRows 1
prCols 6
rowBIk 9
colBlk 2

rowBIk = int (%)

=9

colBlk = int(”TG‘lj

=2

Note:

row
block
(rowBIk)

Shaded block indicates the workload assigned to the root process.

Figure 2 (b): Example of a column striped partitioning distribution.



MATRIX

COLUMN

0 1 2 3 4 5 6

0| Eoo Eo1 | Eoo Eos | Eos Eos | Eos

1| Eio Ei11 | Ei2 Ei3 | Eisa Eis | Ess

21 Ezo Ez1 | Exo Ezs | Ezs Eos | Egg

> 3 Ezsop Es1 | Es» Ess | Eas Ess | Ess
o

X 4| Eqo Ear | Ea2 Eas | Ess Eus | Ess
IS
e

5| Eso Es1 | Eso Ess | Esa Ess | Esg

6| Eso Ee1 | E62 Ess | Esca Ees | Ees

7| Ezo E71 | Es2 E73 | Eza Ess | Evs

8| Eso Esg1i | Eso Ess | Egs Ess | Esgs

—>

column block (colBIk)

Note:

row block
(rowBIk)

A 9x7 matrix partitioned into 4x2 blocks. Shaded blocks are sent to the
root process of a 2x3 process grid.

Parameter

Si

N

e

gblRows
gblCols
nProcs
prRows
prCols
rowBIk
colBlk

NBAWNO N O

rowBlk =int [gj
2

=4

colBIk = int[ZJ
3

=2

Figure 3 (a): Example layout of the checkerboard partitioning scheme.



Note:

PROCESS COLUMN (PRCOL)
0 1 2

Eoo Eor Eos | Eo2 Eos | Eos Eos
Eio Ei1x Eie | B2 Eiz | Eisa Ess
0| Ezo E2a1 Bz | Exo Ezs | E2s Eps
Eso Es1 Ese | Es2 Ess | Esa Ess

Eso Esi Ess | Eso Ess | Egsa Ess

E4O E4l E46 E42 E43 E44 E45

process row (prRow)

E50 E51 ESG E52 E53 E54 E55

EGO E6l E66 E62 E63 E64 E65

E7O E71 E76 E72 E73 E74 E75

A 9x7 matrix partitioned into 4x2 blocks partition mapped onto 2x3 row-major
ordered process grid. Shaded blocks are on the root process.

Figure 3 (b): Distributed matrix of the checkerboard partitioning example.

3.2 Step 2: Computing concurrently using
Distributed Data

Once the data is partitioned and distributed,
each process can use its local data matrix to
perform computations. Nevertheless, each process
will require essential information pertaining to the
distributed data such as the local rows and columns,
the corresponding global matrix cell of its local
cell, its location on the process grid, etc. DDPI

accommodates this by providing several routines
that return such information. Table 4 lists the
summaries of available DDPI routines. Although
these routines provide complete information
pertaining to the distributed data, fundamental
message passing functions may still be needed for
more elaborate parallel programming. These
functions are available from MPI (Table 5).

Table 4: Summary of DDPI routines.

Routine Function
getGbIRows Returns the global rows/columns, gblRows/gblCols of the partitioned
getGblCols matrix.
getLclRows Returns the local rows/columns, IcIRows/IclCols of the partitioned
getLclCols matrix.
Converts a global row/column into its corresponding local row/column
and returns the process row/column, prRow/prCol in which the global
gbl2lclRow row/column is located.
gbl2lclCol Another overloaded version of these routines returns a predefined
identifier, OUTSIDE if the global row/column to be converted resides
out of the local matrix.
Icl2gbIRow Converts the process’ local row/column into its corresponding global
Icl2gbiCol row/column.
Converts a global coordinate (gbIRow,gblCol) of a matrix cell into its
bI2lcl corresponding local coordinate (IcIRow,IclCol) and returns the
g coordinate of the process (prRow,prCol) that locally owns the matrix
cell.
Returns the context, contxt of the process grid in which the matrix is
getContxt distributed. The contxt serves as a reference for the unique process

grid and the partitioning technique used by the processes. Two sets of




data can be distributed in an identical fashion by using the context of
one of them as the partitioning technique identifier for the scatter
method of the other:

Matrix::scatter(contxt);

A one-dimensional array containing information about the distributed
matrix: contxt, gblIRows, gblCols, rowBIk, colBIk, startPrRow,

descriptor startPrCol and IcIRows. Analogous to the descriptor used by the
ScaLAPACK parallel linear algebra library (Blackford et al., 1997).
Table 5: Summary of MPI routines.
Routine Function
Sends data from the calling process to another process identified by the
MPI1_Send
- process label.
. Inverse operation of MPI_Send. Data is received by the calling process
MPI_Receive . e
- from another process identified by the process label.
Distributes distinct uniform-sized blocks of data in an array from the
MPI Scatter calling process to distinct members of a process group. It is a primitive
- form of the DDPI’s scatter method; it neither partitions disingenuously
nor maps the data onto a process grid.
Inverse operation of MPI_Scatter. Collects distinct uniform-sized blocks
MPI Gather of data from all members of a process group into an array of the calling
- process. It is a primitive form of the DDPI’s gather method,; it does not
take into account the partitioning technique or the process grid.
MPI_Bcast Sends local data from the root process to all members of a process group.
Reduces data elements from all members of a process group into a single
MPI_Reduce
- value and places the result on the root process.
MPI_ Allreduce Similar to MPI_Reduce but the reduced result is distributed to all

members of a process group.

3.3 Step 3: Assembling Local Computational
Results

At the completion of local computations, the
processes may need to synchronize, gather and
reduce their local computation outcomes to reflect
the overall result of the parallel computation. To
synchronize  the processes, the  function
MPI_Barrier can be used. The data gathering
procedure can be as simple as assembling the local
data of processes into a single array while the
reduction process may include operations such as
multiplication and summation. For the former, MPI
provides a data assembler routine called
MPI_Gather. Alternatively, DDPI provides an
advanced version of this function which is also the
inverse operation of its scatter routine:

Matrix::gather();

The routine assembles the previously partitioned
and distributed data matrix into its original form
and places it on the root process. The reduction
process on the other hand can be executed using
two of the MPI reduction routines listed in Table 5
(MP1_Reduce and MPI_Allreduce). Finally, the

resources allocated for the parallel computation can
be released and the computation can be terminated
by issuing the exit commands of both MPI and
DDPI libraries:

DDPI_EXxit();
MPI_Finalize();

The presented three major steps of parallelization
are a simple outline of the parallelization strategy
with DDPI. They can be extended for more
complex parallel computing solutions such as in
cases with multiple sets of distributed data, multiple
types of partitioning techniques and multiple
topologies of process grids.

4. Experimental Results and Discussion

In this section, parallelization results of three
problems, namely matrix multiplication, data
clustering and neural network batch training are
presented. The experiments were conducted on a
Linux cluster consisting of two computers with
each having two 1.6 GHz Athlon SMP CPUs
interconnected by a 1 Ghps gigabit ethernet switch.



The computers have 2 GB and 1 GB of memory Even though parallelization of dense matrix

respectively. The cluster’s performance reached multiplication algorithm has been studied quite
6.435 Gflops when measured using the Linpack extensively (Kumar et al., 1994), due to its
benchmark (Dongarra, 2002) with Basic Linear prominent role in scientific computing applications,
Algebra Subprograms (BLAS) library (Dongarra et new algorithms and implementations are also
al., 1990) optimized by Automatically Tuned continuously being developed (Valsalam and
Linear Algebra Software (ATLAS) (Whaley et al., Skjellum, 2002; Whaley et al., 2001; Aberdeen and
2001). Its maximum performance could not be Baxter, 2001; Gunnels et al., 2001; Chatterjee et al.,
measured because it was limited by the amount of 1999). The PBLAS (Parallel Basic Linear Algebra
physical memory. Subprograms) library, a subset of the ScaLAPACK

(Scalable Linear Algebra Package) library
(Blackford et al., 1997), is widely used to compute
matrix multiplication in a parallel computing
environment. The product of two real matrices is
computed using its pdgemm (parallel double
precision generalized matrix multiply) routine
O(nDimension3) through either its Fortran or C/C++ interfaces. In
order to distribute the computational workload to
the processes, PBLAS requires the two matrices to
be partitioned beforehand using the block cyclic
partitioning technique. Figure 4 depicts the block
cyclic partitioning layout for the matrices with a
process running on each of

4.1 Concurrent Matrix Multiplication
Conventional dense matrix multiplication has the
computational complexity of

where nDimension is the dimension of the square
matrices. With parallelization, it is possible to
reduce the complexity to (Comino and Narasimhan,
2002):

O(nDimensionj

nProcs
, nDimension |, nDimension
0 1 0 1 0 1
nDimension X =
2 3 2 3 2 3
A B C

Note:The matrices are mapped onto 2x2 row-major order process grid. The number in each block indicates the
process label.
Fig 4: Parallel matrix multiplication with block cyclic partitioned matrices.

the four processors in the cluster. In this employing the C/C++ interface, they need to
illustration, the multiplicands A and B are square separately set up the data partitioning and spreading
matrices of dimensions nDimensionxnDimension procedures. This would impose a significant
that produce a solution matrix C of the same size. amount of effort on the users without parallel

For the Fortran interface, users can utilize the programming

existing directives in the High Performance Fortran
to partition and distribute the workload prior to
calling the pdgemm routine. However, for the users



1

2

3 Matrix *A;

4 Matrix *B;

5 Matrix *C;

6 int  rows = nDimension;
7 int  cols = nDimension;
8

9 MPIL_Init();

10 DDPI_Init();

11 A = new Matrix(rows,cols);
12 B = new Matrix(rows,cols);
13 C = new Matrix(rows,cols);

/I function executes C <-- AxB using PBLAS pdgemm routine with DDPI interface
void execute_pdgemm(int nDimension) { // for square matrix, rows=cols=nDimension

14 A->scatter(UNI); // partition multiplicand A block cyclically and distribute
15 B->scatter(UNI); // partition multiplicand B block cyclically and distribute
16 C->scatter(UNI); // partition product C block cyclically and distribute

17

18 /I convert C <-- alphaxAxB+betaxC of PBLAS pdgemm routine into C <-- AxB
19 char transposeA ='N'; // set matrix A as not transposed

20 char transposeB ='N'; // set matrix B as not transposed

21 int pl=1;//increment index for traversing the elements in the matrices

22 double alpha =1.0;
23 double beta =0.0;
24

25 /I execute C <-- AxB using PBLAS pdgemm routine
26 pdgemm_(&transposeA, &transposeB, rows, cols, rows, alpha,

31 C->gather(); // local results are assembled to form complete product matrix C

27 A->data, pl, pl, A->descriptor,

28 B->data, p1, p1, B->descriptor, beta,
29 C->data, p1, p1, C->descriptor);

30

32 delete A;

33 delete B;

34 delete C;

35 DDPI_Exit();
36 MPI_Finalize();
37 }

Fig 5: Function execute_pdgemm that partitions, distributes and multiplies using PBLAS pdgemm routine and
DDPI interface.

expertise. In fact, this drawback in ScaLAPACK
has motivated the development of a similar library
but with a simpler MPI like interface called
PLAPACK (van de Geijn et al, 1997).
Unfortunately, PLAPACK does not have the
amount of wuser base and influence which
ScaLAPACK has in high performance computing
applications. DDPI addresses this requirement in
ScaLAPACK elegantly with its simple interface as
shown in Figure 5. Furthermore, the matrix

descriptor used in DDPI is also fully compatible
with the one required by ScaLAPACK. Therefore,
over 100 remaining double precision routines in
ScaLAPACK can also use DDPI as the interface to
partition and distribute data across processes.

The pdgemm routine with DDPI interface was
experimented with four different dimensions of
multiplicands. Figure 6 displays the results of the
execution time when multiplying the matrices with
varying number of processors. The execution time
indicates the
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Fig 6: Execution times of parallel matrix multiplication using pdgemm and DDPI interface.

time spent to partition, distribute, compute and
assemble the matrices. Generally, it can be
observed that the computation time decreases when
the processors are added. However, there is an
unanticipated increase in the execution time when

two processors are utilized as compared to only
one. This is possibly due to the communication
latency when multiplying local data across the two
processors in the block cyclic partition as indicated
in Figure 7.

block cyclic
partitioned matrices _
mapped onto 0 1 x 0 1 - 0 1
1x2 process grid
Legend
A B C
[] process 0
[ process 1 l l l
Al Al BO Bl co (&)
X =
A2 A3 B2 B3 c2 C3
A0 | x| BO |+ | Al | X| B2 = co
interprocessor 1
communication A0 | x| Bl |4+| Al | x| B3 = Cl
latency
A2 | x| BO |+| A3 | x| B2 = C2
A2 | X| Bl |+]| A3 | X| B3 = C3

Note: The matrices are mapped onto a 1x2 row-major order process grid.
Fig 7: Communication latency when multiplying block cyclic partitioned matrices

To verify this conjecture, another set of
experiments is conducted with the row striped
partitioning technique that eliminates the need to
communicate at the indicated sections. This

partitioning layout, illustrated in Figure 8, shows
that it is unnecessary for further interprocessor
communication once the data has been distributed
to the processors.
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Fig 8: Concurrent multiplication of a row striped matrix with a whole matrix without interprocessor
communications.

In the proposed technique, multiplicands A and B
have nProcsx1 and 1x1 process grids respectively.
Apparently, the PBLAS library prohibits
simultaneous operations on matrices having
different process grids (conflicting contexts). As a
consequence, the experiment is conducted using the
sequential version of the pdgemm routine, dgemm
(double precision generalized matrix multiply),
which is available from the BLAS library. Figure 9
illustrates the simplicity of DDPI in parallelizing
even such sequential matrix multiplication
algorithm.

The timing results of the proposed technique
are illustrated in Figure 10. As expected, the
execution time decreased by almost twofold when
the number of processors increased from one to
two. This outcome clearly exhibits the influence of
the communication latency in the overall
computation speed. However, the reduction in the
execution speed is not linearly proportionate to the
addition of processors because the time spent to
transfer the whole matrix B to each processor also
increases with the number of processors. It can also
be seen that when the size of matrix is small
(nDimension = 2000), the speedup (ratio of the
execution time on 1 processor to the execution time
on nProcs processors) is almost negligible. This is
due to the small granularity of the problem, in
which, the speedups gained from the higher number

of processors are negated by the amount of time
spent to transfer the data to each processor.

1  //function executes C <-- AXB using BLAS

2 dgemm routine with DDPI interface

3 void execute_dgemm(int nDimension) { // for
4 square matrix, rows=cols=nDimension

5 Matrix *A;

6 Matrix *B;

7 Matrix *C;

8 int  rows = nDimension;

9 int  cols = nDimension;

10

11 MPIL_Init();

12 DDPI_Init();

13 A = new Matrix(rows,cols);

14 B = new Matrix(rows,cols);

15 C = new Matrix(rows,cols);

16 A->scatter(ROW); // partition multiplicand
17 A using row striping and distribute

18 B->scatter(WHOLE); // distribute whole
19 matrix B

20 C->scatter(A->getContxt()); // partition and
21 distribute product C indentical to A

22

23 [ convert C <-- alphaxAxB+betaxC of
24 BLAS dgemm routine into C <-- AxB

25 char transposeA ='N'; // set matrix A as
26 not transposed




27 char transposeB ='N'; // set matrix B as
28 not transposed

29 int pl=1;//incrementindex for

30 traversing the elements in the matrices

31 double alpha =1.0;

32 double beta =0.0;

33
34 /l execute C <-- AxB using BLAS dgemm
35 routine

36 dgemm_(transposeA, transposeB, C-

37 >getLclRows(), C->getLclCols(),

38 A->getLclCols(), alpha,
A->data, C->getLclRows(),
B->data, C->getLclCols(), beta,
C->data, C->getLclRows());

C->gather(); // local results are assembled
to form complete product matrix C

delete A;

delete B;

delete C;

DDPI_Exit();

MPI_Finalize();
}

Fig 9: Function execute_dgemm that partitions,
distributes and multiplies using BLAS dgemm
routine and DDPI interface.

220 matrix dimension
(nDimension)
200 —— 6000 ||
180 —l— 5000 H
160 —&— 4000 ||
D —>—2000
~ 140 -
£
= 120 +
c _
2 100
8 \
L 80
[} \\‘
60 >

4
40
20

,\< N
0 T o

1 2 3 4
Number of processors (nProcs)

Fig 10: Execution times of parallel matrix multiplication using dgemm and DDPI interface.
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Figure 11: Comparison of execution times between block cyclic pdgemm and striped dgemm.

Figure 11 compares the performance of the two
parallel multiplication techniques when all four
processors of the cluster are utilized. In terms of the
execution time, it is evident that the striped dgemm
technique outperforms the block cyclic partitioning
scheme by almost twofold for all the matrix sizes.
The result demonstrates that with DDPI it is
possible to implement a parallel matrix
multiplication procedure that outperforms dedicated
parallel implementations such as the PBLAS
pdgemm. It appears that the drawback of the
PBLAS routine is in its restriction to use identical
process grid topologies for all the matrices
manipulated in the operation.

4.2 Concurrent Data Clustering

Data clustering, which is an NP-complete
problem (Garey et al., 1982) of finding groups in
heterogeneous data by minimizing some measure of
dissimilarity, is one of the fundamental tools in data
mining, machine learning and pattern classification
solutions. Of all the many available clustering
techniques, the k-means center based clustering
algorithm, despite of its local minimum solutions,
stands out as a popular tool due to its low
computational complexity and straightforward
implementation (Estivill-Castro and Houle, 2001).
Figure 12 depicts the k-means clustering algorithm
which finds k clusters in a data set of size
nSamplesxnDimension. For a single iteration of the
search space (steps 2 to 4), the k-means algorithm
has the computational complexity of

O(nSamples x nDimension xk )

The k-means primary advantage of low
computational complexity will therefore be
inhibited when the number of samples is large.
Motivated by this shortcoming when using k-means
with large  databases, several parallel
implementations of the technique have been
introduced (Dhillon and Modha, 1999; Kantabutra
and Couch, 2000; Ng, 2000; Zhang et al., 2000).
According to the analysis by Kantabutra and
Couch, their algorithm requires heavy network
loading due to rebroadcasts of the data set and
therefore only about half of the CPU time is
utilized. On the other hand, the data parallel
approaches adopted by the other three
implementations are superior since only essential
local statistics are broadcasted at each iteration,
which substantially reduces the interprocessor
communication latency. Figure 13 lists the steps in
the data parallel approach.



Input

k : number of clusters
X : data Set c ERnSampIesanimension
Output

kxnDimension

centers : cluster centers € R

Step 1: Initialization

Select a set of k starting points, the initial cluster centers centers where:
j=1--k

T L
kxnDimension
! ) eR
nDimension

The selection may be done using the Forgy or the random partitioning technique.
Forgy technique:

] : .
centers = (centerslJ -+, centers;

o set centers as k random samples of the data set

Random partitioning technique:
e partition the data set into k segments randomly

e assign each centers  as the centroid of those segments, where
centroid is the mean value of the samples assigned to it
Step 2: Data membership computation

For each sample X",
n=1---,nSamples
>_(' n — ( Xln e X:Dimensmn ) mnSamplesanimension
compute its membership:

—n

X —centers

2

i

io=n 1;if | =argmin.
m(centers | X )= !

0; otherwise
Step 3: Data membership weight assignment
For each sample X", set its weight to unity:

Step 4: Center recalculation

For each center centers’ , recalculate its location from all samples X", according to
their membership and weights:

nSamples i —n —~n —n
> m(centers | X )w(X )X

n=1

i
centers =

nSamples . o o
> m(centers | X Jw(X )

n=1

Step 5: Convergence condition
Repeat steps 2 to 4 until convergence. The objective function that the k-means
algorithm minimizes is:

nSamples 2

Perf,,, (>? |centers])= Z min

no1 deflok}

i

-n
X —centers

Fig 12: The sequential k-means clustering algorithm.



Step 1: Initialization
Partition the data set into nProcs partitions
and distribute them to the local memory of
the respective processes. On the root
process, initialize centers values and make
them global values by broadcasting them
to all processes.

Step 2: Local computation
On each process, compute local data
memberships, local centers and local
performance using local data sets and
global centers.

Step 3: Global center recalculation
Compute new global centers using
summed local centers and summed local
data memberships. Compute the global
performance by summing local
performances.

Step 4: Convergence condition
If global performance has converged,
terminate computation and return global
centers, otherwise start next iteration from
step 2.

Fig 13: The data parallel approach to parallelize k-
means type clustering algorithms.

With this approach, it is possible to reduce the
k-means computational costs of each iteration
(steps 2to 4) to

0 nSamples x nDimension x k
nProcs

provided that nSamples >>nProcs (Zhang et

al., 2000). By exploiting the similarity of the data
parallel approach adopted by DDPI, a parallel k-
means algorithm can be implemented in a
straightforward manner using DDPI.

Figure 14 compares the sequential implementation
of k-means with its parallel counterpart which is
implemented via DDPI’s row striped partitioning
interface. It is evident that with only several
additional lines, the k-means algorithm can be
converted for concurrent computations with DDPI.
The original algorithm flow is still preserved which
permits further modifications of the algorithm even
by users with little understanding of parallel
computing.

In order to empirically evaluate the
performance of the parallel k-means, several
experiments were conducted with varying number
of data samples. For this purpose, synthetic data
sets were generated using an algorithm presented
by Zhang (Zhang, 2001). The number of clusters (k
= 8), the dimension size (nDimension = 8) and the
data set sizes are similar to the ones adopted by Ng
(Ng, 2000) since his hardware performance is
within the range of the Linux cluster used in this
research. The speedup (5) with respect to the
execution time of the sequential implementation is
shown in Figure 15.

executionTime (nProcs =1)
executionTime(nProcs)
5)

It can be observed that the speedups gained from
the parallel k-means are almost equal to the ideal
case which indicates linear speedup. In the largest
data set (nSamples = 640,000), the speedup is 3.76
on 4 processors. The speedup is only suppressed
when the data set is relatively small (nSamples =
80,000).

speedup =

Input

k : number of clusters

X : data set matrix

nSamples : number of data samples

nDimension : data dimension

Output

centers : cluster centers

Variable

meanSE : the k-means performance, based on its objective function

sequential k-means parallel k-means

MPI_Init();
DDPI_Init();
Matrix::Matrix(nSamples,nDimension,X);
Matrix: :scatter(ROW);

data = X; data = Matrix::data;
myNode = MPI_Comm_rank();
if (myNode == 0)




[/l intialize centers

meanSE = BIG_NUM;
do {
oldMeanSE = meanSE;
meanSE = 0;
forj=1tok
dataCnt; = 0;
for col = 1 to nDimension
centers_jco = 0;
endfor
endfor
for row = 1 to nSamples
minDistance,,, = BIG_NUM;
forj=1tok
sumDistance = 0;
for col = 1 to nDimension
sumDistance = sumDistance +
(datasow,col — CENLETS; cor);
endfor
if (sumDistance < minDistance,qy,)
minDistance,,, = sumDistance;
centerLabel,q,, = j;
endif
endfor
crow = centerLabel,o;
for col = 1 to nDimension
centers_crow,col = CENETS_crow,col +
datarow,col ;
endfor
dataCntgq, = dataCntgon + 1;
meanSE = meanSE + minDistance,q;
endfor;

forj=1tok
for col = 1 to nDimension
centersj ey =
centers_; co/max(dataCnt;, 1);
endfor
endfor
} while (meanSE < oldMeanSE);

[l intialize centers
endif
MPI_Bcast(centers, k);
meanSE = BIG_NUM;
do{
oldMeanSE = meanSE;
meanSE_ = 0;
forj=1tok
dataCnt_; = 0;
for col = 1 to nDimension
centers_j o = 0;
endfor
endfor
for row = 1 to Matrix::getLcIRows();
minDistance,q, = BIG_NUM;
forj=1tok
sumDistance = 0;
for col =1 to nDimension
sumDistance = sumDistance +
(dataow,col — CENtErS; cor);
endfor
if (sumDistance < minDistance,qy)
minDistance,,, = sumDistance;
centerLabely,, = j;
endif
endfor
crow = centerLabel,oy;
for col = 1 to nDimension
Centers_crow,col = CENTEIS_crow,col
datarow,col )
endfor
dataCnt_c., = dataCnt_c.ow + 1;
meanSE_ = meanSE_ + minDistance,ow;
endfor;
MPI_Barrier();
MPI_Allreduce(centers_,centers,MPI_SUM);
MPI_Allreduce(dataCnt_,dataCnt,MPI1_SUM);

MPI_Allreduce(meanSE_,meanSE,MPI1_SUM);
forj=1tok
for col = 1 to nDimension
centersj e =
centers; c/max(dataCnt;, 1);
endfor
endfor
} while (meanSE < oldMeanSE);
DDPI_Exit();
MPI_Finalize();

Fig 14: Comparison of sequential and parallel implementations of k-means
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Figure 15: The k-means speedup after parallelization with DDPI

Recently, Hamerly and Elkan have evaluated
another center based clustering algorithm called k-
harmonic means and found it to be superior to the
k-means algorithm in terms of the computed
centers’ quality (Hamerly and Elkan, 2002). It
appears from their findings that, on the contrary to
the k-means algorithm, the k-harmonic means
algorithm (Zhang, 2001) is robust to initial starting
points of the centers. A parallel implementation of
the k-harmonic means technique with DDPI is
conducted to evaluate the consistency of the

number of data samples

DDPI’s performance in varied clustering problems.
Hence, a concurrent k-harmonic means algorithm
was implemented with the DDPI’s row striped
partitioning interface and a set of experiments was
executed similar to that of the k-means algorithm.
Figure 16 shows the results of this set of
experiments. The results also demonstrate that it is
possible to achieve almost linear speedups with the
DDPI’s parallelizing interface for other clustering
techniques such as the k-harmonic means
algorithm.
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Figure 16: The k-harmonic means speedup after parallelization with DDPI.



4.3 Concurrent Batch Learning for Neural
Networks

The learning phase of a neural network is
computationally intensive especially when the
batch training is employed as opposed to the
stochastic technique. With batch training, at each
iteration, the entire data set needs to be considered
in order to compute the parameters’ gradient for an
iterative gradient based optimization scheme (such
as the commonly used error backpropagation
algorithm). Conversely, for the stochastic training,
at each iteration, the gradient is computed after
considering only a single sample of the data set.
There are however, some instances when the batch
learning is preferred over the stochastic technique
(LeCun et al., 1996).

When large data sets are considered for batch
training, the training phase can be parallelized to
reduce the computational costs. Parallelization
strategies that are available include training each
network of a multi-neural network architecture on a
dedicated processor, parallelization at the neuron or
synapse level, and parallelization using the data
parallel approach (Sundararajan and Saratchandran,
1998). Interestingly, akin to the data clustering
problem, the data parallel approach appears to be
the most favourable technique due to its simplicity
and performance (Schikuta and Weidmann, 1997;
Rogers and Skillicorn, 1998). The parallelization
steps of a general neural network batch training
algorithm with the DDPI’s interface are shown in
Figure 17. In addition to saving memory space by
only allocating a portion of the data set on the local
memories, the approach can also be applied for
both single and multiple neural network
architectures.

them to all processes.
Step 2: Local gradient computation

e On each process, compute local
empirical error and local accumulated
gradients using the local data and global
parameter values.

Step 3:  Global parameter value adjustment

o Sum all local accumulated gradients and
divide them by the total number of
samples (nSamples) to obtain the
effective global gradient.

o Sum all local empirical errors to obtain
global empirical error.

o Adjust the parameter values using the
global gradients through an iterative
gradient based optimization procedure.

e Broadcast the new global parameter
values to all processors.

Step 4: Convergence condition

o If global empirical error has converged,
terminate computation and return global
parameter values, otherwise start next
iteration from step 2.

Step 1: Initialization

e Let nProcs be equivalent to the number
of processors available in the
homogeneous parallel computing
environment.

¢ Place the training data set on an
nSamplesxnDimension matrix
accessible by the root process. Partition
the matrix into nProcs partitions using
DDPI’s row striped partitioning
technique and distribute them to all
processes.

e On the root process, initialize the neural
network parameter values and make
them global values by broadcasting

Fig 17: Parallelization steps of batch training with
DDPI’s interface.

In order to assess the performance of the parallel
batch training algorithm, a set of experiments was
conducted with the classic Multilayer Perceptron
(MLP) and the error backpropagation algorithm.
The training was done on a data set with varying
number of data samples and fixed number of
iterations. The batch training speedup with respect
to the execution time of the sequential
implementation is shown in Figure 18. It is clear
that DDPI’s performance is also consistent in the
batch training problem. Furthermore, a dedicated
neural network parallelization library by Boniface
et al. (Boniface et al., 1999) was reported to only
achieve speedup of 3.6 on 8 processors whereas
with DDPI it is possible to attain speedup up to
3.87 on only 4 processors (nSamples = 247731).
However it should be noted that their experiment
was conducted with the Kohonen Self-organizing
Map on a network system more than 3 years ago.
Their poor performance is also possibly due to their
neuron parallelism strategy which causes heavy
network loading.
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Fig 18: The Multilayer Perceptron batch training speedup after parallelization with DDPI

2.6 Conclusion

A simple yet effective solution for parallelizing
iterative or large data problems has been described
in this work. DDPI’s parallelization versatility has
been demonstrated through a wide range of
problems. Its almost linear speedup performances
appear to be consistent on large data problems
which are comparable to dedicated hand coded
implementations or other existing sophisticated
solutions. DDPI’s simplicity of implementation,
demonstrated through some of the studied
problems, promotes adoption by users with little
understanding of parallel computing technicalities.
In the future, DDPI can be extended for
applications on a heterogeneous cluster by
partitioning the workload according to the
performance and resources of the individual nodes
in the cluster. Additionally, DDPI can also be
improved by providing support for complex and
irregularly structured problems.
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