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Abstract : The effort required to write efficient parallel programmes or to parallelize existing sequential 
algorithms remains daunting. This is true even for regularly structured problems. Much of the work takes place 
when partitioning and distributing workloads over processors in a distributed computing environment. To 
alleviate this task, we present a data parallel interface called Distributed Data Partitioning Interface (DDPI). Its 
simple interface permits parallel implementation even by users with little understanding of parallel computing 
technicalities. In this work we evaluate the performance of DDPI in several computationally intensive problems 
such as matrix multiplication, data clustering and neural network batch training. Through these problems, we 
demonstrate that it is possible to achieve almost ideal speedups when they are parallelized with DDPI. 
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1. Introduction 
Although commodity clusters and parallel 

computers are becoming widespread now, the effort 
required to write efficient parallel programmes or to 
parallelize existing algorithms remains daunting. 
This is true even for regularly structured problems. 
Much of the work takes place when partitioning 
and distributing workloads over processors in the 
distributed computing environment. There are two 
main approaches to relieve this effort off of the 
user: automatic parallelizing compilers (Agarwal et 
al., 1995; Prechelt and Hänßgen, 2002) and 
workload distributing libraries or tools 
(Hendrickson and Leland, 1994; Carpenter et al., 
1997; Karypis and Kumar, 1998; Boniface et al., 
1999; Chen and Taylor, 2002). Unfortunately in the 
former, even though it is a well-established 
research field, the fundamental issue of optimal 
partitioning remains unsolved. On the other hand, 
for regularly structured problems, the libraries and 
tools appear to be either overkills (Hendrickson and 
Leland, 1994; Carpenter et al., 1997; Karypis and 
Kumar, 1998) or too specialized (Boniface et al., 
1999; Chen and Taylor, 2002), and therefore are 
substantially cumbersome when they are used to 
parallelize existing sequential algorithms. Certainly 
the problem at hand should be the center of focus 
instead of being concerned with the intricacies of 
parallel programming. Moreover, even for 
experienced parallel programmers, the development 
of good parallel implementations with these tools is 
still more tedious than writing efficient serial 
programmes. For these reasons, we are motivated to  
 

look at a general solution and derive the following 
requirements in this work: 

(i) Low learning threshold. Ideally, in order 
to reduce the effort required for 
parallelization, it is not expected of the 
user to acquire additional skills pertaining 
to parallelism nor to learn extraneous 
language constructs. Hence, the low level 
parallelization details should be hidden 
from the user. 

(ii) Simple implementation. The overall 
structure of the sequential program should 
be preserved such that the user would be 
able to focus on the original algorithm 
flow of the problem even after 
parallelization. 

(iii) Portability. The system should be 
implemented in a widely accepted and 
standard programming language to ensure 
portability to all target platforms and 
machines. For better portability, 
assumptions about the distributed 
computing environment’s specific 
network topology should be avoided. 
Nonetheless, the system should cater for 
homogeneous processors and networks 
since they are more commonly available. 

(iv) Maintainability. Although initially the 
solution may be intended for regularly 
structured problems, it should however 
have the facility to be extended for more 
complicated problems. 

(v) Effectual. The system’s performance 
should be comparable to more specialized 
and sophisticated implementations. 



 

It was found that an interface using the data parallel 
approach fulfills the above requirements. The 
design and evaluation of the interface, referred to as 
the Distributed Data Partitioning Interface (DDPI), 
will be presented in the following sections. 
 

2. Scope and Limitations  
DDPI is designed to parallelize problems 

dealing with regularly distributed data or iterative 
in nature. Although it can still be used with 
irregularly structured problems, the performance 
may not be optimal because it may bring about 
communication overhead to distribute workloads 
evenly. DDPI is targeted for users with little or no 
prior experience in parallel programming. It is 
implemented in an object oriented fashion in C++ 
and utilizes the Message Passing Interface (MPI) 
(MPI Forum, 1998). Even though one of the 
objectives is to avoid learning additional language 
constructs, it is still reasonable to expect the user to 
know the basic MPI functions since they are also 
implemented in both C and C++. This tool, which 

addresses the problem of data partitioning, assumes 
that a single processor with sufficient memory is 
available to partition the complete data. 
 

3. Design of DDPI 
Table 1 lists the description of symbols used in 

this work. Figure 1 displays the three major 
parallelization steps with the DDPI programming 
interface. In order to distribute the computational 
workload, DDPI provides a small set of routines to 
spread data across the processes. The data, which 
can be either locally or globally accessible, is 
contained in a two-dimensional matrix constructor. 
It is partitioned according to one of several 
available techniques in DDPI and shipped to the 
processes in the process grid. Each process will 
then be able to perform computations concurrently 
using their local data. When required, the processes 
can communicate with each other using existing 
MPI functions. During the  

 

 

Table 1: Description of Symbols. 

Symbol Description Symbol Description 

nProcs total number of 
processes  lclCols local columns 

prRows total process 
rows rowBlk row block size 

prCols total process 
columns colBlk column block size 

prRow process row 
coordinate startPrRow starting process row 

prCol process column 
coordinate startPrCol starting process column 

gblRows global rows nSamples number of data samples 
gblCols global columns nDimension dimension size 
lclRows local rows contxt context of the process grid 

 
computational procedure, there will be situations in 
which information pertaining to the distributed data 
is needed. DDPI provides a convenient access to 
this information through several essential routines. 
Finally, the local data can also be gathered and 

reduced for global use with MPI or DDPI routines. 
Specific details of the above steps will be explored 
in the following sections. 
 
   



 

 
 

Fig 1: The three main parallelization steps of DDPI 
 

3.1 Step 1: Initializing, Partitioning and 
Distributing Data 

The first parallelization step with DDPI 
relieves most of the effort from the user by 
automatically partitioning and distributing a given 
set of computational workload to the processors. 
The user begins the parallelization procedure with a 
one time initialization step of MPI and DDPI 
libraries: 
 

MPI_Init(); 
DDPI_Init(); 

 
This is followed by allocating the data using the 
DDPI’s Matrix object constructor 
 

Matrix::Matrix(i,j,data); 
 
where, i and j are the row and column sizes of the 
source data respectively. If the source data is 
locally owned, it should belong to the root process 
(process 0) because DDPI will distribute the data to 
other processes from the root process. The root 
process can be verified using the MPI function, 
MPI_Comm_rank which returns the process label 
of the calling process. The data can now be 
distributed by issuing the DDPI scatter command: 

 
Matrix::scatter(partition); 

 
In the above command, partition represents one of 
DDPI’s three identifiers for the partitioning 
technique that will be used to distribute the data. 
Table 2 lists the identifiers and their corresponding 
partitioning techniques. The three methods are 
commonly used in general parallel computing 
applications. 
 

Table 2: DDPI identifiers for data partitioning 
techniques. 

Identifier Partitioning Technique 
ROW Row Striped 
COL Column Striped 
UNI Block Cyclic 

 
The data matrix is partitioned by mapping blocks of 
rows of size rowBlk and blocks of columns of size 
colBlk to the process grid. The partitioning 
techniques can be classified based on the block 
sizes and the mesh of the process grid. In the row 
and column striped partitioning techniques, the data 
matrix is divided into groups of complete rows or 
columns (Figure 2). Each process is allocated these 
contiguous rows or columns as workloads. DDPI 



 

employs the following functions to determine the 
block sizes: 
 

1int gblRows prRowsrowBlk
prRows

⎛ + −
= ⎜

⎝

⎞
⎟
⎠

     (1)  
1int gblCols prColscolBlk

prCols
⎛ + −

= ⎜
⎝

⎞
⎟
⎠

 

     (2) 
 
In these functions, gblRows and gblCols are the 
total number of rows and columns in the 
undistributed data matrix respectively. The block 
sizes can be computed using the process row and 
column sizes listed in Table 3. 
 

Table 3: Process grid meshes for striped 
partitioning techniques. 

Process Grid Row Striped Column 
Striped 

process rows 
(prRows) nProcs 1 

process columns 
(prCols) 1 nProcs 

 
 
An example of each scheme is displayed in Figure 
2. The examples illustrate the partitioned layouts of 
a data matrix E of size 9×7 that is distributed over 6 
processes. It can be observed from both of the 
examples that not all of the 6 processes receive the 
distributed matrix. Nevertheless, there is a 
partitioning strategy which can distribute the same 
data matrix E to all the processes yet achieve better 
load balancing. This technique, called checkerboard 
block cyclic partitioning, is illustrated in Figure 3. 

The checkerboard block cyclic partitioning 
scheme, which has also been incorporated in the 
High Performance Fortran standard (High 

Performance Fortran Forum, 1997), distributes 
blocks of rows and columns among the processes in 
a wraparound manner. Unlike the striping 
techniques, the block cyclic partitioning technique 
does not have rigid process grid meshes. 
Furthermore, the row and columns blocks can be of 
any size as well. Small block sizes in this scheme 
will provide better load balancing but at the cost of 
frequent interprocessor communications. 
Conversely, large block sizes will reduce the 
communication latency but may cause load 
imbalance among the processes. With DDPI, by 
default the block sizes are computed using the 
following conventions: 
 

int gblRowsrowBlk
prRows

⎛ ⎞
= ⎜

⎝ ⎠
⎟   

     (3)  

int gblColscolBlk
prCols

⎛ ⎞
= ⎜

⎝ ⎠
⎟   

     (4) 
 

The sizes however, can be changed to suit the 
computational problem. In Figure 3 the data matrix 
E is partitioned into 4×2 blocks and mapped onto a 
2×3 row-major order process grid. The largest 
workload assigned to a process is a 15-element 
matrix owned by the root process (Figure 3 (a)). 
Comparing this workload with the largest one from 
the example in Figure 3 (b) (18-element matrix), it 
is evident that the block cyclic partitioning scheme 
achieves better load balancing than the column 
striped partitioning technique. It should be noted 
however, as it will be demonstrated in the 
experimental results section, in some problems the 
striping techniques perform better than the 
checkerboard block cyclic scheme. 
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Routine Function 

                   A 9×7
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Distributed matrix of the checkerboard partitioning exampl
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summaries of available DDPI routines. 
these routines provide complete in
pertaining to the distributed data, fu
message passing functions may still be
more elaborate parallel pro

cess can use
omputations. 

d data such a
nding gl

ocal rows and columns, functions are available from MPI (Table 5) cell of its local 
ocess grid, etc. DDPI ocation on th

Table 4: Summary of DDPI routines. 

getGblRows 
getGblCols 
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getLclCols 

Returns the local rows/
matrix. 
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Table 5: Summ
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ary of MPI routines. 
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3.3 Step 3: 
Results 

At the com
processes may
reduce their lo

can 
procedure can be as sim

 
The routine assembles the previously partitioned 
and distributed data matrix into its original form 
and places it on the root process. The reduction 
process on the other hand can be executed using 
two of the MPI reduction routines listed in Table 5 
(MPI_Reduce and MPI_Allreduce). Finally, the 

resources allocated for the parallel computation can 
be released and the computation can be terminated 
by issuing the exit commands of both MPI and 
DDPI libraries: 
 

DDPI_Exit(); 

 
of parallelization 

are a simple outline of the parallelization strategy 

ocess grids. 

4. Experimental Results and Discussion 
In this section, parallelization results of three 

problems, namely matrix multiplication, data 
clustering and neural network batch training are 
presented. The experiments were conducted on a 
Linux cluster consisting of two computers with 
each having two 1.6 GHz Athlon SMP CPUs 
interconnected by a 1 Gbps gigabit ethernet switch. 

Assembling Local Computational 

pletion of local computations, the 
 need to synchronize, gather and 
cal computation outcomes to reflect 

the overall result of the parallel computation. To 
synchronize the processes, the function 
MPI_Barrier 

MPI_Finalize(); 

be used. The data gathering 
ple as assembling the local The presented three major steps 

data of processes into a single array while the 
reduction process may include operations such as 
multiplication and summation. For the former, MPI 
provides a data assembler routine called 
MPI_Gather. Alternatively, DDPI provides an 
advanced version of this function which is also the 
inverse operation of its scatter routine: 
 

Matrix::gather(); 

with DDPI. They can be extended for more 
complex parallel computing solutions such as in 
cases with multiple sets of distributed data, multiple 
types of partitioning techniques and multiple 
topologies of pr
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For the Fortran interface, users can utilize the 
existing directives in the High Performance Fortran 
to partition and distribute the workload prior to 
calling the pdgemm routine. However, for the users 

employing the C/C++ interface, they need to 
separately set up the data partitioning and spreading 
procedures. This would impose a significant 
amount of effort on the users without parallel 
programming  
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// function executes C <-- A×B using PBLAS pdgemm routine with DDPI interface 
void execute_pdgemm(int nDimension) { // for square matrix, rows=cols=nDimension 
    Matrix  *A; 
    Matrix  *B; 
    Matrix  *C; 
    int     rows = nDimension; 
    int     cols = nDimension; 
 
    MPI_Init(); 
    DDPI_Init(); 
    A = new Matrix(rows,cols); 
    B = new Matrix(rows,cols); 
    C = new Matrix(rows,cols); 
    A->scatter(UNI); // partition multiplicand A block cyclically and distribute 
    B->scatter(UNI); // partition multiplicand B block cyclically and distribute 
    C->scatter(UNI); // partition product C block cyclically and distribute 
 
    // convert C <-- alpha×A×B+beta×C of PBLAS pdgemm routine into C <-- A×B 
    char    transposeA = 'N'; // set matrix A as not transposed 

emm 
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             B
             C
 
    C->gath  
    delete A
    delete B
    delete C
    DDPI_E
    MPI_
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22 
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    double  alpha = 1.0; 
    double  beta = 0.0; 
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Finalize(); 
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t to partition, distribute, compute and 
e matrices. Generally, it can be 

at the computation time decreases when 
rs are added. However, there is an 

 in the execution time when  

Fig 6
 
time spen
assemble th
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two processors are utilized as compared to only 
one. This is possibly due to the communication 
latency when multiplying local data across the two 
processors in the block cyclic partition as indicated 
in Figure 7. 
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To verify this conjecture, another set of 
experiments is conducted with the row striped 
partitioning technique that eliminates the need to 
communicate at the indicated sections. This  
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 or 
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computation speed. How r, the reduction in the 
execution speed is not lin y proportionate to the 
addition of processors b ause the time spent to 
transfer the whole matrix B to each processor also 
increases with the number of processors. It can also 
be seen that when the size of matrix is small 
(nDimension = 2000), the speedup (ratio of the 
execution time on 1 processor to the execution time 
on nProcs processors) is almost negligible. This is 
due to the small granularity of the problem, in 
which, the speedups gained from the higher number  

 
of processors are negated by the amount of time 
spent to transfer the data to each processor. 
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// function executes C <-- A×B using BLAS 
dgemm routine with DDPI interface 
void execute_dgemm(int nDimension) { // for 
square matrix, rows=cols=nDimension 
    Matrix  *A; 
    Matrix  *B; 
    Matrix  *C; 
    int     rows = nDimension; 
    int     cols = nDimension; 
 
    MPI_Init(); 
    DDPI_Init(); 
    A = new Matrix(rows,cols); 
    B = new Matrix(rows,cols); 

ltiplicand 
A using row striping d distribute         
    B->scatter(WHOLE); / distribute whole 
matrix B 
    C->scatter(A->getContxt()); // partition and 
distribute product C indentical to A 
 
    // convert C <-- alpha×A×B+beta×C of 
BLAS dgemm routine into C <-- A×B 
    char    transposeA = 'N'; // set matrix A as 
not transposed 

Fig 8: Concurrent multiplication of a row striped matrix with a whole matrix without interprocessor 
communications.

e proposed technique, multiplicands A and B 
nProcs×1 and 1×1 process grids respectively. 
rently, the PBLAS library prohibits 
taneous operations on matrices having 
nt process grids (conflicting contexts). As a 
uence, the experiment is conducted using the 

ential version of the pdgemm routine, dgemm 
le precision generalized matrix multiply), 
 is available from the BLAS library. Figure 9 

strates the simplicity of DDPI in parallelizing 
en such sequential matrix multiplication 

rithm. 

The timing results of the proposed technique 
strated in Figure 10. As expected, the 

execution time decreased by almost twofold when 
number of processors increased from one to 
 This outcome clearly exhibits the influence of 

unication latency in the overall 
15 
16 

    C = new Matrix(rows,cols); 
    A->scatter(ROW) // partition mu

eve
earl
ec 1

20 

; 
 an

/



 

27 
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32 
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34 
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38 

    d

    char    transposeB = 'N'; // set matrix B as 
not transposed 
    int     p1 = 1; // increment index for 
traversing the elements in the matrices 
    double  alpha = 1.0; 
    double  beta = 0.0; 
 
    // execute C <-- A×B using BLAS dgemm 
routine 
    dgemm_(transposeA, transposeB, C-
>getLclRows(), C->getLclCols(), 
             A->getLclCols(), alpha, 
             A->data, C->getLclRows(), 
             B->data, C->getLclCols(), beta, 
             C->data, C->getLclRows()); 
 
    C->gather(); // local results are assembled 
to form complete product matrix C 
    delete A; 
    delete B; 

elete C; 
    DDPI_Exit(); 
    MPI_Finalize(); 
} 

Fig 9: Function execute_dgemm that partitions, 
distributes and multiplies using BLAS dgemm 

routine and DDPI interface. 
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Figure 11: Comparison of . 

 
Figure 11 com ares the pe nce of 
parallel multipli n all fo
processors of the cluster are utilized. In terms of the 
execution time, it is evident that the stri
technique outperforms the block cycli
scheme by almost twofold for all the matrix si
The result demonstrates th
possible to implement a p
multiplication procedure that out
parallel implementations such
pdgemm
PBLAS ro
process grid to
manipulated in the operation. 
 

4.2 Concurrent Data Clustering 
Data cluste

problem (Garey et
heterogeneous data by minimizing so
dissimilarity, is one of the fundament
mining, machine learning and pattern
solutions. Of all the many availab
techniques, the k-m ustering 
algorith
stands out as 
computational 
implementation (Estivill-Castro
Figure 12 depicts the k-means cl
which finds k clusters in a d
nSamples×nDimension. For a
search space (steps 2 to k-means algorithm 

as the computational complexity of 
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arallel matrix 
performs dedicated 
 as the PBLAS 

. It appears that the drawback of the 
utine is in its restriction to use identical  

pologies for all the matrices 

ring, which is an NP-complete 
 al., 1982) of finding groups in 

me measure of 
al tools in data 
 classification 
le clustering 

eans center based cl
m, despite of its local minimum solutions, 

a popular tool due to its low 
complexity and straightforward 

 and Houle, 2001). 
ustering algorithm 

ata set of size 

( )O nSamples nDimension k× ×  
 
The k-means primary advantage of low 
computational com lexity will therefore be 

n the number of samples is large. 
y this shortcoming when using k-means 

with large databases, several parallel 
implementations of the echnique have been 
introduced (Dhillon and Modha, 1999; Kantabutra 
and Couch, 2000; Ng, 2000; Zhang et al., 2000). 

 their algorithm requires heavy network 
 due to rebroadcasts of the data set and 

therefore only about half of the CPU time is 
utilized. On the oth and, the data parallel 

b r three 
implementations are superior since only essential 
local statistics are broadcasted at each iteration, 
which substantially reduces the interprocessor 
communication latenc . Figure 13 lists the steps in 
the data parallel appro
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Input 
k : number of clusters 
X : data set nSamples nDimension×∈ℜ  
Output 
centers : cluster centers k nDimension×∈ℜ  

Step 1: Initialization 
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juuuuur
 where: 
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Repeat steps 2 to 4 until convergence. The objective function that the k-means 
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Fig 12: The sequential k-means clustering al
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Step 
Partition the data set into nProcs partitions 
and distribute them to the local memory of 

ses. On the root 
ocess, initialize centers values and make 

roadcasting them 

Step utation 
ess, compute local data 

 and local 
g local data sets and 

enters. 
Step l center recalculation 

nters using 
med local 

ships. Compute the global 
ming local 
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e computation and return global 
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to all processes. 

2: Local comp
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performance usin
global c
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Compute new global ce
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4: Convergence condition 
If global performance has con
terminat
centers, otherwise start next iteratio
step 2. 

Fig 1
mean
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k-me  ea iteration 
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3: The data parallel approach to parallelize k-
s type clustering algorithms. 
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prov es nProcs>>  (Zhang et 
al., 2 00). By exploiting the similarity of the data 
parallel approach adopted by DDPI, a parallel k-
mean can be implemented in a 
straig . 
 

sequential implementation 
 its parallel counterpart which is 

PI’s row striped partitioning 
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Input 
k            
X            
nSamples    : number of data

: the k-means performance, based on its objective function 

sequential k-means parallel k-means 

 
 
 
 
data = X; 
 
 

MPI_Init(); 
DDPI_Init(); 
Matrix::Matrix(nSamples,nDimension,X); 
Matrix::scatter(ROW); 
data = Matrix::data; 
myNode = MPI_Comm_rank(); 
if (myNode == 0) 



 

// intialize centers 
 
 
meanSE = BIG_NUM; 
do { 
  oldMeanSE = meanSE; 
  meanSE = 0;   
  for j = 1 to k 
    dataCntj = 0; 
    for col = 1 to nDimension 
      centers_j,col = 0; 
    endfor 
  endfor 
  for row = 1 to nSamples 
    minDistancerow = BIG_NUM; 
    for j = 1 to k 
      sumDistance = 0; 
      for col = 1 to nDimension 
        sumDistance = sumDistance + 
              (datarow,col – centersj,col)2;               (data
      endfor 

 

  // intialize centers 
endif 
MPI_Bcast(centers, k); 
meanSE = BIG_NUM; 
do { 
  oldMeanSE = meanSE; 
  meanSE_ = 0;   
  for j = 1 to k 
    dataCnt_j = 0; 
    for col = 1 to nDimension 
      centers_j,col = 0; 
    endfor 
  endfor 
  for row = 1 to Matrix::getLclRows(); 
    minDistancerow = BIG_NUM; 
    for j = 1 to k 
      sumDistance = 0; 
      for col = 1 to nDimension 
        sumDistance = sumDistance + 

; 

    
    
    
    
    
    c
    
    
    
    
    crow
    eanSE_ + minDistancerow; 
  endfor; 
  MPI_Barrier(); 
  MPI_Allreduce(centers_,centers,MPI_SUM); 
  MPI_Allreduce(dataCnt_,dataCnt,MPI_SUM); 
  
MPI_Allreduce(meanSE_,meanSE,MPI_SUM); 
  for j = 1 to k 
    for col = 1 to nDimension 
      centersj,col =  
            centersj,col/max(dataCntj,1); 
    endfor 
  endfor 
} while (meanSE < oldMeanSE); 
DDPI_Exit(); 
MPI_Finalize(); 

      if (sumDistance < minDistancerow) 
        minDistancerow = sumDistance; 
        centerLabelrow = j; 
      endif    
    endfor   
    crow = centerLabelrow; 
    for col = 1 to nDimension 
      centers_crow,col = centers_crow,col + 
            datarow,col; 
    endfor 
    dataCntcrow = dataCntcrow + 1; 
    meanSE = meanSE + minDistancerow;
  endfor; 
  
 
 
 
  for j = 1 to k 
    for col = 1 to nDimension 
      centersj,col =  
            centers_j,col/max(dataCntj,1); 
    endfor 
  endfor 
} while (meanSE < oldMeanSE); 

row,col – centersj,col)2

       endfor
  if (sumDistance < minDistancerow) 
    minDistancerow = sumDistance; 
    centerLabelrow = j; 
  endif    
endfor   
row = centerLabelrow; 

for col = 1 to nDimension 
  centers_crow,col = centers_crow,col + 
        datarow,col; 
endfor 
dataCnt_crow = dataCnt_  + 1; 

eanSE_ = mm

Fig 14: Comparison of sequential and parallel implementations of k-means
  



 

number of data samples
(nSamples)

2

3

4

5
Sp

ee
du

p

1
1 2

Number of processo
3 4

rs (nProcs)

640K

320K

160K

80K

ideal

 
lization with DDPI 

formance in varied clustering problem
oncurrent k-harmonic

Figure 15: The k-means speedup a
 

Recently, Hamerly and Elkan have evaluated 
another center based clustering algorithm called k-
harmonic means and found it to be superior to the 
k-means algorithm in terms of the computed 
centers’ quality (Hamerly and Elkan, 2002). It 
appears from their findings that, on the contrary to 
the k-means algorithm, the k-harmonic means 
algorithm (Zhang, 2001) is robust to initial starting 
points of the centers. A parallel implementation of 
the k-harmonic means technique with DDPI is 
conducted to evaluate the consistency of the  
 

fter paralle
 
DDPI’s per s. 
Hence, a c  means algorithm 
was implemented with e DDPI’s row striped 
p  
e  

f this set of 

th
artitioning interface and a set of experiments was
xecuted similar to that of the k-means algorithm.

s the results oFigure 16 show
experiments. The results also demonstrate that it is 
possible to achieve almost linear speedups with the 
DDPI’s parallelizing interface for other clustering 
techniques such as the k-harmonic means 
algorithm. 
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Figure 16: The k-harmonic means speedup after parallelization with DDPI.
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Netw
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in orde

algo

consid
There
learnin

trainin

strat
etwork of 
edicated processor, parallelization at the neuron or 

nd parallelization using the data 
para

• Place the training data set on an 
Samples×nDimension matrix 

accessible by the root process. Partition 

ork parameter values and make 

3 Concurrent Batch Learning for Neural 
orks 

The learning phase of a neural network is 
putationally intensive especially when the 

batch training is employed as opposed to the 
stochastic technique. With batch training, at each 
iteration, the entire data set needs to be considered 

r to compute the parameters’ gradient for an 
iterative gradient based optimization scheme (such 
as the commonly used error backpropagation 

rithm). Conversely, for the stochastic training, 
at each iteration, the gradient is computed after 

ering only a single sample of the data set. 
 are however, some instances when the batch 
g is preferred over the stochastic technique 

(LeCun et al., 1996).  

When large data sets are considered for batch 
g, the training phase can be parallelized to 

reduce the computational costs. Parallelization 
egies that are available include training each 

a multi-neural network architecture on a n
d
synapse level, a

llel approach (Sundararajan and Saratchandran, 
1998). Interestingly, akin to the data clustering 
problem, the data parallel approach appears to be 
the most favourable technique due to its simplicity 
and performance (Schikuta and Weidmann, 1997; 
Rogers and Skillicorn, 1998). The parallelization 
steps of a general neural network batch training 
algorithm with the DDPI’s interface are shown in 
Figure 17. In addition to saving memory space by 
only allocating a portion of the data set on the local 
memories, the approach can also be applied for 
both single and multiple neural network 
architectures. 
 

Step 1: Initialization 
• Let nProcs be equivalent to the number 

of processors available in the 
homogeneous parallel computing 
environment. 

n

the matrix into nProcs partitions using 
DDPI’s row striped partitioning 
technique and distribute them to all 
processes. 

• On the root process, initialize the neural 
netw
them global values by broadcasting 

them to all processes. 
Step 2: Local gradient computation 

• On each process, compute local 
empirical error and local accumulated 
gradients using the local data and global 
parameter values. 

Step 3: Global parameter value adjustment 
• Sum all local accumulated gradients and 

divide them by the total number of 
samples (nSamples) to obtain the 
effective global gradient. 

• Sum all local empirical errors to obtain 
global empirical error. 

• Adjust the parameter values using the 
global gradients through an iterative 
gradient based optimization procedure. 

• Broadcast the new global parameter 
values to all processors. 

Step 4: Convergence condition 
onver d, 

terminate computation and return global 
parameter values, otherwise start next 

• If global empirical error has c ge

iteration from step 2. 

 
Fig 17: Parallelization steps of batch training with 

DDPI’s interface. 
  
n order to assess thI e performance of the parallel 

h tra

with respect 

Boniface et al., 1999) was reported to only 

is also possibly due to their 
on 

batc ining algorithm, a set of experiments was 
conducted with the classic Multilayer Perceptron 
(MLP) and the error backpropagation algorithm. 
The training was done on a data set with varying 
number of data samples and fixed number of 
terations. The batch training speedup i

to the execution time of the sequential 
implementation is shown in Figure 18. It is clear 
that DDPI’s performance is also consistent in the 
batch training problem. Furthermore, a dedicated 
neural network parallelization library by Boniface 
t al. (e

achieve speedup of 3.6 on 8 processors whereas 
with DDPI it is possible to attain speedup up to 
3.87 on only 4 processors (nSamples = 247731). 
However it should be noted that their experiment 
was conducted with the Kohonen Self-organizing 
Map on a network system more than 3 years ago. 

heir poor performance T
neur parallelism strategy which causes heavy 
network loading. 
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Fig 18: The Multilayer Perceptron batch training
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2.6 Conclusion 
A simple yet effective solution for parallelizing 

terative or large data problems has beeni
in this work. DDPI’s parallelization versatility has 
been demonstrated through a wide range of 
problems. Its almost linear speedup performances 
appear to be consistent on large data problems 
which are comparable to dedicated hand coded 
mplementations or other existing i

solutions. DDPI’s simplicity of implementation, 
demonstrated through some of the studied 
problems, promotes adoption by users with little 
understanding of parallel computing technicalities. 
In the future, DDPI can be extended for 
applications on a heterogeneous cluster by 
artitioning thep

perfor ance and resources of the individual nodes 
in the cluster. Additionally, DDPI can also be 
improved by providing support for complex and 
irregularly structured problems. 
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