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Abstract 

 
Microarray technology has been increasingly used 

in cancer research because of its potential for 
measuring expression levels of thousands of genes 
simultaneously in tissue samples. It is used to collect 
the information from tissue samples regarding gene 
expression differences that could be useful for cancer 
classification. However, this classification task faces 
many challenges due to availability of a smaller 
number of samples compared to the huge number of 
genes, and many of the genes are not relevant to the 
classification. It has been shown that selecting a small 
subset of genes can lead to an improved accuracy of 
the classification. Hence, this paper proposes a 
solution to the problem of gene selection by using a 
multi-objective approach in genetic algorithm. This 
approach is experimented on two microarray data sets 
such as Lung cancer and Mixed-Lineage Leukemia 
cancer. It obtains encouraging result on those data 
sets as compared with an approach that uses single-
objective approach. 

I.  INTRODUCTION 
Gene expression is the process by which mRNA 

and eventually protein are synthesized from the DNA 
template of each gene. Recent advances in microarray 
technology allow scientists to measure expression 
levels of thousands of genes simultaneously and 
determine whether those genes are active, hyperactive 
or silent in normal or cancerous tissues. Furthermore, 
this technology finally produces gene expression data. 
This data is also known as microarray data.   

Current studies on molecular level classification of 
tissue have produced remarkable results and indicated 
that microarray data could significantly aid in the 
development of an efficient cancer classification.1 
However, classification based on the data confronts 
with more challenges. One of the major challenges is 
the overwhelming number of genes relative to the 
number of samples in the data. Moreover, many of the 
genes are not relevant to the classification process. 
Hence, the genes selection is the key of molecular 
classification and very important.  

 The task of cancer classification using microarray 
data is to classify tissue samples into related classes of 
phenotypes such as cancer and normal.2 The process of 
gene selection is to reduce the number of genes used in 
classification while maintaining acceptable 
classification accuracy. Gene selection method can be 
classified into two categories. If gene selection is 
carried out independently from the classification 
procedure, the method belongs to the filter approach. 
Otherwise, it is said to follow a wrapper (hybrid) 
approach. Most previous works have used the filter 
approach to select genes since it is computationally 
more efficient than the hybrid approach. However, the 
hybrid approach usually provides greater accuracy than 
the filter approach.1 Application of a hybrid approach 
using genetic algorithm (GA) with a classifier has 
grown in recent years.  

Multi-objective optimization (MOO) is an 
optimization problem that involves multiple objectives 
or goals. Generally, the objectives may estimate very 
different aspects of the solution. Being aware that gene 
selection is also a multi-objective optimization 
problem in the sense of classification accuracy 
maximization, and gene subset size minimization.  

1331

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on March 08,2010 at 21:52:33 EST from IEEE Xplore.  Restrictions apply. 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The n-dimensional decision space maps to the m-dimensional objective space 

Therefore, this research proposes a multi-objective 
approach in a hybrid of GA and support vector 
machine classifier (GASVM) for gene selection and 
classification of microarray data. It is known as 
MOGASVM. 

II. MULTI-OBJECTIVE OPTIMIZATION USING GA 
MOGASVM is developed to improve the 

performance of GASVM in previous work1 that uses 
single-objective. All information of GASVM such as 
flowchart, algorithm, chromosome representation, 
fitness function, and parameter values are available in 
Mohamad et al.1 

In the sense of classification accuracy maximization 
and gene subset size minimization, gene selection can 
be viewed as a multi-objective optimization problem. 
Formally, each gene subset (a solution) x (n-
dimensional decision vector) is associated with a 
vector objective function ( ) :f x  

1 2( ) ( ( ), ( ),..., ( ))mf x f x f x f x=               (1) 
with 1 2( , ,..., ) ,nx x x x X= ∈  

where X  is the decision space, i.e., the set of all 
expressible solutions. The vector objective function 

( ) :f x maps X into mℜ , where ℜ is the objective space 
and 2m ≥  is a number of objectives. if  is the ith 
objective. The vector ( )z f x= is an objective vector. 
The image of X in objective space is the set of all 
attainable points, z  (see Fig. 1). If all objective 
functions are for maximization, a subset x  is said to 
dominate another subset *x  if and only if: 

*x x> iff  
* *1.. , ( ) ( ) 1.. , ( ) ( )i i j ji m f x f x j m f x f x∀ ∈ ≥ ∧ ∃ ∈ >  

A solution (gene subset) is said to be Pareto optimal 
if it is not dominated by any other solutions in the 
decision space. A Pareto optimal solution cannot be 
improved with respect to any objective without 
worsening at least one other objectives. The set of all 

feasible non-dominated solutions in X is referred to as 
the Pareto optimal set, and for a given Pareto optimal 
set, the corresponding objective function values in the 
objective space are called the Pareto front.3 

Pareto front in this research is defined as the set of 
non-dominated gene subsets. MOGASVM is one of 
the promising approaches to find or approximate the 
Pareto front. The roles of this approach are guided 
with the search towards the Pareto front and preserving 
the non-dominated solutions as diverse as possible. 
Therefore, original GASVM is customized to 
accommodate multi-objective problem by using 
specialized fitness function. The ultimate goal of a 
MOGASVM is to identify a non-dominated gene 
subset Pareto front. This subset (individual) is 
evaluated by its accuracy on the training data and the 
number of genes selected in it. These criteria are 
denoted as 1f  and 2f  separately, and used in a fitness 
function. Therefore, the fitness of an individual is 
calculated such equation (4): 

1 1 ( )f w A x= ×                 (2) 

2 2 (( ( )) / )f w M R x M= × −                (3) 

21)( ffxfitness +=                 (4) 
where ( ) [0,1]A x ∈  is the leave-one-out-cross-validation 
(LOOCV) accuracy on training data using only the 
expression values of the selected genes in a subset x. 
R(x) is the number of selected genes in x. M is the total 
number of genes. 1w  and 2w  are two weights 
corresponding to the importance of accuracy and the 
number of selected genes, respectively, 1 [0.1,0.9]w ∈  
and 2 11w w= − . Formula of 2f  is calculated such 
above in order to support the maximization function of 
gene subset size minimization.  

In this paper, accuracy is more important than 
number of selected genes (gene subset size). Ambroise 
and Mclachlan (2002) indicated that testing results 
could be overoptimistic, caused by the “selection bias”, 
if the testing samples were not excluded from the 

z1 x1 

xn zm X, the decision space 

x2 z2 

Z, the objective space 
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classifier building process.4 Therefore, the proposed 
MOGASVM is totally excluded the testing samples 
from the classifier building process in order to avoid 
the influence of bias. 

III. EXPERIMENTAL RESULT 
 

A. Data Sets 
Two microarray data sets are used to evaluate the 

proposed approach: Lung cancer and Mixed-Lineage 
Leukemia (MLL) cancer. The Lung cancer data set has 
two classes: malignant pleural mesothelioma (MPM) 
and adenocarcinoma (ADCA). There are 181 samples 
(31 MPM and 150 ADCA). The training set contains 
32 (16 MPM and 16 ADCA) of them. The rest 149 
samples are used for testing set. Each sample is 
described by 12,533 genes. It can be obtained at 
http://chestsurg.org/publications/2002-
microarray.aspx.  

The MLL cancer data set is a multi-classes data set. 
It has three leukemia classes: acute lymphoblastic 
leukemia (ALL), acute myeloid leukemia (AML), and 
MLL. The training set contains 57 samples, while the 
testing set contains 19 samples. There are 12,582 genes 
in each sample. This data set can be downloaded at 
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 

 

B. Experimental Setup 
Three criteria following its important are used to 

evaluate the MOGASVM performances: LOOCV 
accuracy, number of selected genes, and test accuracy.  

The experimental results presented in this section 
pursue two objectives. The first objective is to show 
that gene selection using MOGASVM is needed for 

reducing number of genes and in achieving better 
classification of microarray data. Furthermore, the 
second objective is to show that the MOGASVM is 
better than GASVM (single-objective) and SVM. To 
achieve these objectives, several experiments are 
conducted 10 times on both data sets using different 
values of 1w and 2.w  The subset that produces the 
highest LOOCV accuracy with the smallest number of 
selected genes is chosen as the best subset.  
 

C. Result Analysis 
Table 1 displays results of the experiments for both 

data sets using different values of 1w and 2.w  A value 
of the form x ± y represents average value x with 
standard deviation y. Overall, classification accuracy 
and number of selected genes for both data sets were 
more fluctuating because of the diversity of the 
solutions based on adjusted weights ( 1w and 2w ). 
Moreover, multiple objectives simultaneously search 
in a run and consequently populations tend to converge 
to the solutions which are superior in one objective, 
but poor at others. The highest averages of LOOCV 
accuracy and test accuracy for classifying Lung 
samples were 73.31% and 85.84%, respectively, while 
94.74% and 90%, respectively of MLL data set. The 
highest averages of the accuracies on both data sets 
were obtained by using 1 0.7w =  and 2 0.3w = . All 
LOOCV results of both data sets were much higher 
than the test results due to the problem of over-fitting. 
The data set properties, i.e., thousand of genes with 
less than hundred of samples in the training sets can 
possibly cause the over-fitting. In this problem, a 
learning of decision function performs well on the 
training data, but bad on the testing data. 

TABLE 1: CLASSIFICATION ACCURACIES FOR DIFFERENT GENE SUBSETS USING MOGASVM (10 RUNS ON AVERAGE) 

Weight Average for Lung Data Set Average for MLL Data Set 

1w  2w  Accuracy (%) Number of 
Selected Genes 

Accuracy (%) Number of 
Selected Genes LOOCV Test LOOCV Test 

0.1 0.9 75 ± 0 84.43 ± 4.16 4,416.5 ± 17.90 94.74 ± 0 88.67 ± 5.49 4,472.1 ± 29.40 

0.2 0.8 75 ± 0 85.24 ± 4.68 4,421.3 ± 21.53 94.74 ± 0 89.33 ±  4.66 4,470.6 ± 16.54 
0.3 0.7 75 ± 0 84.16 ± 3.79 4,416.6 ± 13.59 94.74 ± 0 88.67 ± 7.06 4,466.9 ± 21.25 
0.4 0.6 75 ± 0 81.75 ± 4.30 4,410.3 ± 26.30 94.74 ± 0 89.33 ± 4.66 4,471.4 ± 19.50 
0.5 0.5 75 ± 0 84.10 ± 4.78 4,415.7 ± 25.40 94.74 ± 0 89.33 ± 5.62 4,465.3 ± 24.60 
0.6 0.4 75 ± 0 84.90 ± 4.04 4,423.2 ± 19.62 94.74 ± 0 88.67 ± 3.22 4,479.2 ± 21.73 
0.7 0.3 75.31 ± 0.99 85.84 ± 3.97 4,418.5 ± 50.19 94.74 ± 0 90.00 ± 3.51 4,465.2 ± 18.34 
0.8 0.2 75 ± 0 83.22 ± 4.86 4,419 ± 15.25 94.74 ± 0 88.00 ± 6.13 4,479.3 ± 22.24 
0.9 0.1 75 ± 0 83.83 ± 4.30 4,423.3 ± 19.66 94.74 ± 0 88.00 ± 6.13 4,468.4 ± 16.03 

Note: Best result shown in shaded cells. 
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TABLE 2: RESULT OF THE BEST SUBSETS IN 10 RUNS 
USING 1 0.7w = AND 2 0.3w =  ON MOGASVM 

 
4418.5 genes (average) in a subset were finally 

selected to obtain the highest accuracies (LOOCV and 
test) of Lung data set, whereas 4465.2 genes (average) 
of MLL data set. Hence, these subsets were being 
chosen as the best subsets for Lung and MLL data sets, 
respectively. It is called best-known Pareto front 
because it is close to the true Pareto front. 
MOGASVM could obtain the best subsets since it 
successfully distributed diverse gene subsets over 
solution space. 
Table 2 shows that the best performances (LOOCV 
and test accuracies) were 78.13% and 93.29%, 
respectively for Lung data set using 4433 genes, while 
94.74% and 93.33%, respectively for MLL data set by 
using 4437 genes. The best performances, for both 
data sets have been found in the seventh experiment. 

In Table 3 shows that the performance of 
MOGASVM was better than GASVM and SVM in 
terms of LOOCV accuracy, test accuracy, and number 
of selected genes on average result and the best result. 
In general, MOGASVM has reduced about a third of 
the total number of genes, whereas about a half of 
GASVM. This is due to the ability of the MOGASVM 
to simultaneously search different regions of a solution 
space and therefore it is possible to find a diverse set 
of solution in higher dimensional space. Moreover it 
may also exploit structures of good solutions with 
respect to different objectives to create new non-
dominated solutions in unexplored parts of the Pareto 
optimal set. This suggests that gene selection using 
multi-objective approach in GASVM is needed for 
cancer classification of microarray data. 

IV.  CONCLUSION 
This paper has investigated the important issues of 

selection a subset of genes from thousands of genes 
measured on microarray. A MOGASVM is designed, 
developed, and analyzed to solve the issues on two 
benchmark microarray data sets. This research found 
that classification accuracy and number of selected 
genes for both data sets were more fluctuating when 
using different values of 1w and 2w . This result 
concludes that there are many irrelevant genes in gene 
expression data and some of them act negatively on the 
acquired accuracy by the relevant genes. 

From the experimental results, generally, the 
MOGASVM achieved significant LOOCV accuracy, 
test accuracy, and number of selected genes, and were 
better than GASVM and SVM since the multi-
objective approach in it can find a diverse solution in 
Pareto optimal set. However, the number of selected 
genes using MOGASVM was still higher. Thus, it 
needs further research to reduce the number. 
MOGASVM can also be extended to other 
applications such as computer vision and cognitive 
science. 
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TABLE 3: BENCHMARK OF THE MOGASVM WITH GASVM AND SVM 

Method 
Lung Data Set (Average; The Best) MLL Data Set (Average; The Best) 

Number of 
Selected Genes 

Accuracy (%) Number of 
Selected Genes 

Accuracy (%) 
LOOCV Test LOOCV Test 

MOGASVM (4,418.5 ± 50.19; 
4,433) 

(75.31 ± 0.99; 
78.13) 

(85.84 ± 3.97; 
93.29) 

(4,465.2 ± 18.34; 
4,437) 

(94.74 ± 0; 
94.74) 

(90.00 ± 3.51; 
93.33) 

GASVM (single-
objective) 

(6,267.8 ± 56.34; 
6,342) 

(75.00 ± 0; 
75.00) 

(84.77 ± 2.53; 
87.92) 

(6,298.8 ± 51.51; 
6,224) 

(94.74 ± 0; 
94.74) 

(87.33 ± 2.11; 
86.67) 

SVM (12,533 ± 0; 
12,533) 

(65.63 ± 0; 
65.63) 

(85.91 ± 0; 
85.91) 

(12,582 ± 0; 
12,582) 

(92.98 ± 0; 
92.98) 

(86.67 ± 0; 
86.67) 

Note: Best result shown in shaded cells.  
 

Data 
set 

LOOCV 
(%) 

Test 
(%) 

Experiment 
No. 

Number of 
Selected Genes 

Lung 78.13 93.29 7 4,433 
MLL 94.74 93.33 7 4,437 
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