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Abstract. Extracting metabolic pathway that dictates a specific biological 
response is currently one of the important disciplines in metabolic system 
biology research. Previous methods have successfully identified those pathways 
but without concerning the genetic effect and relationship of the genes, the 
underlying structure is not precisely represented and cannot be justified to be 
significant biologically. In this article, probabilistic models capable of 
identifying the significant pathways through metabolic networks that are related 
to a specific biological response are implemented. This article utilized 
combination of two probabilistic models, using ranking, clustering and 
classification techniques to address limitations of previous methods with the 
annotation to Kyoto Encyclopedia of Genes and Genomes (KEGG) to ensure 
the pathways are biologically plausible. 
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1 Introduction 

A metabolic pathway which comprise of coordinated sequence of biochemical 
reactions is a small segment of the overall metabolic network that contribute to a 
specific biological function. However, a complete metabolic network is so huge and 
highly complex that the key pathways contributing to the responses are usually 
hidden. Therefore, an appropriate and effective model to extract and identify the 
pathways which at the same time takes account of the biological interactions between 
the components is required so that the real underlying structure of the system can be 
precisely obtained. 

Many of the approaches that have been done before can successfully identify a 
pathway within the metabolic networks but none of them can clearly justify that the 
pathway extracted has a significant contribution in a certain metabolic response since 
none are considering the genetic interactions within the components level. Models 
such as network expansion [1] and Flux Balance Analysis (FBA) [2] only focused on 
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chemical properties of metabolic network and do not directly consider the genetic 
component in the network.  

Numerous amount of research incorporate the genetic factors that contribute to the 
function of metabolic networks as proposed by Karp et al. (2010) [3] and Mlecnik et 
al. (2005) [4], but they can only identify groups of specified genes are important 
although only some genes within this known groups are contributing to the observe 
response. Other research such as Gene Set Enrichment Analysis (GSEA) [5] do not 
incorporate the known networked structure of genes but instead rely on structure of 
simple test statistics. Probabilistic network models such as Markov Random Field [6] 
and Mixture Model on Graph [7] on the other hand able to confirm that the features to 
be logically connected within the metabolic network but an assumption has to be 
made that is the gene expression is discretely distributed. This may not correctly 
describe the underlying structure and mechanisms of the system. 

This article discuss about the implementation based on combination of 
probabilistic models which has similar concept with GSEA but additionally takes 
account of the network structure [8]. With the use of pathway annotation from Kyoto 
Encyclopedia of Genes and Genomes (KEGG) this approach can overcome the 
limitations mentioned before and produce biologically plausible results. First, 
pathway ranking method [9] is applied to extract a number of pathways with 
maximum correlation through metabolic network. Then 3M Markov mixture model 
[10]  is used to identify the functional components within the extracted pathways and 
finally Hierarchical Mixture of Experts, HME3M model [11] utilized as the 
classification model to identify set of pathways related to a particular response label.  

The techniques are implemented on GSE121 dataset, the observation of genetic 
differences between obese patients that are divided into insulin resistance and insulin 
sensitive. This article extend the findings by calculating the p-value for the best 
HME3M component and annotating the gene set to enzyme accession number from 
KEGG. The outcomes of the methods are represented as directed graph pathway 
comprises of the relations between reaction, compounds, genes and also enzymes 
involved in that particular pathway. 

2 Methods 

This research is conducted by implementing the framework of model developed by 
Hancock et al. (2010) [8] with the extension of finding enzymes involved in particular 
pathway. The first step is defining pathway to precisely identify the location of each 
gene denotes a specific function, by the fact that same gene can be found in multiple 
location with different biological functions within the metabolic network. This step 
will define specific location of each gene using node and edge annotations extracted 
from KEGG database [12]. In pathway definition, each gene is defined as node in the 
network and annotated by its gene code (G), reaction (R) and KEGG pathway 
membership (P) as in (1). 

nodes: = (G,R,P) ; edges: = (CF, CM, CT, P).                 (1) 
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In addition, the edges that connect the nodes will be identified as first substrate 
compound (CF), the product compound of first reaction (CM), final product compound 
(CT) and (P) the final KEGG pathway membership of CT. Then, using annotation in 
equation (1), genetic pathway will be defined through metabolic network to be an 
extending connected sequence of genes, g, starting from specified start (s) and end 
compound (t) as shown in equation (2). 
 

s                               t                     (2) 
 
Each of the edges will also be evaluated by the functions f (gk, gk+1) which measure 
the strength of relationship between gk and gk+1 where label k is the edge annotation in 
equation (1).   

2.1 Pathway Ranking 

This second step is to find the pathway of maximum correlation trough metabolic 
network. This particular technique will identify K number of shortest and loop-less 
path within the weighted network [9] which is a non-parametric ranking procedure 
using Empirical Cumulative Distribution Function (ECDF) over all edge weights in 
the network. 

The ranking procedure will usually tend to biased towards shorter path 
consisting same genes due to high levels of redundancy in metabolic network. To 
overcome this problem two parameter are set. First, a parameter to control number 
of minimum genes in a pathway to remove small and insignificant pathways from 
pathway set. Secondly, as the result of redundancy, there will also be chains of 
reactions involving similar or identical genes therefore the second parameter is the 
user specified penalty p which control over the diversity of genes selection. An 
assigned of edge correlation, f (gk, gk+1) for all same gene edges will be used to 
specify penalty value. 

2.2 Pathway Clustering 

The goal for this important step is to identify set of pathways that produce the specific 
response and directly can be used to classify a particular response label.  This research 
will utilize a pathway classifier based on the 3M Markov Mixture Model (3M) [10] 
which will provide the basic framework for the model. The 3M model will be used to 
identify M functional components by mixture of first order Markov chains as shown 
in equation (3). This method achieved competitive performance in terms of prediction 
accuracies with combination of two types of data sets, pathway graph and microarray 
gene expression data. 

 

 
p(x)= ∑ πmp(s|θ1m)∏ p(gk,labelk|gk-1; θkm)                       (3) 

 

… … f(gk-1,gk) 
labelk-1 

gk gk+1 
f(gk,gk+1) f(gk+1,gk+2) 

labelk labelk+1 

M 

m=1

K

k=2
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The πm is the probability of each components, transition probabilities θkm defines each 
components, p(si|θ1m) is the start compound probability of si and p(gk, labelk|gk-1; θkm) 
is the probability of path travers on edge labelk. The result of this 3M is M 
components defined by θm = { θsm, [θ2m,…, θtm,…, θTm]}. The θm is probabilities  
of each gene clustered within each component and indicate the importance of  
the genes.  

2.3 Pathway Classification 

For pathway classification, an extension to the previous 3M model, HME3M [11]  
will be used which incorporate Hierarchical Mixture of Experts (HME) that enables it 
to create a classification model from 3M model directly. In order to do so, additional 
term, p(y|X, βm) which is a classification model will be added to the equation (3) into 
equation (4).  
 

 
p(y|X)= ∑ πmp(y|X,βm)∏ p(gk,labelk|gk-1; θkm)                             (4) 

 
 

y is a binary response variable and X is a binary matrix where the columns represent 
genes and the rows represent a pathway and value of 1 indicates that the particular 
gene is included within specific path. 

The parameters πm, θkm and βm are estimated simultaneously with an EM algorithm 
[11]. The additional term p(y|X,βm) which takes the binary pathway matrix X 
weighted by the EM component probabilities as input and returns the output as the 
posterior probabilities for classification of the response variable y. To ensure a 
scalable and interpretable solution, HME3M uses a penalized logistic regression for 
each component classifier. The goal of HME3M is to identify a set of pathways that 
can be used to classify a particular response label, yl ∈y. 

By using set of genes that involved in the particular pathway, p-values for each 
pathway are calculated using the hypergeometric distribution. If the whole genome 
has a total of (m) genes, of which (t) are involved in the pathway under investigation, 
and the set of genes submitted for analysis has a total of (n) genes, of which (r) are 
involved in the same pathway, then the p-value can be calculated to evaluate 
enrichment significance for that pathway by equation (5): 
 
 

p = 1 - ∑                                                                     (5) 
 

2.4 Pathway Visualization 

The most important HME3M pathway is visualize in nodes and edge representation 
by connected pathways, genes, compounds and reactions. One of the enhancements  
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made to this visualization technique is by incorporating the enzyme information that 
involved in the particular pathway based on set of genes that made up the pathway 
using the EC (Enzyme Commission) accession as well as the KO (KEGG Orthology) 
which both are annotated from KEGG database. 

3 Results and Discussion 

The dataset used is obtained from Gene Expression Omnibus (GEO) (GSE121) 
derived from an experiment of global transcript profiling to identify differentially 
expressed muscle genes in insulin resistance which is the prime causes of Type II 
diabetis-melitus [13]. 

Here this experiment presents the minimum path analysis of the HME3M [8]. The 
result shown in figures below are the key component for insulin resistant as identified 
by HME3M in terms of connected pathways (Figure 1), genes (Figure 2) and 
compounds (Figure 3) involved in that particular pathways. The edge thickness 
indicates the importance of that edge to the network and pathway with higher 
probability. This experiment is only focusing on insulin resistant as it is the key factor 
that contributes to Type II diabetes.  

This experiment is conducted by using number of minimum path to be extracted of 
5 paths. From Figure 1 it can be concluded that there are 2 main pathway components 
to the insulin resistance biological response that is the purine metabolism as the 
primary driver as well as pyrimidine metabolism which also serve as the shortest path. 
Another significant path includes glutathione metabolism, alanine, aspartate and 
glutamate metabolism and also arginine and proline metabolism. These observations 
may cause by the ability of this model to classify genes into the correct pathway map 
and calculate the p-value to estimate membership as in Table 1. With the combination 
of probabilistic models, this method able to extract probable pathways that are 
biologically significant based on the annotation to the pathway database.  

It is clear from set of compounds that made up the pathway, the highest path 
probability would be the transition and conversion from C00002 (ATP) through 
C00046 (RNA), C00075 (UTP), C00063 (CTP), C00044 (GTP) and C01261 
(GppppG) in Figure 3. This particular pathway result in production in ATP which is 
the significant signaling molecule in diabetes and insulin secretion as describe in 
Koster et al., 2005 [14]. In addition, the production of ATP that are occurring from 
C01260 (AppppA), C06197 (ApppA), C06198 (UppppU) or converted to C00575 
(cAMP), C00020 (AMP) and C00008 (ADP) and then back to ATP by using is 
supported by previous researches to have impact on insulin resistance. Verspohl and 
Johannwille (1998) prove that AppppA and ApppA play important part in insulin 
secretion which may relate to diabetes [15] as well as production of GLP-1 by 
C00575 (cAMP) and nucleoside diphosphate kinase (NDK) enzyme in ADP to ATP 
conversion known factor in insulin secretion and Type II diabetes [16]. 
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Fig. 1. Connected pathways 

From Figure 2 we can clearly see there is a gene with the accession number 318 
which code for nudix (nucleoside diphosphate linked moiety X) –type motif 2 also 
known as NUDT2. This gene encodes a member of nucleotide pyrophosphatases 
which can asymmetrically hydrolyzes Ap4A to yield AMP and ATP and responsible 
for maintaining intracellular level of dinucleotide Ap4A. 

This research extend the findings of this experiment by using the set of genes 
involve in this particular pathway from HME3M classifier to calculate p-value  
for each related pathways to measure the gene membership in the pathway (Table 
1). Here the top 15 pathways correspond to the set of genes are presented in the 
table.  

The gene ratio indicates the number of genes that are the members of the pathway 
from the number of genes produced by HME3M. Besides providing calculation for p-
value this research also provides the FDR-corrected q-values (if applicable) for 
reducing the false positive discovery rate. 
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Fig. 2. Connected genes of insulin resistant 

 

Fig. 3. Connected compound of insulin resistant 

From the table it is obvious that purine metabolism pathway has the lowest p-value 
with the highest gene ratio indicating the significant of the pathway with the gene set 
produce by HME3M component. The pathways are considered to be highly 
statistically significant if having p < 0.01.  
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Table 1. Gene ratio, background ratio, p-value and q-value for each pathway 

Path Pathway Name Gene 
Ratio 

Background 
Ratio pvalue qvalue 

00230 Purine metabolism 53/221 161/25668 0.0000 0.0000 

00330 
Arginine and proline 
metabolism 

35/221 79/25668 0.0000 0.0000 

00565 Ether lipid metabolism 14/221 35/25668 0.0000 0.0000 

00250 
Alanine, aspartate and 
glutamate metabolism 

21/221 58/25668 0.0000 0.0000 

00591 
Linoleic acid 
metabolism 

14/221 29/25668 0.0000 0.0000 

00240 Pyrimidine metabolism 32/221 99/25668 0.0000 0.0000 

04370 
VEGF signaling 
pathway 

15/221 76/25668 1.11E-16 7.51E-16 

00340 Histidine metabolism 11/221 29/25668 4.44E-16 2.84E-15 

04664 
Fc epsilon RI signaling 
pathway 

14/221 79/25668 6.22E-15 3.76E-14 

04270 
Vascular smooth muscle 
contraction 

16/221 126/25668 1.63E-14 9.12E-14 

00592 
alpha-Linolenic acid 
metabolism 

9/221 19/25668 1.89E-14 1.03E-13 

00620 Pyruvate metabolism 11/221 41/25668 3.79E-14 1.98E-13 

00260 
Glycine, serine and 
threonine metabolism 

10/221 31/25668 6.91E-14 3.45E-13 

04912 
GnRH signaling 
pathway 

14/221 101/25668 2.15E-13 1.03E-12 

 
From the set of genes this research also extends the findings to identify the 

enzymes involved in the particular pathway. In order for researchers to gain benefits 
from this extension, they should have a prior knowledge in the study of enzymes 
involved in a particular pathway. Figure 4 shows the enzyme involve using undirected 
graph with the correlation to every members. EC: 3.6.1.5 for example is ATP 
diphosphohydrolase which responsible for the formation of AMP and phosphate using 
ATP and water as substrate as well as its role as modulator of extracellular nucleotide 
signaling and also contribute to changes in metabolism [17].  

Figure 4 shows the corresponding enzymes that may contribute to insulin resistant. 
Some of the enzymes that potentially related to insulin resistant are for example EC: 
1.7.1.7 is GMP reductase that has a role of producing NADPH, guaosine 5’ 
phosphate. EC: 2.7.1.73 is inosine kinase which has the role of converting ATP to 
ADP and the other way around which gives an impact on insulin resistance as 
mention before as well as EC: 3.6.1.8 (ATP diphosphatase) which also involved in 
ATP conversion to AMP. The AMP-activated protein kinase plays important part in 
lipid and glucose metabolism where it promotes glucose uptake into muscle and 
suppressed glucose output from liver via insulin independent mechanism [18].  
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Fig. 4. The related enzymes that contribute to diabetes and insulin resistant  

4 Conclusion 

In this article, we describe an experiment of identifying and analyzing biologically 
significant pathway using gene expression dataset within global metabolic network. 
The key aspect of this research is that it takes into account for analysis of the sub 
networks, compound, reaction and interaction which allows a better picture of 
metabolic response without neglecting the underlying structure and mechanisms of 
metabolic network. The method discussed in this research has shown its effectiveness 
in extracting biologically significant pathway by using a combine approach with 
pathway ranking, clustering and classification technique by using two algorithms as 
the core structure that is the 3M and HME3M.  

Acknowledgement. We also would like to thank Universiti Teknologi Malaysia  
for supporting this research by UTM GUP research grant (Vot number: 
Q.J130000.7107.01H29). 

References 

1. Handorf, T., Ebenhoh, O., Heinrich, R.: Expanding metabolic networks: scopes of 
compounds, robustness, and evolution. J. Mol. Evol. 61(4), 498–512 (2005) 

2. Smolke, C.D.: The Metabolic Engineering Handbook: Tools and Applications. CRC Press, 
Boca Raton (2010) 

 



 Identifying Metabolic Pathway within Microarray Gene Expression Data 61 

3. Karp, P.D., Paley, S.M., Krummenacker, M., Latendresse, M., Dale, J.M., Lee, T.J., Kaipa, 
P., Gilham, F., Spaulding, A., Popescu, L., Altman, T., Paulsen, I., Keseler, I.M., Caspi, 
R.: Pathway tools version 13.0: integrated software for pathway/genome informatics and 
systems biology. Brief Bioinform. 11(1), 40–79 (2010) 

4. Mlecnik, B., Scheideler, M., Hackl, H., Hartler, J., Sanchez-Cabo, F., Trajanoski, Z.: 
PathwayExplorer: web service for visualizing high-throughput expression data on 
biological pathways. Nucleic Acids Research 33(1), 633–637 (2005) 

5. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., 
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set 
enrichment analysis: A knowledge-based approach for interpreting genome-wide 
expression profiles. PNAS 102(43), 15545–15550 (2005) 

6. Wei, Z., Li, H.: A markov random field model for network-based analysis of genomic data. 
Bioinformatics 23(12), 1537–1544 (2007) 

7. Sanguinetti, G., Noirel, J., Wright, P.C.: Mmg: a probabilistic tool to identify submodules 
of metabolic pathways. Bioinformatics 24(8), 1078–1084 (2008) 

8. Hancock, T., Takigawa, I., Mamitsuka, H.: Mining metabolic pathways through gene 
expression. Gene Expression 26(17), 2128–2135 (2010) 

9. Takigawa, I., Mamitsuka, H.: Probabilistic path ranking based on adjacent pairwise 
coexpression for metabolic transcripts analysis. Bioinformatics 24(2), 250–257 (2008) 

10. Mamitsuka, H., Okuno, Y., Yamaguchi, A.: Mining biologically active patterns in 
metabolic pathways using microarray expression profiles. SIGKDD Explorations 5(2), 
113–121 (2003) 

11. Hancock, T., Mamitsuka, H.: A Markov classification model for metabolic pathways. In: 
Workshop on Algorithms in Bioinformatics (WABI), pp. 30–40 (2009) 

12. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic 
Acids Res. 28, 27–30 (2000) 

13. Yang, X., Pratley, R.E., Tokraks, S., Bogardus, C., Permana, P.A.: Microarray profiling of 
skeletal muscle tissues from equally obese, non-diabetic insulin-sensitive and insulin-
resistant pima indians. Diabetologia 45, 1584–1593 (2002) 

14. Koster, J.C., Permutt, M.A., Nichols, C.G.: Diabetes and insulin secretion: the  
ATP-sensitive k+ channel (k ATP) connection. Diabetes 54(11), 3065–3072 (2005) 

15. Rusing, D., Verspohl, E.J.: Influence of diadenosine tetraphosphate (ap4a) on lipid 
metabolism. Cell Biochem. Funct. 22(5), 333–338 (2004) 

16. Yu, Z., Jin, T.: New insights into the role of camp in the production and function of the 
incretin hormone glucagon-like peptide-1 (glp-1). Cell Signal 22(1), 1–8 (2010) 

17. Enjyoji, K., Kotani, K., Thukral, C., Blumel, B., Sun, X., Wu, Y., Imai, M., Friedman, D., 
Csizmadia, E., Bleibel, W., Kahn, B.B., Robson, S.C.: Deletion of Cd39/Entpd1 Results in 
Hepatic Insulin Resistance. Diabetes 57, 2311–2320 (2007) 

18. Hegarty, B.D., Turner, N., Cooney, G.J., Kraegen, E.W.: Insulin resistance and fuel 
homeostasis: the role of AMP-activated protein kinase. Acta Physiol. (Oxf) 196(1),  
129–145 (2009) 

 


