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ABSTRACT. Microarray ade4 or known as MADEY is a multivariate software analysis
package for microarray gene expression data. This software package is capable of ac-
cepting wide variety of gene expression data formats such as Bioconductor AffyBaich
and exprSet. This MADE4 R package extends the advantages of aded package in multi-
variate statistical and graphical functions for the use in the microarray data application.
Moreover, MADE/ provides new graphical and visualization tools that assist in the inter-
pretation of multivariate analysis of microarray data. Besides that, LLSimpute algorithm
has been incorporated to assist in handling of datasets with missing values and this has
eased the application for the users to analysis on gene expression data that contain miss-
ing values.
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1. Introduction. MADE4, or known as microarray aded, is a software package based
on R language that was developed to facilitate multivariate analysis of microarray gene-
expression data. Furthermore, MADE4 accepts a wide variety of gene-expression data
formats and takes advantage of the extensive multivariate statistical and graphical func-
tions in the R package ade4, extending these for application to microarray data. In addi-
tion, MADE4 provides new graphical and visualization tools that assist in interpretation
of multivariate analysis of microarray data. The aim of this development of microarray
ade4 (MADEA4) is to provide a simple-to-use tool for multivariate analysis of microarray
data [1]. Multivariate analysis encompasses much more methods than these examples of
linear modelling implied by [2].

Besides that, the input of various types of datasets has been a key factor for the usability
of made4 in gene expression analysis, as wide variety of gene expression data input formats
such as Bioconductor AffyBatch, exprSet, marrayRaw, and standard R matrix formats
(data.frame or matrix) are available from all different sources for multivariate analysis.
This multivariate analysis software (maded) has limitation for dataset pre-processing,
whereby the dataset that contains missing values cannot be used to perform multivariate
analysis as the missing values estimation is a crucial step in the datasets pre-processing
[3]. Therefore, a function for reading and inserting the missing values to the dataset
based on local least squares imputation method (LLSimpute) has been proposed. This
LLSimpute algorithm is taken from [3].
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2. LLSimpute Algorithm. The LLSimpute algorithm is used to estimate the missing
values in target genes as the linear combination of their most k-similar neighbors chosen
by the first k smallest Euclidean distance. For example, assuming that the target gene
g1 contains a missing value in the first position of its total n = 5 experiment measures,
k similar genes are chosen, which consist of complete measurements before imputing the
missing value in target gene, then matrix A is constructed, vectors b and w, and the
missing value as follows:
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where « is the missing value in g;, wT € R¥*™-1) contains n — 1 elements of g; whose first
missing item is deleted, the elements of b € R*®! are the first components of the k-nearest
genes, and the rows of the matrix A contain k-nearest neighbor genes with their first
values deleted. With the above definition, the least squares problem based on Ly-norm
can be formulated as,

2" || ATz —wl, )
Then, the missing value « is estimated as linear combination of the vector b:
a= bz =b"(AT)w 3)

where (AT)! is the pseudoinverse of A”. This procedure will be implemented in the
LLSimpute function.

3. Datasets. The made4 software package includes two microarray gene expression data-
set, which are khan and NCI60. Khan is a microarray gene expression dataset from [4]
which contains SRBCT gene expression data. NCI60 is the microarray gene expression
profiles of the NCI 60 cell lines. Both of the datasets included are incomplete due to the
limitation of the R-package size. Therefore, the complete dataset of khan and NCI60 has
been used to replace the included dataset from the maded package.

Besides that, eight more datasets have been added to this made4 software for multivari-
ate analysis, making it to ten dataset in total. The datasets are Adenocarcinoma, Brain,
Breast, Colon, Leukemia, Lymphoma, and Prostate. For the Breast cancer dataset, there
are two separate datasets, which contain class 2 and class 3. The detailed information for
each dataset is listed in Table 1.

TABLE 1. Main characteristics of the microarray datasets used

Dataset Name | Genes | Patients | Classes | Reference
Adenocarcinoma | 9868 76 2 5
Brain 5597 42 5 6
Breast2 4869 77 2 7
Breast3 4869 95 3 7
Colon 2000 62 2 8
Leukemia 3051 38 2 9
Lymphoma 4026 | 62 3 10
NCI60 5244 61 8 11
Prostate 6033 102 2 12]
SRBCT 2308 63 4 4]
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4. Results and Discussion. The development and integration of LLSimpute algorithm
for the missing values imputation has solved the usability of the datasets for the multi-
variate analysis of the gene expression data. Without the missing values imputation, the
datasets could have been rendered useless for the multivariate analysis since incomplete
datasets cannot be analyzed.

Due to the huge amount of visualization output generated for each datasets, all of
the results generated through these multivariate analyses have been recorded and pre-
sented in the supplementary page, which can be downloaded at http://www.utm.my/aibig
/people/mohd-saberi-mohamad /research /supplementary-information.html. An example
output for each analysis is presented in the sections below to further facilitate the under-
standing of the functions of the multivariate analysis.

4.1. Overview of dataset. The overview function is a very simple wrapper function that
draws a boxplot, histogram, and hierarchical tree of expression data. The hierarchical plot

is produced using average linkage cluster analysis with Pearson’s correlation metric. An
example using Brain dataset is shown in Figure 1.
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F1GURE 1. Overview of the brain dataset

4.2. Correspondence analysis (COA). The application of correspondence analysis is
to study the association between microarray samples and genes in a reduced dimensional
space. It is more like principal component analysis, where it displays a low-dimensional
projection of the data, e.g., into a plane. This is done for two variables simultaneously,
thus revealing associations between them.

Once the correspondence analysis is done, a plot is produced with four separate visual
outputs, where the first view on the top left is a plot of the eigenvalues, followed by the
top right view for the projection of microarray samples from patient with tumor types,
whereby each tumor is labeled in a separate color. In the bottom left view, we can see the
projection of genes (gray filled circles) is shown and finally the bottom right view contains
the biplot showing both genes and samples. Samples and genes with a strong associated
are projected in the same direction from the origin. The greater distance from the origin
produces the stronger the association. An example using Brain dataset is shown in Figure
2.
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FI1GURE 2. Correspondence analysis of the brain dataset

4.3. Between groups analysis (BGA). Between Group Analysis (BGA) is a super-
vised classification method. Therefore, the classification and class prediction is done using
Between Group Analysis. The basis of BGA is to ordinate the groups rather than the
individual samples. The plots done below are single dimension plot for the BGA analysis.
An example using Brain dataset is shown in Figure 3.
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FIGURE 3. Between groups analysis of the brain dataset

5. Conclusion. There are many functions in MADE4 to visualize the results. The
MADE4 package can accept a wide variety of gene expression data input formats had
made it a simple to use tool for multivariate analysis. The integration of LLSimpute algo-
rithm for the missing values imputation has been crucial in pre-processing of the datasets
since incomplete datasets cannot be used for multivariate analysis. Moreover, with this
added function, most of the datasets with missing values can be solved. For the visu-
alization of the analysis, a simplest way to view results is to use plot functions. Apart
from that, there are functions for drawing 1D and 3D plots for higher dimension analysis.
Hence, it can be said that MADE4 has been the simplest tool for multivariate analysis of
gene expression data.
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