Search results for "rapidminer"

Search filter terms
Filter by category
Filter by type
Filter by tag
Filter by user
Filter by licence
Filter by group
Results per page:
Sort by:
Showing 341 results. Use the filters on the left and the search box below to refine the results.

Workflow 2. Getting Started: Retrieve and Apply a M... (1)

Thumb
This getting started process demonstrates how to load (retrieve) a model from the repository and apply it to a data set. The result is a data set (at the lab output for "labeled data" ) with has a new "prediction" attribute which indicated the prediction for each example (ie. row/record). You will need to adjust the path of the retrieve data operator to the actual location where the model is stored by a previews execution of the "1. Getting Started: Learn and Store a...

Created: 2011-01-17 | Last updated: 2011-01-19

Workflow Content based recommender system template (1)

Thumb
As an input, this workflow takes two distinct example sets: a complete set of items with IDs and appropriate textual attributes (item example set) and a set of IDs of items our user had interaction with (user example set). Also, a macro %{recommendation_no} is defined in the process context, as a required number of outputted recommendations. The first steps of the workflow are to preprocess those example sets; select only textual attributes of item example set, and set ID roles on both of th...

Created: 2011-05-05 | Last updated: 2011-05-09

Credits: User Matko Bošnjak User Ninoaf

Attributions: Blob Datasets for the pack: RCOMM2011 recommender systems workflow templates

Pack Online update experiment pack


Created: 2012-01-29 16:29:09 | Last updated: 2012-01-29 22:06:46

This is a pack containing experimentation workflows and datasets for item recommendation and rating prediction online update testing.

12 items in this pack

Comments: 0 | Viewed: 100 times | Downloaded: 69 times

Tags:

Workflow Crossvalidation with SVM (1)

Thumb
Performs a crossvalidation on a given data set with nominal label, using a Support Vector Machine as a learning algorithm. Inside the cross validation, the first subprocess generates an SVM model, and the second subprocess evaluates it. applying it on a so-far unused subset of the data and counting the misclassifications.

Created: 2010-04-29

Workflow Item to item similarity matrix -based reco... (1)

Thumb
This process executes the recommendation based on item to item similarity matrix. The inputs to the process are context defined macros: %{id} defines an item ID for which we would like to obtain recommendation and %{recommender_no} defines the required number of recommendations. The process internally uses an item to item similarity matrix written in pairwise form (id1, id2, similarity). The process essentially filters out appearances of the required ID in both of the columns of the pairwis...

Created: 2011-03-15 | Last updated: 2011-03-15

Workflow Collaborative filtering recommender (1)

Thumb
This process executes a collaborative filtering recommender based on user to item score matrix. This recommender predicts one user’s score on some of his non scored items based on similarity with other users. The inputs to the process are context defined macros: %{id} defines an item ID for which we would like to obtain recommendation and %{recommender_no} defines the required number of recommendations and %{number_of_neighbors} defines the number of the most similar users taken into a...

Created: 2011-03-15 | Last updated: 2012-03-06

Creator

Pack Creating a focused corpus of factual outcomes from b...


Created: 2011-06-28 11:19:04 | Last updated: 2011-12-13 16:02:16

 This pack contains resources and supplementary files for the submission to the MIND2011 workshop titled "Creating a focused corpus of factual outcomes from biomedical experiments" by James Eales, George Demetriou and Robert Stevens

1 item in this pack

Comments: 0 | Viewed: 77 times | Downloaded: 45 times

Tags:

Workflow Przykład metody Stacking (1)

Thumb
Poniższy przepÅ‚yw pokazuje wykorzystanie operatora Stacking do tworzenia meta-klasyfikatorów. Operator Stacking pozwala na zagnieżdżenie dowolnej liczby modeli bazowych, które bÄ™dÄ… równolegle uczone na zbiorze uczÄ…cym. Drugim operatorem zagnieżdżonym jest model klasyfikatora, który uczy siÄ™ na odpowiedziach modeli bazowych (czyli buduje model modeli odpowiedzi). W przykÅ‚adzie jako modele bazowe wykorzystano: drzewo decyzyjne, algorytm k-NN, sieć neurono...

Created: 2011-05-25 | Last updated: 2011-05-25

Workflow Iterate over Attribute Subsets and Store A... (1)

Thumb
This process iterates over all possible feature subsets and stores a) the names of all attribute subsets, b) the number of used features, and c) the achieved performance in a log table which can then be further analyzed.

Created: 2011-07-07

Uploader

Workflow Semantic clustering (with k-medoids) of SP... (1)

Thumb
The workflow uses RapidMiner extension named RMonto (http://semantic.cs.put.poznan.pl/RMonto/) to perform clustering of SPARQL query results based on chosen semantic similarity measure. Since the semantics of the backgound ontology is used in this way, we use the name "semantic clustering". The SPARQL query is entered in a parameter of "SPARQL selector" operator. The clustering operator (k-medoids) allows to specify which of the query variables are to be used as clustering criteria. If more ...

Created: 2012-01-29

Results per page:
Sort by: